
Insider Attack Identification and Prevention Using a
Declarative Approach

Anandarup Sarkar∗, Sven Köhler∗, Sean Riddle∗, Bertram Ludäscher∗, Matt Bishop∗
∗University of California, Davis

{asarkar, svkoehler, swriddle, ludaesch, mabishop}@ucdavis.edu

Abstract—A process is a collection of steps, carried out using
data, by either human or automated agents, to achieve a specific
goal. The agents in our process are insiders; they have access
to different data and annotations on data moving in between
the process steps. At various points in a process, they can carry
out attacks on privacy and/or security of the process through
their interactions with different data and annotations, via the
steps which they control. These attacks are sometimes difficult
to identify as the rogue steps are hidden among the majority of
the usual non-malicious steps of the process. We define process
models and attack models as dataflow-based directed graphs.
An attack A is successful on a process P if there is a mapping
relation from A to P that satisfies a number of conditions. These
conditions encode the idea that an attack model needs to have
a corresponding similarity match in the process model to be
successful. We propose a declarative approach to vulnerability
analysis. We encode the match conditions using a set of logic
rules that define what a valid attack is. Then we implement an
approach to generate all possible ways in which agents can carry
out a valid attack A on a process P , thus informing the process
modeler of vulnerabilities in P . The agents, in addition to acting
by themselves, can also collude to carry out an attack. Once A
is found to be successful against P , we automatically identify
improvement opportunities in P and exploit them, eliminating
ways in which A can be carried out against it. The identification
uses information about which steps in P are most heavily
attacked, and try to find improvement opportunities in them first,
before moving onto the lesser attacked ones. We then evaluate
the improved P to check if our improvement is successful. This
cycle of process improvement and evaluation iterates until A is
completely thwarted in all possible ways.

I. INTRODUCTION

Real-world processes are often large and complex and

determining if an attack can take place on them is quite

challenging. Recent works [1], [2] on process vulnerability

analysis have focused on the security or privacy aspects of

specific parts of a process. But a holistic vulnerability analysis

investigating the interactions among colluding agents, steps,

data and annotations on data, has been under-studied.

We propose Data Annotation Step Agent Interaction anal-

ysis or DASAI to addresses these shortcomings, handling a

case in which an attack concerns an interplay among all

players in a process, and analyzing if the attack is possible

on the whole process. A high level overview of DASAI is

presented in Section III. We model the process and the attack

as directed graphs having data, annotations, steps, agents

and filters (Section IV). We then establish the criteria of a

successful attack in the form of a mapping from the nodes in

the attack graph to those in the process graph (Section V). The

intuition behind this is: an attack model is structurally similar

to a process model but with a few different or additional

malicious steps. So examining whether this similarity exists

reduces to a matching between the components of the two

graphs. Another way to look at it is, as if, given a specification

of a process model, we try to find out if an attack model’s goal

can be implemented via the process.

We use logic-based rules to implement both our match

conditions and to generate the different possibilities for a valid

attack based on those conditions (Section V). These rules

generate and test the different possible ways in which the

attack graph A is similar to the process graph P according

to the match conditions, each corresponding to a way in

which the attack can be carried out on the process, thereby

identifying the rogue, “responsible for attack” agents too. Note

that DASAI also identifies annotation-based attacks where

agents pass secret information along the process dataflow in

order to achieve some malicious goal. An advantage of using

match conditions encoded as logic rules is that, they can be

changed easily to alter the semantics of a successful attack.

Once a valid attack is identified, DASAI automatically

searches for improvement opportunities in the process, and

if found, incorporates them to eliminate the attack (Section

VIII). The steps in the process are scanned for improvement

opportunities in a descending order of the number of times

they are attacked across the different possible ways of attack.

This scanning order ensures that a larger number of attack

ways are eliminated in the initial rounds of improvements,

thereby quickly presenting the user with a more robustly

improved process model. We then evaluate our improvements

and iteratively exploit the improvement opportunities to ensure

that the process is indeed made robust against the attack in all

possible ways.

Thus, given a set of process and attack models, we can

use DASAI to identify which attacks may be carried out

successfully on which of these processes by which agents in

which ways, and then make the processes robust against these

attacks, using applicable improvement opportunities.

A big advantage of DASAI is that it provides a formal

analysis mechanism to identify and remove vulnerabilities

from a process statically, without the actual process needing

to be carried out. This can help the process domain experts

to render their processes robust against a large set of attacks,

thereby avoiding lots of time and money associated with after

2014 IEEE Security and Privacy Workshops

© 2014, Anandarup Sarkar. Under license to IEEE.

DOI 10.1109/SPW.2014.41

260

2014 IEEE Security and Privacy Workshops

© 2014, Anandarup Sarkar. Under license to IEEE.

DOI 10.1109/SPW.2014.41

260

2014 IEEE Security and Privacy Workshops

© 2014, Anandarup Sarkar. Under license to IEEE.

DOI 10.1109/SPW.2014.41

265

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

Checks Voter
Eligibility

Issues
Ballot

Fills Ballot

Roster Clerk Ballot Clerk

Voter

VID

Roster List

Voter Eligibility
Verification

Ballot

BallotBallot

Vote

Fig. 1. Voting process model example: A roster clerk checks for
a voter’s eligibility to vote; if eligible, the voter is given an empty
ballot by the ballot clerk on which he fills out his vote.

the fact analyses.

To show the generality of our mechanism, we have ex-

plained DASAI in terms of abstract process and attack models.

To show the practicality of our mechanism, we have used a

real world example from the election domain as a motivating

use case in Section II; in Section IX, we show the results of our

DASAI implementation on this election example. The results

show, for each identified successful attack, which agents are

involved and whether they need to collude for the attack

to succeed. We conclude our paper with related work in

Section X, and summary of DASAI and future directions in

Section XI.

II. MOTIVATING EXAMPLE

We have used an election process as a representative use

case. Figure 1 shows an “On Election Day” voting process

model and Figure 2 shows the model of a voter confidentiality
attack which can possibly take place on that process. The ovals

in these figures represent data or artifacts, rectangles the steps,

diamonds the agents, and the double circles denote annotations

on the data.

In Figure 1, a voter, modeled as an agent, is checked for

his eligibility to vote during the Check Voter Eligibility step.

The roster clerk agent verifies whether that voter’s ID, VID,

is present in the artifact Roster list that is a list of registered

voters. If the verification succeeds, the roster clerk tells the

ballot clerk to give the voter a ballot of a specific type; Voter
Eligibility Verification in the figure is an abstract representation

of this communication between the roster and ballot clerks.

The voter now gets a blank ballot data from the ballot clerk

on which he fills out his vote, modeled as an annotation on

that ballot.

Now let us consider that insider agents collude to breach

voter confidentiality, finding out for whom a voter has voted.

Figure 2 shows an example model attack. Once a roster clerk

finds out that a voter is eligible to vote, he covertly passes on

the VID data uniquely identifying that voter to the ballot clerk.

The ballot clerk writes that secret information on an empty

ballot as an annotation on it and hands it over to the voter.

The unsuspecting voter casts his vote on the ballot as usual.

Thus we have a ballot data with two annotations on it, the

Checks Voter
Eligibility

Write the VID
on Ballot

Issues
Ballot

Fills the
Ballot

Inspects the
Ballots

Roster Clerk

Ballot Clerk

Voter

VID

Roster List

VID Ballot

BallotBallot

Ballot

Voter Eligibility
Verification

����

���

��� ���

Fig. 2. Voter Confidentiality Attack: A rogue roster clerk passes
on the voter’s ID to a colluding ballot clerk who puts this secret
information on an empty ballot, issued to the unsuspecting voter.
Once the voter puts his vote on the ballot, his confidentiality is
compromised, since the ballot also contains his ID.

VID and the Vote thereby breaking the voter’s confidentiality.1

Now given Figure 1 and Figure 2 as a process model and

an attack model, can we automatically determine whether this

attack can take place on this process? Also, the same attack

maybe carried out in several different ways on the process. For

example, the attack becomes easier if the roster clerk acts also

as the ballot clerk. If the ballot clerk marks the ballot before

issuing it to the voter, he would still have to collude with the

roster clerk to be sure that the right voter got the ballot with

the VID associated with that voter. But if the roster clerk is

the ballot clerk himself, that problem goes away. So once we

determine that an attack can be successful on a process, can

we automatically find out in how many ways it can be carried

out by which different agents, acting alone or colluding among

themselves? These are the principal questions which we solve

using DASAI in the following sections.

III. HIGH LEVEL OVERVIEW OF DASAI

Figure 3 shows a high-level overview of DASAI. A process

domain expert first defines a set of process and a set of attack

models. He picks a process model P and an attack model

Ai from the respective sets and provides them as inputs to

the Generate Attack Maps activity to find out if Ai

can be carried out against P . Ai represents any attack in the

stream of attacks A1, A2, . . . Am constituting the underlying

attack model set. We use Answer Set Programming (ASP)

[3], [4], a rule-based declarative programming paradigm, to

implement the Generate Attack Maps activity. The im-

plementing program encodes the valid conditions under which

an attack is successful and also enumerates all possible ways

in which Ai can be carried out against P respecting those

conditions. We denote this set of enumerated attack scenarios

as M1,M2, . . . ,Mk. If this set is empty, then Ai cannot take

place on P .

1This VID can just be a time stamp written on the ballot which later on
can be matched up against the roster list as long as the order in which ballots
are issued to the voters is also recorded on the roster.

261261266

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

��������	
�������

�

��
�

��

�

��
�

��

����	����
����������� �
�������
����������
�����������

�
�
�����
������	
������

�����	
��������������
��

����

���	
 ����

!��	���������"#��#����	
 ������

��
	�����$��
�����$�

�
� ���	
 ����	
�����%�	��&
���
�����������'�

!��	����������(�������
���#���
��&
�����
���"#�	���#��
��
	�����$�����)��
�����

*��������
��
	�����$��

���	
 ����	
�����
 �	��&
���(�

������
�����

��������&����	
�	�����������"#�	��������#��
���	
 ������
��
	�����$�"��������)��
�����

Fig. 3. Approach overview. Rectangles represent activities, rectangles with cut corners denote inputs or resultant outputs, and a diamond
denotes a decision box. A user tests a process P for its robustness against an attack Ai through generation of valid attack maps. P is
improved, if found to be vulnerable in one or more ways against Ai, and then an iterative process evaluation and improvement cycle ensues,
till P becomes completely robust against Ai.

If non-empty, this set of attack scenarios is input to the

Improve P , which tries to modify P to thwart Ai. The

user is given the choice to select an improvement method

which can be exploited to prevent Ai. Improve P then

scans and applies (if the opportunity exists) the user selected

improvement method on the steps in P in a descending order,

addressing the most attacked step first, then moving on to

the lesser attacked ones. Thus it is the implementing program

which decides the location in P in which the user selected

improvement opportunity will be exploited.

The output from Improve P is a set of “improved”

process models P1, P2, . . . , Pq , produced by exploiting the

user selected opportunity, where every set element is a variant

of process P with certain avenues of attack for Ai against it

being thwarted. Each variant represents a way by which the

same process improvement method can be used in different

locations in P to eliminate attack ways, thus making it robust

against Ai. These variants arise out of the fact that there can

be multiple steps in P , which are attacked the same number

of times across the different possible ways of attack and all

or some of them can be exploited for the same improvement

method. In such a scenario, depending on which step in P
is actually exploited by Improve P , we get a new variant.

The user is then again given an option of selecting a variant,

say Pj from this improved set, which is then again provided

as an input to the Generate Attack Maps implementing

program. Generate Attack Maps again runs the ASP

rules for attack determination based out of attack conditions to

test out if Pj is indeed improved against Ai. In this way, the

process improvement and evaluation continues iteratively till

P becomes robust against Ai in all possible ways. Once that

is ensured, we can reapply DASAI to check the robustness of

the next process selected from the set of process models.

IV. PROCESS AND ATTACK MODELS

In this section, we formally define our process graph, based

on which our process model and attack model are defined.

A process graph is a directed, acyclic graph G = (V,E)
whose nodes V = S ∪ D ∪ N ∪ Ag ∪ F are steps S, data D,

annotations N, agents Ag, or filters F. A step is the basic

unit of task in a process. An annotation can be used to

encode extra information for data. An agent, either human or

automated, controls or performs a step in a process. A filter is

an additional activity associated to a particular step; it restricts

a step from producing a certain type of output or a certain type

of annotation on the output. We also associate types with the

nodes in G, i.e., for each kind K ∈ {S,D,N,Ag,F} of node in

V , the function type: K → TK associates a type to K-nodes.

For example, for a step s ∈ S, the function type : S → TS

(i.e., type(s)) will yield a step type, which further describes

s. In G, data d1 with a set of annotations T1 is a subtype(�)

of data d2 with a set of annotations T2, provided T2 ⊆ T1 and

type(d1) = type(d2).

The edges E = R∪W∪C∪T∪X are as follows: R ⊆ D×S
is the set of read edges signifying that steps consume data. A

step requires access to all data which are connected to it via

read edges. W ⊆ S×D is the set of write edges signifying that

steps produce data. When a step is successfully performed,

it produces all the data to which it is connected via write

edges. C ⊆ Ag × S is the set of control edges signifying

that agents control or perform steps. T ⊆ N × D is the set

of annotate edges denoting that annotators add information

to data. X ⊆ F × S is the set of filter edges denoting that

filters remove certain types of data, thus preventing them from

appearing as outputs, or annotations on the outputs from the

steps with which the filters are associated. A path is a sequence

of nodes v1, v2, . . . , vn such that (vi, vi+1) ∈ E.

Example. Figure 4 shows an example process graph. The

distinct shapes of the nodes uniquely identify their kinds like

steps, data etc. and the names of the nodes identify their types,

for example ballot is a data type in the process.

We define a process model and an attack model as two

distinct types of process graphs. The process model is a

specification which is drawn out by the domain experts to

achieve a useful goal, while the attack model represents the

plan drawn out by rogue agents to achieve a malicious goal

while implementing the process model.

Formally, a process model P is a process graph GP =
(VP , EP). An attack model A is similarly, simply a process

262262267

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

d1

s1

ant

d2 s2

d2

d3 s3 d4

ant

ag1 ag2 ag3

Fig. 4. Process graph, consisting of steps (rectangles), data (ovals),
annotations (doubled circles), agents (diamonds), and filters (trian-
gles). Nodes are labeled with their corresponding types. Edge types
are: data→step (read), step→data (write), agent→step (control),
annotation→data (annotate), and filter→step (filter).

graph GA = (VA, EA) where FA = ∅ and XA = ∅, since

an attack model does not contain any construct as filter, and

correspondingly the filter edges.

V. ATTACK MAPPINGS

We now describe what constitutes a valid attack, and deter-

mine in how many possible ways an attack can take place on a

process. With the underlying intuitions behind these concepts,

we also present a few selected accompanying formalisms and

implementations of the same.

A. Map Conditions

For an attack A to be successful on a process P , we

test if the process model P provides us with the right steps

and data required in order to carry out the attack. Also,

the process agents need to collude if A requires that. All

these requirements, intuitively reduce to a structural similarity

matching between the corresponding nodes of A and P .

Thus, we define an attack as a mapping relation M between

an attack model A and a process model P , i.e., relating nodes

in A with nodes in P : M ⊆ VA × VP . An attack map2 M is

said to be well-formed if it relates A nodes and P nodes of

the same kind, i.e., M = MS ∪MD ∪Mα ∪Mω ∪MAg. We

only consider well-formed mappings in this paper.

Here, MS: SA → SP maps attack model steps to process

model steps, MD ⊆ DA ×DP relates attack data with process

data, Mα,Mω ⊆ DA×DP also relate attack data and process

data, but are used to identify the beginning and end of a

sequence mapping, respectively. Finally, MAg ⊆ AgA × AgP
relates attack agents with process agents.

A well-formed M is said to be a valid M if all the

following mapping conditions are satisfied. These conditions

define precisely when an attack A is “similar enough” to a

process model P to be considered successful against P .

Condition 1: Mapping All Nodes. M relates all attack data

DA, steps SA, and agents AgA nodes to corresponding nodes

DP , SP , and AgP in the process model.

Condition 1a: All Steps Match. In a successful attack, all

steps are carried out. Thus all steps in SA are mapped to some

steps in SP (unless they are part of an attack sequence map):

For all sa ∈ SA there is a sp ∈ SP such that MS(sa, sp),
or else sa is part of an attack sequence map (Condition 5).

2short for: attack mapping relation (i.e., M is not a function but a relation)

s1 s1

s2 s2

d1

d1

d2 d2

d1

d3 d3

ant2

d1'

d4

d1'

ant1

s1 s1

d1 d1

d2 d2

ant

ant

ag2

ag4

ag3ag1

ag2

ag1

(a) (b)

Fig. 5. (a) Attack map: the pink attack model A is mapped to the
white process model P . Steps in A are mapped to steps in P with
matching types, shown by dashed (red), attack map edges. Data nodes
in A are mapped to type matching data nodes in P . The attack is
valid since all steps, data and agents from A are mapped. (b) The
filter (triangle) prevents the annotation of type ant, to be produced
on the output data of type d2, thus thwarting an otherwise successful
attack.

Condition 1b: All Data Match. In a successful attack, all

input data and all output data of attack steps must be mapped

to some data in DP (unless they are part of a sequence map):

For all da ∈ DA there is a dp ∈ DP such that MD(da, dp), or

else da is part of an attack sequence map (Condition 5).

Condition 1c: All Agents Match. All agents in the attack

model must be mapped to agents in the process model (unless

they are part of a sequence map): For all aga ∈ AgA there is

a agp ∈ AgP such that MAg(aga, agp), or else aga is part of

an attack sequence map (Condition 5).

Condition 2: Steps Match. A step type represents the kind

of action needed at a particular point in a process; only if the

process model provides a matching step type, can the attack

succeed: For all MS(sa, sp) : type(sp) = type(sa).
Figure 5(a) shows an example illustrating our map condi-

tions. In this subfigure, all the steps in the attack model A
(the pink thread) have their corresponding matching types in

the process model P (the white thread).

Condition 3: Inputs Match. An attack model step may need

to read certain inputs to be successful. Thus, we require the

matching process step to provide all these matching inputs.

Thus, for all MD(da, dp) : type(dp) � type(da). Datatypes

match when the types are equal or one datatype is a subtype

of another.

Figure 5(a) shows that all of the input data to any of A’s

step have their corresponding matches in P as shown by the

dashed red edges.

Note that MD preserves read edges, and thereby dataflow.

For example, in Figure 5(a) , in attack model A, given that

the step of type s1 reads data of type d1, and, this (step,data)

pair is mapped to their corresponding counterparts in P , for

263263268

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

a valid attack to take place, it must be the case that in P , the

step of type s1 reads data of type d1. The attack model data of

type d1 cannot be mapped to matching data, which is written

by the step of type s1 in P , or to any downstream data which

appears after the step of type s1 in P .

A process model step can meet an attack requirement by

reading an indirect input via an upstream step occurring before

it in the timeline. This is because we assume that data is never

destroyed in our model and any data read by a process step

is available indirectly as an implicit input to all downstream

steps. Figure 5(a) shows an example where P ’s step of type

s2 reads upstream data of type d1, which is the target of map

from the attack model.

A filter should not block the transitive availability of an

input, say dp, to a process step sp, for a valid attack. If a filter,

checking for type of dp, is present on any step on the path,

dp, . . . , sp, then it removes dp from the datastream, thereby

disallowing it to act as the target of data map from the attack

model. Hence there should exist at least one path dp, . . . , sp in

the process model, such that there is no filter for dp in this path.

Formally: if MD(da, dp) and MS(sa, sp) and da ∈ in(sa), then

dp ∈ in+(sp) and there exists a path πp : dp, . . . , sp in P such

that for all steps s ∈ πp and for all filters f of s, f does not

match dp, i.e., type(f) �= type(dp). in(sa) is the set of all

direct data inputs to sa. in+(sp) is the set of all data d that

are direct or indirect inputs to sp, i.e., there is a path from d
to sp in P .

Condition 4: Outputs Match. When an attack model

step is successfully performed, it produces certain data. So

the corresponding process step, should also produce all the

matching output data. Thus, if MS(sa, sp), i.e., an attack step

sa is mapped to a process step sp, then we require that any

output d′a ∈ out(sa) also matches an output d′p ∈ out(sp).
Figure 5(a) shows this output signature match condition; all of

the output data from any of A’s step have their corresponding

matches in P .

Also, for a valid attack, there should not be any filter,

associated with process step sp, checking for a data of type

of d′a, or of the type of annotation on d′a. Otherwise due to

this filter, process step sp cannot produce an output or an

annotation on the output, as demanded by the attack, thereby

failing the attack.

Figure 5(b) shows such an invalid attack mapping denoted

by the crossed dashed red edge, in which the filter restricts

the output from A’s step of type s1 from being mapped

to its counterpart in P because of the matching annotation

of type ant. Formally: If MS(sa, sp) and MD(d
′
a, d

′
p) and

d′a ∈ out(sa), then d′p ∈ out(sp) and for all annotations n′
a of

d′a and all filters f of sp, f neither matches n′
a nor d′a, i.e.,

type(f) �= type(n′
a) and type(f) �= type(d′a).

Condition 5: Sequence Mapping. Sometimes a sequence

of attack steps s1a, . . . , s
n
a might be achieved by a malicious

attacker using a single step sp of the process model. We

consider this possible if at least one of the steps sia in

the sequence matches sp. We also require that the inputs

and outputs of the attack sequence match those of sp. To

this end, the mapping M “encloses” the attack sequence via

special edges Mα and Mω , relating the data inputs (start of

the sequence) and outputs (end of the sequence) to those

of sp. Formally: if Mα(da, dp) and Mω(d
′
a, d

′
p), then there

exists a path πp: dp, . . . , sp, d
′
p in P such that for all paths

πa: da, s
1
a, . . . , s

n
a , d

′
a in A there is a matching step sia ∈ πa

with type(sia) = type(sp).
Attack steps in πa, including their inputs, outputs and

controling agents are part of a sequence map and assumed

to be carried out via sp. Thus they are exempt from being

explicitly mapped via MS,MD, and MAg (Condition 1).

Condition 6: Non-Collusive Agents match trivially. If

MAg(aga, agp), i.e., an attack agent aga is mapped to a process

agent agp, and aga controls step sa and agent agp controls

step sp, then, we require that, MS(sa, sp). Also, the inputs

and outputs of sa should match the inputs and outputs of sp
respectively.

We assume that any agent in the process can be made rogue;

so whenever an attack model step requires an agent to perform

it, the process model can always provide one and it may not

have the same signature as that of the attack model agent type,

but still be capable of carrying out the required attack model

step, as long as the corresponding step types in the attack and

process match.

When agents collude, agent mapping scenarios becomes

non-trivial, as discussed in Section VII. Note that for a valid

attack, mapped steps are either part of an attack sequence or

are mapped individually.

B. Multiple Ways of Valid Attack

For a given attack model A, there can be many mapping

relations M , that relate A to a given process model P . We try

to find out all such Ms, each corresponding to a way, in which

A can be carried out against P . If there is no M , we infer

that P is robust against A in all possible ways. The problem

of determining all such Ms is in essence a search problem:

each possible way of mapping attack steps/data to process

steps/data must be examined. Each combination is generated,

and then tested against the requirements of a valid mapping

as explained in Section V-A. Thus we use a generate and test
paradigm to generate all attack mapping possibilities and test

the validity of the mapping.

VI. IMPLEMENTATION

We use DLV [5], [6], a state-of-the-art implementation of

ASP [4], [7], [8], [9], to implement our valid attack map

conditions (in Section V-A). In the interest of space, we have

included only a portion of the entire implementation as a

representative. The program source code is available online. 3

We encode the constructs in the process model and attack

model like step, data, agent, filter etc., their types and the

interactions between them, as a set of DLV facts. For exam-

ple pm_read(d,s) is a process model fact encoding that

3https://code.google.com/p/agent-artifact-analysis/

264264269

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

s1

d2

s1

s3

d3

s3

d1 d1

d2

d3

ag ag1

ag3ant1

d2

s2

d2d1

s1

ag2

ag4

ant3

ant4

Fig. 6. Generate Attack Maps in Figure 3 automatically
outputs valid attack map between A and P . Dotted (green) edges
show collusion between agents.

process model step s reads data d i.e., (d,s) ∈ RP . Attack

model facts are similar, but they are prefixed with am.
Next, we encode, what constitutes a valid attack on a

process, implementing mapping Conditions 2, 3 and 4.

map(A1,S1,A2,A3,S2,A4):-
am_steptype(S1,X),
pm_steptype(S2,X),
allInMap(A1,S1,A3,S2),
allOutMap(S1,A2,S2,A4),
not filter_restricts(S1,S2).

The above DLV rule implements the criteria for an (in-

put data, step, output data) triple in an attack model i.e.,

(A1,S1,A2) to be validly mapped to its counterpart, in this

case, (A3,S2,A4) in the process model. If an attack model

step S1 has the same step type X as that of a process model

step S2, and the datatypes of all the data input to and output

from S1 match the datatypes of at least some data input to,

and output from S2 (modeled by predicates allInMap and

allOutMap, respectively), then we can claim that S1, along

with its input and output data can be mapped to S2 and its

input and output data respectively, signifying that an attack

step can be successfully realized via a process step (modeled

by the map predicate). The last conjunct in the above rule

ensures that there is no restrictive filter on the process model

step S2 which can prevent its output A4 from being the target

of the map (referring to the filter restriction requirement in

Condition 4). Thus we can claim that an attack is successful on

a process if all steps in an attack model along with their input

and output data show up as a member of the map predicate

in our program’s output.

Given an attack and a process model, Generate Attack

�� ��

�� ��

�� ��

�� ��

�� ��

��

���

��	

��

��

��

��

���

���

��

�� ��

�� ��

�� ��

�� ��

�� ��

��

��

���

��	

��

��

��

��

���

���

�
��

�
�	

�
��

�
��

�
��

�
�	

Fig. 7. Generate Attack Maps in Figure 3 outputs two other
ways (left and right) via which attack A can succeed on process P .

Maps (in Figure 3) implementation finds out in how many

different ways this attack is validly possible on this process

based on the attack mapping conditions. This implementation

is realized using ASP semantics, based on stable model

semantics [10], which is amenable to computationally difficult

(e.g., NP-hard) search problems.

Let us consider an abstract attack model A (pink thread) and

an abstract process model P (white), as shown in Figure 6,

where we try to determine if A is a valid attack on P , and if

so, in which ways.

inmap(A1,S1,A3,A2,S2,A4) v outmap(A1,S1,A3,A2,S2,A4)
:- map(A1,S1,A3,A2,S2,A4).

Using the above rule, DLV generates all attack maps or stable

models in which valid attack conditions are satisfied. Each

attack map corresponds to a way in which an attack can be

carried out on a process. Each such map contains inmap
atoms denoting that certain entities in the attack model are

mapped to those in the process model, or outmap atoms

denoting that a pair of entities is not mapped.

To illustrate the point, let us consider Figure 6, in which

we input the attack and process models, along with our

valid attack conditions and rules used for visualization, to the

DLV answer set solver implementing Generate Attack
Maps. The solver generates a set of stable models or attack

maps, each showing a way in which all the attack model

steps, data and agents can be mapped to some process model

steps, data and agents, respectively, as per our valid attack

conditions. The model constructs in each of these attack maps

get projected onto node atoms, and the relations and corre-

sponding mappings among the constructs onto edge atoms

by the visualization logic. Using DLVWrapper [11], a Java

interface for the DLV system, we have implemented a Java-

based method to collect these node and edge atoms and

construct a graph out of it in dot format, as shown in Figure 6

and Figure 7.

Figure 6 and each of the subfigures in Figure 7 shows an

attack map by which the attack A can be carried out on the

process P . In the attack map in Figure 6, DLV chooses to map

265265270

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

the step of type s1 in A to the first occurrence of the step of

type s1 in P as shown by the dashed red edges. These mapped

steps are part of the inmap predicate generated in this attack

map by DLV. But note that the attack model step of type s1
could also have been mapped to the second occurrence of the

step of type s1 in P . DLV chooses not to map this pair and

makes it part of the outmap predicate in this attack map.

The reverse scenario is true in a different model, as shown

in the subfigures in Figure 7. Generate Attack Maps
implementation outputs 15 possible models out of which we

have shown 3 of them in Figure 6 and Figure 7. In 5 attack

maps, the first occurrence of the step of type s1 in P is the

target of map, whereas in the remaining 10 attack maps the

second occurrence is the target of map.

Note that Figure 7 shows multiple possible mapping sce-

narios for the data too. Thus, in the attack map on the left,

DLV maps the attack model data of type d1, an input to the

step of type s1, to the process model data of type d1, which

is a direct input to the step of type s1 (second occurrence).

The right subfigure shows the alternative mapping, in which

attack model step s1 with its direct input d1 is mapped to the

second occurrence of the step s1 in the process model which

reads data d1 indirectly via some upstream steps.

Thus, utilizing the power of the answer set solver DLV, we

can implement the generation of all possible ways in which

an attack can take place on a process.

VII. AGENT COLLUSION SCENARIOS

The mapping of the agents as described in Condition 6 in

Section V-A becomes non-trivial when agent collusion scenar-

ios are considered. Consider Figure 6, in which the same agent

of type ag in the attack model A needs to carry out two distinct

steps of types s1 and s3. This can be because the agent needs

to utilize the information from one step, in another step. The

process model P can meet this requirement in two ways: either

the same agent carries out both of the corresponding steps of

types s1 and s3, or two distinct agents carry out this pair of

steps separately and are allowed to communicate or collude.

Generate Attack Maps implementation first enumerates

all possible combinations of pairs of agents participating in

a process model, and consider this, as the pairs that can
collude in the process. Then an integrity constraint is used

to eliminate the attack maps in which the pairs of agents who

are required to collude in the process to meet the attack model

requirement, can not collude, as modeled by the lack of green

edges between the corresponding agent pair.

Thus, the 15 possible ways of attack as produced as an

output from Generate Attack Maps implementation in

Section VI, can be grouped into 5 distinct categories. Each

category is identified by a different combination of pairs of

agents in P who can collude among themselves. In category

one, all agents in P can pairwise collude among each other; in

category two, agents of types ag1, ag3 and ag4 can pairwise

collude among them; in category three, agents of types ag1,

ag2 and ag3 can pairwise collude among them; in category

four, agents of types (ag1 and ag3) and (ag2 and ag4) can

pairwise collude among them and in category five, agents of

types ag1 and ag3 can collude between them. 4 The other

possible combinations of agent pair collusions do not become

a part of our output of 15 attack maps, since they do not

satisfy the criterion of meeting the attack model requirement

and hence, eliminated by the integrity constraint as mentioned

in the previous paragraph. The attack model A demands that

the same agent controls the steps of types s1 and s3, hence in

all of these 15 attack maps, the pair of agents controlling either

the first occurrence of the step of type s1 and s3, or the second

occurrence of the step of type s1 and s3 in P should be able to

pairwise collude between them. For example, Figure 6 shows

an attack map in which A can be carried out via P respecting

the integrity constraint. The dashed red edges between the

agent of type ag in A and each of the pair of P ’s agents

of types ag1 and ag3 indicate that, either this pair of agents

controlling the first occurrence of the step of type s1 and s3
respectively in P needs to collude, or this pair should be the

same individual for the attack to be successful. The dotted

green edges between the ag1/ag3 agent pair in P denote that

they can collude; hence, the attack is successful. In both attack

maps in Figure 7, each agent in P can pairwise collude with

all other agents. This means that an attack is possible, since

collusion is only required between the agents controlling steps

of types s1 (second occurrence) and s3 in P (ag3/ag4) for

the attack to be successful. Note that the collusion relation is

commutative on the elements of AgP and AgA, so the green

edges run in both directions between any colluding agent pair.

VIII. PROCESS MODEL IMPROVEMENT

Once Generate Attack Maps identifies the possible

ways in which an attack can take place on a process, Improve
P (in Figure 3) automatically searches for, and applies im-

provement opportunities in the original process model to

prevent the attack from succeeding in any possible way.

However, in the course of these improvements, Improve P
does not modify the process model in such a way that the

original process goal is inhibited. Thus, none of the steps,

agents, input or output data from the steps, and annotations

on the output data from the steps in the process model are

deleted or updated in their types while the process is being

improved.

Once improved, the resulting process model is again pro-

vided as an input to Generate Attack Map, as shown in

Figure 3, to confirm that the process has been indeed made

robust against the concerned attack in all possible ways. It

may take multiple improvement iterations before this goal is

achieved.

We have described how to optimize our Improve P
implementation to ensure that the iterations eliminating a

4Note that each of these categories consists of three members; in the first
one, the first occurrence of the step of type s1 in P is the target of attack
map, in the second and third one, the second occurrence of the step of type
s1 is the target of attack map. The second and the third member are distinct
from each other by the different possible data mapping scenarios, as discussed
in Section VI.

266266271

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

s1 s1

s3 s3

�� d1

d2 d2

d3

ant1

ag

s1

d2ant1

s2

d2

ag1

ag2

ag3

ag4

d1

ant4

d3

����

����

Fig. 8. The intermediate output from Improve P run, shows how
in P , a filter of type ant1 (denoted by the triangle) is added to the
first occurrence of the step of type s1, thereby preventing its output
from being the destination of map from its counterpart in A. Thus
attack shown in Figure 6 is now, no longer possible.

larger number of ways of attack, are carried out before the

iterations which prevent fewer violations.

There can be many different ways to improve a process, out

of which we have implemented two ways, including optimized

improvement for one of the ways.

A. Process Improvement (Filter influencing map on the output)

Sometimes an attack model contains a step that writes anno-

tated data, whereas its counterpart in the process model does

not contain any matching annotation on the corresponding

output data. For example, in in the attack model A of Figure 6,

the step of type s1 writes data of type d2 with an annotation

of type ant1, whereas the output data of type d2 from the

first occurring step of type s1 in the process model P does

not contain an annotation of type ant1.

In such a scenario, our Improve P implementation pre-

vents the attack by automatically adding a filter of type ant1 to

the step of type s1 in P , as shown in Figure 8. This is because

Condition 4 in Section V-A requires that, if we can validly

map an output data from an attack model step to that from

a process model step, then the attack step’s output must not

contain an annotation whose type matches the process model

step’s filter’s type. Thus, the addition of the filter of type ant1
on P ’s step of type s1 will ensure that Condition 4 does not

hold. The output data from the attack step of type s1 can no

longer be mapped to the output data from the process step of

type s1, thereby rendering the attack a failure.

But as Figure 8 shows, the step of type s1 in A can still be

validly mapped to the second occurrence of the step of type s1
in P . Once Generate Attack Maps iteratively identifies

��

��

��

��

��

��

��� ���

��

��

�	

�	�

�	

����

��

��

��

��

��

�	�

�	�

����

���

���

Fig. 9. Another process improvement opportunity where an additional
filter of type d1′ on the step of type s2 in P removes any data of type
d1′ from the datastream; thus the step of type s1 in A can no longer
utilize any upstream data of type d1′ in P as its input data map
target, thereby failing the attack (indicated by the red cross between
the data of type d1′ in A and P).

this remaining attack avenue, Improve P automatically adds

an additional filter to the second occurrence of the step of type

s1 in P , thereby preventing A from occurring in any possible

way. The outputs of step s1 in A can no longer be mapped to

either step of type s1 in P and thus P is made fully robust.

B. Process Improvement (Filter influencing map on the input)

The addition of a filter can prevent the map from an input

data of an attack step, to an input data of a process step. Let us

consider a slightly modified scenario from the right subfigure

of Figure 7, where both the first occurrence of step s1 in P
and s1 in A read data of type d1′ directly. In this scenario as

shown in Figure 9, the input to step s1 in A does not have the

same immediate input to the second occurrence of step s1 as

its map target, but it can utilize one of the upstream inputs of

type d1′, wich is read indirectly by the second occurrence of

the step of type s1 in P via the upstream steps, as its target.

Thus, we see that the availability of data of type d1′ as an

indirect input to the second occurrence of step s1 in P is a

threat; Improve P exploits this improvement opportunity,

adding in P a filter of type d1′ on the step of type s2 (shown

in the red box in Figure 9), immediately preceding the second

occurrence of the step of type s1. This filter prevents data of

type d1′ from appearing as an output from the step of type

s2. Thus, the second occurance of step s1 in P cannot read

the data of type d1′, thereby failing the attack.

C. Optimized Process Improvement

The order in which filters are added to different occur-

rences of steps in P can affect the number of attack maps

being eliminated in each iteration. Our goal is to improve P
through successive rounds, always choosing the improvement

267267272

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

s1

d2

s1

s3

d3

s3

d1d1

d2

d2

d3

agag1

ag3

ant1

s2

d1

s1

d2

ag2

ag4 ant3

ant4

ant1

Fig. 10. This is the optimized Improve P run’s intermediate
output; a filter of type ant1 is added to the second occurrence (rather
than the first) of the step of type s1 in P , thereby preventing its output
from being the destination of map from its counterpart in A. Thus,
attacks shown in Figure 7 are now, no longer possible. The optimized
version eliminates 10 possible ways of attack in the first improvement
round only, as compared to eliminating 5 ways in the unoptimized
version as discussed in Figure 8.

that eliminates a higher number of attack maps first. The

motivation behind this is to provide the user of our system

with a more improved process model in fewer improvement

rounds.

In our running example in Figure 10, the second occurrence

of the step s1 in P is more frequently attacked, occurring as

the target of an attack map in 10 possible ways. Second most

frequently attacked is the first occurrence, occurring as the

target of the attack map in 5 possible ways. Improve P
looks for improvement opportunities starting from the second

occurrence of s1, and then proceeds to the first occurance of

s1. Thus, in the first round of improvement, Improve P
adds a filter of type ant1 to the second occurance of step s1,

thereby eliminating 10 possible avenues of attack against it. In

the next improvement round, the first occurrence of the step

s1 in P is addressed, eliminating the rest of the possible ways

of attack.

Improve P is implemented in Java. Separate Java based

methods are defined for scanning of process improvement

candidates from most heavily to least heavily attacked, de-

termining if the improvement opportunities exist in them, and

exploiting them iteratively.

There are scenarios where a combination of different im-

provement opportunities are applied to the same process model

to eliminate various attack ways. Also there may be scenarios,

where a process model cannot be improved completely, since

the remaining attack maps cannot be eliminated by any iden-

tified improvement opportunity. Alternatively, a user might be

satisfied with a partially improved process and terminate the

improvemnt process prematurely.

IX. EVALUATION

Running the Generate Attack Maps (in Figure 3)

implementation on the motivating example of Section II gen-

erates 80 attack maps, each showing a way in which voter

confidentiality on election day can be breached. In the interest

of space, we have shown only two of the interesting ones

among them, along with the identification of the rogue insiders

responsible for the attack, in Figure 11(a) and Figure 12

with the abbreviated node names. The 80 attack maps can

be classified into 6 categories:

1. isb is the target of the attack map in the process model

with the following as the source in the attack model:

a) The sequence from the steps cve to isb
b) The sequence from the steps wvb to isb
c) The sequence from the steps cve to fillb
d) The sequence from the steps wvb to fillb

2. fillb is the target of the attack map in the process model

with the following as the source in the attack model:

a) The sequence from the steps cve to fillb
b) The sequence from the steps wvb to fillb

Figure 11(a) shows an example for category 1.a) where the

sequence in the attack model starting at step cve and ending

at step isb is mapped to step isb in the process model thereby

satisfying Condition 5 in Section V-A. In our implementation,

an attack sequence enclosure is visualized through a mapping

(blue edges) of the start (cve) and the end step (isb) of the

sequence, in addition to the mapping Mα and Mω . Note that

the regular attack step mappings which are not part of the

sequence (MS) are shown in red, for example the mapping of

step fillb.

The interpretation of these categories requires knowledge of

the process semantics as well as domain knowledge and is left

to the user. For example, the first category can be interpreted

as if the entire malicious goal of writing the vid on the ballot

(wvb) along with the non-rogue steps of checking the voter

eligibility (cve) and issuing the ballot to the voter (isb) is

carried out by the ballot clerk alone. This scenario is indicated

by the pair of blue mapping edges from the cve-isb sequence

in the attack model to the step of type isb in the process model.

The roster clerk and the ballot clerk then will be the same

agents as shown in Figure 11(a) by the mapping edges from

rcl and bcl in the attack model to bcl in the process model.

After the ballot clerk issues the ballot, the voter fills it out (as

shown by the red mapping edges between the corresponding

steps of type fillb in the attack and process model). Now, the

same ballot contains both the vid and vote thereby breaching

voter confidentiality. A self loop (green edge) on a process

agent in this case, indicates that the agent does not collude

with any other agent.

268268273

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

cve

vev

isb

b

fillb

b

vid rl

b

vote

rcl

bcl

voter

vid

(a) (b)

��� ���

��� ���

�� ��

� �

	��� 	���

� �

��� ���

�
�

���

�

�
�

�

���

�

���

������

�
���
�
���

���

�
�� ���

���

���

�
��

Fig. 11. (a) This shows the output of Generate Attack Maps
(in Figure 3) run on the motivating example of Section II. It
demonstrates a possible way how the voter confidentiality attack can
be carried out by the ballot clerk alone. (b) shows the voting process
improvement to prevent the attack in (a).

Similarly, as shown in Figure 12, consider the second

category 1.b) which can be interpreted as the roster clerk and

the ballot clerk colluding to carry out the attack. The step cve
in the attack model is mapped to its counterpart in the process

model (shown by the red mapping edge), while the sequence

of step types wvb, ..., isb in the attack model is mapped to

the single step of type isb in the process model via a pair

of blue edges. Also there are mapping edges, from the roster

and ballot agents of type rcl and bcl in the attack model to

its counterpart in the process model. All these can imply that

the roster clerk performs the usual step of checking the voter

eligibility (cve) and the ballot clerk performs the malicious

step of writing the vid on the ballot (wvb) along with the

non-rogue step of issuing the ballot to the voter (isb). The

dotted green edges between the agents of type rcl and bcl in

the process model signify that the roster and the ballot clerk

can collude. The roster clerk can pass on the secret data of

type vid (uniquely identifying the voter) to the ballot clerk

(modeled by the write and read of data of type vid by the

steps cve and wvb respectively in the attack model). In step

wvb, the ballot clerk now writes this data as an annotation on

the ballot of type b and issues it to the voter. The voter fills

out the ballot, thereby breaching the voter confidentiality since

now the same ballot contains both the annotations of type vid
and vote.

Voting Process Improved. Figure 11(b) shows the output

of Improve P (in Figure 3). The output of the step isb
in the attack model has an annotation of type vid which

does not exist on the output from the corresponding step isb
in the process model. The implementation of Improve P

rcl

cve

rcl

bcl

wvb

isb

bcl

voter

fillb

voter

vid vev

cve

b

isb

b

b

fillb

vid vidrl rl

vevb b

b

b

vid

vid

vidvote vote

Fig. 12. This shows the output of Generate Attack Maps (in
Figure 3) run on the motivating example of Section II, demonstrating
another possible way how the voter confidentiality can be breached
when the roster clerk and the ballot clerk collude.

automatically adds a filter of type vid on step isb in the process

model as shown in Figure 11(b). This filter prevents the ballot

output from step isb to contain the secret information of type

vid. The ballot clerk is unable to issue any ballot to a voter

with the secret information of type vid on it. Thus vid does not

get carried downstream and at no point in the process both the

annotations of type vid and vote exist on the ballot, thereby

preventing this type of voter confidentiality attack. To prevent

categories of attacks where the step of type fillb is the target

of map in the process model, a similar filter of type vid gets

added to the process step fillb. Once the filter of type vid is

added to both steps isb and fillb in the process model, all 6

categories of possible ways of attacks are prevented, and the

process model becomes robust against the voter confidentiality

attack in all possible ways described by the attack model. Note

that out of 80 possible ways of attack, there are 20 possible

ways in which step isb is not the target of attack map in the

process model and there are 20 other possible ways where

step fillb is not the target of attack map. Since these numbers

are equal, there is no clear majority as to which is the most

heavily attacked step in the process model; in such a scenario,

Improve P randomly picks one of the candidate steps for

improving the process model.

269269274

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

X. RELATED WORK

Process-based security analysis of agents and data in do-

mains like elections is an emerging area of study. Security

analyses of elections have focused on the technology used,

such as electronic voting machines [12], [13], [14], [15],

[16], [17], or on the cryptographic protocols proposed and

used for election systems [18], [19], [20]. Red-team tests

have examined systems both individually and in the context

of an election process [21], [22], [23] the latter being done

informally and non-rigorously.

As Barr et al. [24] pointed out, the security of elections

and the accuracy of their results depends just as much upon

the processes and procedures followed as upon the technol-

ogy used. Weldemariam et al. have examined the security

of business processes, and applied that work to elections

procedures [25], [26]. Others have used a formal process

modeling language called Little-JIL to represent an election

process, used that as a basis for calculating what steps must

fail for the process to fail, and introducing compensating steps

(“exception handlers”) to minimize the chances of failure [27],

[28], [29].

The latter work has verified security properties of an elec-

tion process by considering specific combinations of agent

behaviors. Unlike theirs, our work considers detailed scenarios

in which agents collude. We also take into account data

annotation-based attacks. Huong et al. [30] use the above

methods to analyze security properties of an election process

under attack using model checking. Unlike our approach, the

concept of agents in their analysis is not explicit; they realize

it implicitly via steps in the process. Also, our logic-rule based

approach for determining the mapping criteria for a successful

attack is more flexible. By changing our logic rules, we can

change the definition of a “successful attack”, whereas in

Huong’s approach, the definition of a successful attack via

a process not satisfying an “attack-always-fails” property is

somewhat rigid. Another advantage of DASAI in comparison

to their approach is that, it provides a method for automated

improvement of the process once the attack has been identified.

XI. DISCUSSION

Our paper presents DASAI, a logic rule-based static analysis

approach for determining if an attack can take place on a

process. If an attack is found to be possible, DASAI also

determines in which ways this attack can be performed on

the process and who are the rogue insiders involved. Dataflow-

based process and attack models are considered, and a holistic

perspective is used that looks at steps, data, annotations on data

and controlling agents to determine if a process is vulnerable

to an attack. The problem of attack determination is esentially

reduced to a graph matching-based search problem. We use a

declarative programming paradigm to automatically enumerate

the possible ways in which an attack graph can be matched

against a process graph according to a concept of a valid

mapping encoded as logic rules. Each mapping gives rise to

a possible avenue of attack. Apart from being intuitive in

expressing a valid attack mapping concept and being useful

in automatically enumerating attack possibilities, our logic

rule-based approach is also very amenable to addition of new

constraints to change the definition of an attack mapping

and hence the meaning of a successful attack. Once attack

possibilities are determined, our Java-based implementation

automatically and opportunistically searches and exploits im-

provement opportunities in the process, starting from the

mostly attacked steps to the lesser attacked ones, to make the

process robust against the attack in all possible ways.

Note that DASAI does not automatically generate the attack

models from a given process model. Current literature [31]

describes the use of model checking to automatically generate

attack models as they do not conform to a desired property of

a process. Once the model checker identifies an attack model

that is successful against a process, we can convert that attack

model structure into our format of a data-flow based attack

graph. Then, DASAI can be used to check against which

other processes this attack will be successful and in how many

different ways the attack is possible. Finally, DASAI can be

used to improve the set of vulnerable processes, making them

robust against this attack.

Currently, we have used DASAI on abstract scenarios and

various use cases from the election domain. As part of our fu-

ture work, we would like to test our rogue insider identification

and process improvement program on various use cases from

other process domains. For example, we plan to identify an

attacker carrying out a real estate fraud, thereby demonstrating

the broader applicability base of DASAI.

REFERENCES

[1] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach, “Analysis of
an electronic voting system,” in IEEE Symposium on Security & Privacy,
2004.

[2] Security analysis of the Diebold AccuVote-TS voting machine. Center
for Information Technology Policy, Princeton University, 2007.

[3] V. Lifschitz, “What is answer set programming,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2008, pp. 1594–1597.

[4] P. Bonatti, F. Calimeri, N. Leone, and F. Ricca, “Answer set program-
ming,” in A 25-year perspective on logic programming. Springer-
Verlag, 2010, pp. 159–182.

[5] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis,
G. Pfeifer, and F. Scarcello, “The dlv system: Model generator and
application frontends,” in Proceedings of the 12th Workshop on Logic
Programming, 1997, pp. 128–137.

[6] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The dlv system for knowledge representation and reasoning,”
ACM Transactions on Computational Logic (TOCL), vol. 7, no. 3, pp.
499–562, 2006.

[7] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming,” in Proceedings of the 5th International Conference on
Logic programming, vol. 161, 1988.

[8] ——, “Classical negation in logic programs and disjunctive databases,”
New Generation Comput., vol. 9, no. 3/4, pp. 365–386, 1991.

[9] V. Lifschitz, “Answer set planning,” in Logic Programming and Non-
monotonic Reasoning. Springer, 1999, pp. 373–374.

[10] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry,
“An a-prolog decision support system for the space shuttle,” in Practical
Aspects of Declarative Languages. Springer, 2001, pp. 169–183.

[11] F. Ricca, “The dlv java wrapper.” in APPIA-GULP-PRODE. Citeseer,
2003, pp. 263–274.

[12] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach, “Analysis
of an electronic voting system,” in Proceedings of the 2004 IEEE
Symposium on Security and Privacy, May 2004, pp. 27–40.

270270275

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

[13] A. J. Feldman, J. A. Halderman, and E. W. Felten, “Security analysis
of the diebold accuvote-ts voting machine,” in Proceedings of the
2007 USENIX/ACCURATE Electronic Voting Technology Workshop.
Berkeley, CA, USA: USENIX Association, Aug. 2007.

[14] E. Proebstel, R. Sean, F. Hsu, J. Cummins, F. Oakley, T. Stanionis, and
M. Bishop, “An analysis of the hart intercivic dau eslate,” in Proceedings
of the 2007 USENIX/ACCURATE Electronic Voting Technology Work-
shop. Berkeley, CA, USA: USENIX Association, Aug. 2007.

[15] C. Sturton, S. Jha, S. A. Seshia, and D. Wagner, “On voting machine
design for verification and testability,” in Proceedings of the 16th ACM
Conference on Computer and Communications Securityecurity, ser. CCS
’09. New York, NY, USA: ACM, Oct. 2009, pp. 463–476.

[16] K. Weldemariam, R. A. Kemmerer, and A. Villafiorita, “Specification
and analysis of the electronic voting process for the es&s voting system,”
in Proceedings of the ARES ’10 International Conference on Availability,
Reliability, and Security, feb 2010, pp. 164–171.

[17] D. Balzarotti, G. Banks, M. Cova, V. Felmetsger, R. A. Kemmerer,
W. Robertson, F. Valeur, and G. Vigna, “An experience in testing the
security of real-world electronic voting systems,” IEEE Transctions on
Software Engineering, vol. 36, no. 4, pp. 453–473, Jul. 2010.

[18] C. Karlof, N. Sastry, and D. Wagner, “Cryptographic voting protocols:
A systems perspective,” in Proceedings of the 14th USENIX Security
Symposium. Berkeley, CA, USA: USENIX Association, Jul. 2005, pp.
33–50.

[19] D. Chaum, A. Essex, R. Carback, A. Sherman, J. Clark, S. Popove-
niuc, and P. Vora, “Scantegrity: End-to-end voter-verifiable optical-scan
voting,” IEEE Security & Privacy, vol. 6, no. 3, pp. 40–46, May 2008.

[20] A. T. Sherman, R. A. Fink, R. Carbeck, and D. Chaum, “Scantegrity
III: Automatic trustworthy receipts, highlighting over/under votes, and
full voter verifiability,” in Proceedings of the 2011 Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections. Berkeley,
CA, USA: USENIX Association, Aug. 2011.

[21] RABA Innovative Solution Cell, “Trusted agent report Diebold
AccuVote-TS voting system,” RABA Technologies LLC, Columbia,
MD, Tech. Rep., Jan. 2004.

[22] M. Bishop, “Overview of red team reports,” Office of the California
Secretary of State, Sacramento, CA, USA, Jul. 2007.

[23] J. L. Brunner, “Project everest: Evaluation and validation of election
related equipment, standards and testing,” Ohio Secretary of State, Tech.
Rep., Dec. 2007.

[24] E. Barr, M. Bishop, and M. Gondree, “Fixing federal e-voting standards,”
cacm, vol. 50, no. 3, pp. 19–24, Mar. 2007.

[25] K. Weldemariam and A. Villafiorita, “A methodology for assessing
procedural security: A case study in e-voting,” in Proceedings of the
3rd International Conference on Electronic Voting, ser. Lecture Notes
in Informatics, R. Krimmer and R. Grimms, Eds. Bonn, Germany:
Gesellechaft für Informatik e.V., Aug. 2008, pp. 83–94.

[26] ——, “Procedural security analysis: A methodological approach,” in
Journal of Systems and Software, 2011.

[27] M. S. Raunak, B. Chen, A. Elssamadisy, L. A. Clarke, and L. J. Os-
terweil, “Definition and analysis of election processes,” in Proceedings
of the 2006 International Software Process Workshop and International
Workshop on Software Process Simulation and Modeling, ser. Lecture
Notes in Computer Science, vol. 3966, 2006, pp. 178–185.

[28] B. I. Simidchieva, M. S. Marzilli, L. A. Clarke, and L. J. Osterweil,
“Specifying and verifying requirements for election processes,” in Pro-
ceedings of the 2008 International Conference on Digital Government
Research, 2008, pp. 63–72.

[29] B. I. Simidchieva, S. J. Engle, M. Clifford, A. C. Jones, S. Peisert,
M. Bishop, L. A. Clarke, and L. J. Osterweil, “Modeling and analyzing
faults to improve election process robustness,” in Proceedings of the
2010 Electronic Voting Technology/Workshop on Trustworthy Elections.
Berkeley, CA, USA: USENIX Association, Aug. 2010.

[30] H. Phan, G. Avrunin, M. Bishop, L. A. Clarke, and L. J. Osterweil,
“A systematic process-model-based approach for synthesizing attacks
and evaluating them,” in Proceedings of the 2012 USENIX/ACCURATE
Electronic Voting Technology Workshop. Berkeley, CA, USA: USENIX
Association, Aug. 2012.

[31] R. W. Ritchey and P. Ammann, “Using model checking to analyze
network vulnerabilities,” in Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on, 2000.

271271276

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:25:20 UTC from IEEE Xplore. Restrictions apply.

