
Insider Threat Identification by Process Analysis

Matt Bishop∗, Heather M. Conboy†, Huong Phan†, Borislava I. Simidchieva†,
George S. Avrunin†, Lori A. Clarke†, Leon J. Osterweil†, Sean Peisert∗‡

∗Dept. of Computer Science, University of California at Davis, Davis, CA 95616-8562;

Email: bishop@ucdavis.edu
†Dept. of Computer Science, University of Massachusetts Amherst, Amherst, MA 01003-9264;

Email: {hconboy, hphan, bis, avrunin, clarke, ljo}@cs.umass.edu
‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;

Email: sppeisert@lbl.gov

Abstract—The insider threat is one of the most pernicious in
computer security. Traditional approaches typically instrument
systems with decoys or intrusion detection mechanisms to detect
individuals who abuse their privileges (the quintessential “in-
sider”). Such an attack requires that these agents have access
to resources or data in order to corrupt or disclose them.
In this work, we examine the application of process modeling
and subsequent analyses to the insider problem. With process
modeling, we first describe how a process works in formal terms.
We then look at the agents who are carrying out particular
tasks, perform different analyses to determine how the process
can be compromised, and suggest countermeasures that can be
incorporated into the process model to improve its resistance to
insider attack.

I. INTRODUCTION

The insider problem is one of the most difficult problems

in computer security, and indeed in all aspects of real-world

security. The ancient Romans even had an aphorism about it:

“Who will guard the guards themselves?” Recent events have

focused attention on the threats that insiders can pose to the

satisfactory performance of key societal systems and processes

in domains such as finance, government, and even science.

Many reports of insider attacks describe people trusted with

access to sensitive information abusing that access to damage

that information, compromise the privacy of that information,

and collaborate with others (sometimes other insiders) to cause

various kinds of failures, losses and serious harm.

Traditional approaches have focused on examining the ac-

tions of agents (people with access to the data or resources un-

der consideration). In these approaches the actions themselves

are analyzed to find suspicious or unexpected patterns, where

agent behavior may be derived from technical logs or external

indicators. This paper outlines an alternate approach. Rather

than focusing on identifying insider attacks as they occur

by monitoring event logs, we use a rigorous, process-based

approach to identify places in organizational processes where

insider attacks can be successfully launched. In knowing how

such attacks might be launched, organizations will often be

able to restructure their processes to reduce their exposure to

such insider attacks. This knowledge should give organizations

insights that will help them to know where to look first if an

attack is suspected, and what steps in the process should be

considered for more careful activity monitoring (e.g., using

audit logging or video surveillance) or restructuring, e.g., to

avoid single points of failure or add redundancy.
Thus, we advocate a systematic, well reasoned, and iterative

approach to security analysis. We believe that this approach

is very general and can be applied in a wide variety of

environments and circumstances. It is most appropriate for

important, long-lived processes. For such processes, an or-

ganization would need to be willing to invest in developing

an accurate process model and then continue to update, and

hopefully improve that model, as credible vulnerabilities are

found, either through experience or process analysis, or a

combination of both. Thus, for an initial validation, in this

paper we apply our approach to a case study drawn from a

critical process domain, namely elections.
For the purposes of this paper we consider a “process”

to be the coordination of activities, often involving human

agents, software applications, and hardware devices, needed

to complete a task or reach a goal. For example, all the

activities involved in conducting an election can be defined as

a process involving precinct workers, election officials, voters,

and voting equipment (computerized or otherwise). Building

upon these notions, we informally define an “insider” to be

“any agent whose participation in the performance of a process

entails having access to data whose abuse or misuse constitutes

an attack.” A more rigorous definition will be presented later,

but note that two key features of this informal definition are

that it emphasizes that the notion of “insider” is relative to the

process, the environment in which that process takes place, and

the way in which the process can fail or be attacked, and the

definition removes any notion of intent from the definition of

insider. This is consonant with the definition of “threat,” as “a

potential violation of security” [1, p. 6] rather than an actual

or attempted violation.
This paper discusses work that focuses on a range of insider

attacks and develops a corresponding range of analyses that

can help detect vulnerabilities to such attacks, and often even

suggests process improvements to help thwart such attacks.

More specifically, this work deals with two (not exclusive)

categories of insider attacks:

1) Sabotage attacks, which we characterize informally as

actions by insiders that cause the final results of a

process to be incorrect. For these kinds of attacks we

2014 IEEE Security and Privacy Workshops

© 2014, Matt Bishop. Under license to IEEE.

DOI 10.1109/SPW.2014.40

246

2014 IEEE Security and Privacy Workshops

© 2014, Matt Bishop. Under license to IEEE.

DOI 10.1109/SPW.2014.40

246

2014 IEEE Security and Privacy Workshops

© 2014, Matt Bishop. Under license to IEEE.

DOI 10.1109/SPW.2014.40

251

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

consider an insider to be any agent that has write

permission for artifacts that are outputs from the process,

or are used directly or indirectly in the computation

of any of these outputs. In this paper, we discuss how

analysis approaches such as Fault Tree Analysis can be

used to identify possible sabotage attacks and defend

against them.

2) Data exfiltration attacks, which we characterize infor-

mally as actions by insiders that cause sensitive data

to be made accessible to entities that are not entitled

to such access. For these kinds of attacks we consider

an insider to be any agent that has read permission

for any data items that could be used, possibly in

combination with other information, to obtain other data

items that could then be made available to agents that

are not authorized to have access to those data items. We

explore how certain analysis approaches, such as Finite-

State Verification, can be used to identify possible data

exfiltration attacks and to suggest process improvements

to defend against them.

Many current efforts to deal with insider attacks have been

dynamic and reactive, and indeed often somewhat ad hoc.

Some focus on detecting when an insider attack has taken

place, or that an attack is currently taking place. Although

detection may suggest how to attempt to compensate for

the negative effects of an insider attack, this seems less

desirable than preventing the attack in the first place. So other

approaches try to predict who might launch an attack, based

upon extensive psychological and sociological analysis (often

embodied in background checks of employees or contractors).

Such predictive approaches tend to focus rather narrowly

on specific threat environments and seem to be difficult to

generalize to alternate environments.
Access control is a common approach to inhibiting in-

sider attacks. But some of the most common access control

mechanisms, based upon the identity or the role of an agent,

offer only weak protection from insider attacks. Such access

control may allow insider agents to have access to critical

data in order to perform tasks for which they are specifically

authorized, but may not prevent these agents from abusing

that authorization to damage or compromise that data. For

example, biostatisticians have to be authorized to access the

raw data from a drug trial as a necessary, integral part of

the process for carrying out a drug company’s trial of a new

drug. But the biostatisticians are presumably not authorized to

modify the data in order to make the drug appear to be more

(or less) effective than it actually is (a sabotage attack), or to

email the data to the drug company’s competitor (a data exfil-

tration attack). Identity-based and role-based access controls

are typically incapable of preventing such abuses. Accordingly

more complex and powerful forms of access control are being

explored. Our work is aimed at complementing that work by

recognizing highly vulnerable situations and then considering

process improvements that thwart such attacks, or at least

make such attacks more difficult.
The work discussed in this paper is based upon rigorous

analysis of precise models of the processes that create and

manage critical data. Creating those process models is usually

a joint effort involving computer scientists and domain experts.

In the case study reported here, the domain experts were

election officials. To create the process model, we interviewed

those experts in considerable depth, extensively observed

the elections ourselves, and read a considerable amount of

written documentation (such as poll worker training materials)

provided by the election officials. From this, we created a

first cut at the process model. We then reviewed the model

with the domain experts. The reviews often identified areas

for expansion or led to other changes, and changing the

model sometimes raised questions about the process, or our

understanding of the process. We continued to iterate with the

domain experts until we obtained the desired level of detail

in the model. In this way, the model captures the relevant

details about the real, existing process, and the results will be

useful to the domain experts who have defined, and often carry

out, the process. We are most interested in processes that are

collaborations between humans, who perform those parts of

the process that require creativity, initiative, and insight, and

automated (hardware and software) devices that can perform

large and complex data processing tasks rapidly. Of course,

both humans and automated devices are capable of attacking

the processes in which they participate. But, the effects of

such attacks can be mitigated by processes that have been

designed to incorporate checking and perhaps double-checking

steps at appropriate critical points. The placement of such

redundant checking steps is important, but no less important

is the assurance that these steps are carried out only by the

appropriate agents. Our work builds on existing software and

safety engineering analysis techniques to determine whether

or not a process adequately defends against these kinds of

sabotage and data exfiltration attacks.

Thus, for example, static analysis of a process model might

determine that a single insider is capable of damaging critical

data, thereby corrupting the final output of the process. This

is an example of a single-insider, single-artifact sabotage

(SISAS) attack. The risk of this kind of attack can be mitigated

by modifying the process to ensure that a different agent

(human or automated) will, for all possible performances of

the process, always review and verify every data item whose

damage could corrupt the final output. Static analysis can

also be used to ensure that all such artifacts must indeed

always be reviewed in this way. This does not, however, rule

out the possibility that the the verifying agent is not also

a colluding participant in a multiple-insider, single-artifact

sabotage (MISAS) attack. Analytic approaches for detecting

and preventing a SISAS attack may be ineffective in dealing

with a MISAS attack, and other analytic approaches and

process improvements may be needed to detect and prevent

such attacks. (For data exfiltration attacks, we similarly define

SISADE, SIMADE, MISADE and MIMADE attacks.)

The goal of this work is to demonstrate that appropriate

analyses can be used to identify vulnerabilities to relatively

straightforward attacks, presumably causing attackers to have

247247252

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

to devise more extensive (and presumably more expensive)

collusive attacks. This approach will help provide those en-

trusted with protecting critical processes from attack with

tools that are useful in trying to ensure that any successful

attack will cost attackers more than the attack gains them. Of

course, this approach does not render a process completely

invulnerable to an insider attack. Any process can be suc-

cessfully attacked by a sufficiently large and comprehensive

collusion among insider (and possibly also outsider) agents.

But applying this approach can force an increase in the number

of agents that must collude to launch a successful attack.

II. TECHNICAL BACKGROUND

The essence of our approach is to use static analysis

techniques, such as Fault Tree Analysis and Finite-State Verifi-

cation to determine the possibility of successful insider attacks

on a process. To help the reader understand our proposed

approach, we first discuss the characteristics that a process

model must have to represent complex processes and to

support the analyses that we propose. We then define what

we mean by an insider and the two types of insider attacks

that we are focusing on, insider sabotage attacks and insider

data exfiltration attacks.

After introducing key concepts related to Fault Tree Analy-

sis and Finite-State Verification, we discuss how these analysis

techniques can support identifying the possibility of insider

sabotage and data exfiltration attacks and can be used to

suggest defenses against these attacks.

A. Process Models

Our approach assumes the existence of a precise and de-

tailed model of a process that needs to be protected from

insider attacks. The approach rests upon analyzing the process

model to identify vulnerabilities, thus, the model must be

expressed in a process modeling language suitable for such

analysis. Such a language must have several characteristics:

1) Activity Specification: Specification of the activities that

comprise the process as well as control flow semantics

that can be used to specify the order of execution of

these activities. Our experience suggests that support for

specifying iteration, choice, and concurrency is essential,

as is support for specifying hierarchical decomposition.

Finally, most complex real-world processes have excep-

tional situations that must be precisely specified and

carefully managed.

2) Artifact Specification: Specification of the flow of ar-

tifacts through the activities. At the minimum the lan-

guage must be able to specify which artifacts are used

as inputs to, and outputs from, each activity.

3) Agent Specification: Specification of the types and char-

acteristics of the entities required as the performers of

each activity (e.g., the characteristics or qualifications

that a human performer, such as an election official,

must have, or the type or capabilities that a device, such

as a voting machine, must have) and how these entities

are assigned to activities. This implicitly assumes the

existence at process execution of a repository enumer-

ating the types, characteristics, and qualifications of all

agents (human and non-human) that are available for

assignment to perform process activities. It is critical to

ensure that inappropriate agents cannot be assigned at

runtime to the execution of critical process activities.

4) Precision in Specification: Specifications of the desired

functionality of the process being modeled, at the desired

level of detail, in a notation with precise semantics.

The analytic results produced by this approach depend

directly upon the precision of the process model upon

which the analyses are based. Informal or intuitive

results are the best that can be expected if the pro-

cess model is itself imprecise. We advocate using a

process specification notation having rigorously defined

semantics. In a later section, we show how this enables

rigorous and precise analytic results.

B. Insiders and Insider Attacks

The term insider has been defined in many different and

sometimes inconsistent ways [2]–[11]. Recently, a basic con-

sensus has emerged in which insider threats are defined in

terms of someone who has some combination of increased

access to and/or knowledge of an organization. We focus

our process modeling on the access aspect of the insider

problem because access is a particularly critical capability

for the insider. The access can be direct, where the attacker

reads or modifies the information directly, or indirect, where

the attacker obtains information from an intermediary or has

someone else modify the artifact as desired. In some cases,

someone with access may be the kind of person classically

defined as an insider, being actually inside of some kind of

physical perimeter. An insider, however, can also be someone

outside such a perimeter, accessing a system remotely (for

example, through a virtual private network). Moreover, an

insider may pose a threat to a process by accidentally causing

harm to the system (“I wonder what this button does?”) or

being “socially engineered” into unwittingly doing harm to

a system (“Hi! I’m from the help desk. I need you to send

me your password to fix a system malfunction involving your

account”).

A process model that precisely specifies the coordination

of activities in the process, the artifacts involved in each

activity and how they flow through the process, and the agents

assigned to perform the activities is well-suited for analysis of

access. Assuming the existence of a process model that has the

characteristics just enumerated, we can now define “insider”

more precisely.

Definition. An insider is an activity execution agent who has

access to any process artifact that can affect the outcome of

the process and for which general access is restricted.

In a sabotage attack, an insider is an activity agent that

can modify any artifact that can affect a final process output

either directly or indirectly. Thus, a voter in an election is not

an insider, because the voter only makes a request for another

agent to record the voter’s vote. If the request is addressed to

248248253

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

an electronic voting system, which then actually records the

vote and adds it to a running tally, then the voting system is
an insider. Similarly if the voter asks that a human election

official properly handle the paper ballot on which the vote

is recorded, then the election official is an insider. In both

cases the voter is not an insider; but the electronic voting

system and election officials involved in running the election

and calculating and reporting the final tallies and results are

all insiders. Similarly, suppose a biostatistician has emailed

the data obtained from a drug trial to the drug company’s

competitor. The biostatistician was presumably not authorized

to do this. Thus, by the definition of “insider” above, the

biostatistician is an insider. Emailing the results comprises

a data exfiltration attack, as it provides access to one of the

outcomes of the process, namely the drug trial data, to entities

not authorized to have that access.

We now define the types of insider attacks more precisely.

Definition. A sabotage attack is a sequence of agent actions

that cause a value of a final artifact to be incorrect. A sabotage
attack insider is an agent that is able to write (change the

value of) an artifact used in the computation of any of the

final outputs of the process.

Definition. A data exfiltration attack is a sequence of agent

actions that provide access to process artifacts to entities

not entitled to that access. Thus the specification of a data

exfiltration attack relies upon a specification of which data

entities must be guaranteed to be inaccessible to which entities.

A data exfiltration attack insider is an agent that has access

to any of the artifacts whose access should be restricted.

C. Analysis Technologies

Given the ways in which we have defined insider attacks,

we can now describe ways in which two key static analysis

technologies, Fault Tree Analysis and Finite-State Verification,

can be used to identify vulnerabilities to insider attacks upon

processes whose models are specified using a process language

having the characteristics described above.

1) Fault Tree Analysis: Fault Tree Analysis (FTA) was first

introduced in the 1960s and was used by NASA in evaluating

the vulnerability to failure of space shots. Since that time

the use of FTA has been adopted by various other industries,

such as nuclear power, chemical processing, automotive [12],

and health care [13]–[15]. Recently it has also been used

experimentally in reasoning about the possibility of failures

in election processes [16], [17].

FTA is a deductive, top-down analytical technique that

begins with a specification of a hazard, namely some state in

which a serious accident or undesired outcome is imminent,

possibly dependent upon external conditions. Many hazards

can be characterized as the arrival of one or more incorrect,

unsuitable artifacts as inputs to a particularly critical step.

An example of such a hazard is “the wrong type of blood

is delivered to the bedside of a transfusion patient.” (Note that

the definition of a sabotage attack is precisely of this form,

namely the arrival of incorrect artifacts at a step that produces

as output a final result of the execution of a process.) Given

the specification of such a hazard, FTA produces a fault tree,

that is a graphical model of the various combinations of events

that could possibly lead to the hazard.
Figure 2 in Section III is a depiction of an example fault

tree. Note that the depiction is structured as a directed acyclic

graph, rather than as a tree, in an attempt to reduce the

size, and increase the comprehensibility, of the fault tree. The

automated tool that we have used to create fault trees performs

optimizations to address these improvements by combining

identical subtrees.
A fault tree consists of 2 basic elements: events and gates.

In this figure, events are represented by rounded rectangles.

The event at the root (top) of the tree is the hazard. In the

example, it is Artifact ‘‘finalTallies’’ to step

‘‘report final vote totals to Secretary of

State’’ is wrong. In a fault tree, intermediate events are

elaborated, while primary events are not further elaborated.
Events are connected by gates that permit or inhibit the

passage of fault logic up the tree. A gate connects one or

more input events (below) to a single output event (above).

There are three types of gates:

• AND gate: the output event occurs only if all input events

occur (inputs are assumed to be independent)

• OR gate: the output event occurs if any input event occurs

• NOT gate: the output event occurs only if the one single

input event does not occur

Given the existence of a fault tree, simple Boolean algebra

can be used to compute cut sets, which are sets of event literals
(primary events or negations of primary events) that could

cause the hazard, and minimal cut sets (MCSs), which are cut

sets that cannot be further reduced. Thus, the occurrence of

all the events contained within an MCS in an execution of

the process could cause the hazard at the root of the fault

tree to arise. An MCS specifies one or more potential system
vulnerabilities, which are flaws or weaknesses in a system’s

design, implementation, operation, or management that could

be exploited to allow the hazard to occur.
An MCS of size 1 indicates a single point of failure, namely

a single event whose occurrence might cause a hazard to occur.

The performer of the activity causing this single event is, by

our definition, an insider, and this insider can thus carry out

a sabotage attack. Larger MCSs require the occurrence of

multiple events and thus require either that the same attacking

insider perform all such events or that there is some collusion

among the set of all insiders performing the events in the MCS.

Thus FTA can be used to suggest changes to a process aimed

at ensuring that no single agent can be allowed to perform all

the events of an MCS thereby forcing the need for collusion.

This presumably makes the attack more difficult and more

expensive, thus serving as an example of how our analysis

can suggest possible defenses against the attack.
Many software tools, commercial as well as open-source,

help in building fault trees manually and calculating MCSs.

Most existing tools, however, do not go as far as building the

fault trees automatically from rigorously-defined specifications

of systems. Yet, when fault trees become large, as they

249249254

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

typically do when systems are large and complex, manual con-

struction of fault trees becomes increasingly error-prone and

time-consuming. In previous work we have developed a tool

that builds fault trees and calculates their MCSs automatically

from a carefully specified process model [15].

The approach just described has been shown to be effective

in other work. But, Section VI discusses research challenges

that must be met to apply the approach more effectively to

wider classes of insider sabotage attacks.

2) Finite-State Verification: Finite-State Verification (FSV)

is a technology used to infer characteristics about the execu-

tions of some or all paths through a specified system. Simple

inspection of a process model may detect the possibility that

an agent might be assigned the execution of an activity that

provides access to one or more artifacts used to compute

a final output of the process. This information could then

be used to determine if a single agent has the ability to

corrupt a final output of the process, thereby carrying out

a SISAS attack. Simple inspection is usually insufficient to

identify when and how MISAS or MIMAS attacks might

occur, but FSV analysis can be effective in identifying the

possibility of such attacks. For example, FSV can identify if

certain suspect sequences of events, such as write accesses to

particular artifacts by specific kinds of performers, can occur

in any execution through the process. More sophisticated FSV

could track data dependencies as well as agent relationships.

For data exfiltration attacks, May Happen in Parallel anal-

ysis [18] can be used to document all of the activities in a

process that might possibly be executed concurrently. These

combinations could then be examined to determine the agents

that could have simultaneous access to the artifacts involved.

If there is only one such agent, than that agent could then

potentially reveal inappropriate information causing a SISADE

or SIMADE attack. If there is a collection of agents, then that

collection could cause a MISADE or MIMADE attack if the

agents in that collection are in collusion with each other. If

the data does not have to be accessed simultaneously, then

FSV can be used to find sequences of access events that look

troubling.

III. EXAMPLES

This section illustrates some of the details of our approach

by presenting an example process and showing how some

vulnerabilities might be identified. Our example is based upon

the election process used in Yolo County, California [19]. The

model has been extensively validated through numerous previ-

ous discussions with Yolo County election officials. However,

the approach is not specific to this process, and could be

applied equally well to other election processes, and indeed to

other types of processes in general.

A. Modeling an Election Process

We used the Little-JIL [20] visual process definition lan-

guage to model the election process used in Yolo County.

Little-JIL is a process definition language that incorporates all

of the characteristics enumerated in Section II-A. In particular,

Little-JIL’s semantics support precise definition of process ac-

tivity coordination among multiple human agents and software

and hardware components; the creation, use, and modification

of artifacts; the specification of complex exceptional situations

and their mitigation; and the types of agents to be assigned

to execute process activities, referred to as steps in Little-JIL.

The diagrams presented here elide many of these details to

avoid visual clutter.

We begin with an informal description of a part of the

election process. After the polls close in Yolo County, every

precinct brings its ballots along with a summary cover sheet

(indicating how many ballots were issued to the precinct, and

how many were used, spoiled or blank after the polls closed) to

Election Central for tabulation. Election officials first count the

votes from each of the precincts, then perform a random audit,

and then, finally, if no discrepancies are noted, report final vote

totals to the California Secretary of State. The votes from each

precinct are tallied separately before being added to a total

tally. Before a precinct’s ballots are actually scanned, they are

counted, and these counts are compared to the ballot counts on

the precinct’s summary sheet. After reconciling the actual and

reported numbers the ballots are scanned to obtain the actual

vote counts. Random auditing (or a mandatory manual recount

of 1% of ballots to ensure consistency) is a state requirement

in California as well as in many other states [21], [22]. Yolo

County primarily uses paper ballots, which are scanned and

counted by automated optical scanners. To comply with the

Help America Vote Act (HAVA), each precinct also provides a

direct-recording electronic (DRE) voting machine that voters

can ask to use. All DRE machines have an attached printer

to generate a voter-verified paper audit trail (VVPAT). This

paper trail is dispositive, and in California, the electronic

record cannot be used in the mandatory 1% audit. Indeed,

Yolo County election officials use the VVPAT to count the

votes cast on DREs because so few people use the DREs.

The Little-JIL process coordination model shown in Fig-

ure 1 is a model of the process that we have just described,

simplified for space considerations. The model is a hierarchical

structure of steps, where a step is shown as a black rounded

rectangle with the step name above it. Each step specifies the

characteristics that must be satisfied by the agent that will be

assigned to be responsible for the step’s execution. The agent

may be a human, such as an election official or a voter, or

a hardware or software component such as a ballot-scanning

device. A Little-JIL step is akin to a procedure or method

definition that, once specified, can be invoked by reference

from anywhere in the process model. The way in which a leaf

step (a step without substeps) is executed is left entirely to

the step’s agent. The behavior of a non-leaf step is defined by

its substeps, connected by edges emanating from the left side

of the parent step bar. The step bar has a sequence badge at

the left that specifies the order in which the substeps are to be

executed, as described below.

Thus, the root step count votes in Figure 1 is a sequential

step (indicated by a right arrow), which means its substeps will

be executed in order from left to right, so after initialize

250250255

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Little-JIL process model: elaboration of “count votes” sub-process

(Reference #) Step Artifacts AgentInputs Outputs
(1) count votes coverSheet, paperTrail, repository, votingRoll totalTallies ElectionOfficial

(2) initialize counts totalTallies ElectionOfficial

(3) count votes from all precincts coverSheet, paperTrail, repository, votingRoll, tallies, totalTal-
lies

tallies, totalTallies ElectionOfficial

(4) perform random audit paperTrail, repository, auditTallies, tallies autditTallies, tallies ElectionOfficial

(5) report final vote totals to Secretary of State finalTallies ElectionOfficial

(6) securely store election artifacts paperTrail, repository, votingRoll, tallies, totalTallies ElectionOfficial

(7) recount votes paperTrail, repository, originalTallies recountedVoteTotals ElectionOfficial, Observer

(8) perform ballot and vote count coverSheet, paperTrail, repository, votingRoll tallies, auditTallies ElectionOfficial

(9) report intermediate vote totals to Secretary of State immediateTallies ElectionOfficial

(10) select precinct for 1% mandatory manual audit tallies tallies Observer

(11) manually count votes paperTrail, repository, tallies auditTallies ElectionOfficial, Observer

(12) confirm audit tallies are consistent tallies, auditTallies ElectionOfficial, Observer

(13) perform conciliations coverSheet, paperTrail, repository, votingRoll ElectionOfficial

(14) scan votes repository, paperTrail tallies ElectionOfficial

(15) confirm tallies match coverSheet, tallies ElectionOfficial

(16) add vote count to vote total tallies, totalTallies totalTallies ElectionOfficial

(17) handle discrepancy paperTrail, repository, tallies tallies ElectionOfficial

(18) reconcile voting roll and cover sheet votingRoll, coverSheet ElectionOfficial

(19) reconcile total ballots and counted ballots coverSheet, repository, paperTrail ElectionOfficial

(20) rescan paperTrail, repository, tallies tallies ElectionOfficial

(21) manually count votes paperTrail, repository, tallies tallies ElectionOfficial

TABLE I: Artifacts and agents for the steps in the “count votes” sub-process

counts (step #2) is completed, count votes from all

precincts (step #3) will be followed by perform random

audit (step #4), followed by report final vote totals

to Secretary of State (step #5), and, finally, securely

store election artifacts (step #6). Step count votes

from all precincts is itself decomposed into the step

perform ballot and vote count (step #8), executed one

or more times (denoted by the Kleene “+” on the edge

connecting it to its parent), once for each precinct and the vote

counting for the different precincts with report interme-

diate vote totals to Secretary of State (step #9),

a step that is executed zero or more times (note the Kleene

star on the edge). These steps can be done in parallel (denoted

by the equal sign in the step bar of their parent step). This

indicates that, although optional, the intermediate vote totals

could be provided to the Secretary of State at any time during

the counting upon request. Continuing the hierarchical decom-

position further, perform ballot and vote count (is the

sequential execution of perform reconciliations (step

#13), scan votes (step #14), confirm tallies match

(step #15), and add vote count to vote total (step

#16). As the essence of these steps is checking for errors and

discrepancies, we now explain Little-JIL exception handling

semantics.

Any Little-JIL step may throw one or more exceptions,

and may define one or more exception handlers. As in a

programming language, exceptions are typed objects, and

exception handling is scoped. Thus an exception is handled

251251256

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

by the appropriately typed handler located at the nearest an-

cestor step. Exception handlers are (potentially hierarchically

decomposed) steps themselves, and are attached by a dotted

edge to the right side of a step bar, below a red capital

“X”. Although the details are not shown, in this example,

perform ballot and vote count has a handler named

handle discrepancy. This handler is specified to catch an

exception of the type VoteCountInconsistentException,

which can be thrown by the confirm tallies match step

(step #15). The handler, handle discrepancy (step #17),

is specified using the choice step kind, denoted by a slashed

circle, which means the step can be carried out by perform-

ing either the rescan step (#20) or the manually count

votes step (#21). After the handle discrepancy step

has completed, execution continues after the step that threw

the exception, in this case with add vote count to vote

total (step #16). Other continuation semantics (not used in

this example) may specify, for example, that the step throwing

the exception is to be repeated after the exception has been

handled. The explanation of the rest of this process model is

similar and is omitted here.

Analysis of the possibility of insider attacks on a process

requires specification of the artifact flow and agent assign-

ments to steps as well as specification of the structure of

process activities. In Little-JIL a step specification includes an

enumeration of the artifacts used as step inputs and outputs,

and (as noted above) of the characteristics of the agent required

to perform the step. Table I provides some examples of these

specifications.

The row numbers in the table correspond to the numbers

on the steps in Figure 1 (the step numbers are included

here for convenience but are not part of the actual Little-

JIL activity diagram). Thus, for example, line 3 of Ta-

ble I specifies that coverSheet, paperTrail, repository,

votingRoll, tallies, and totalTallies are all inputs

to the count votes from all precincts step, and tal-

lies and totalTallies are both outputs from that step.

Little-JIL artifact passing is usually best thought of as proce-

dure parameter passing. Artifacts are typically passed between

parent steps and their substeps, but Little-JIL also supports

message passing to any step in the process, and passing

arguments to exception handlers.

In Little-JIL, a specific agent, who is the performer of

the step, is bound dynamically at the time of the step’s

execution. When this binding is done, an available agent

having the specified characteristics and capabilities is selected

and assigned by a resource manager, which is a separate

component of the Little-JIL run time system. An agent may be

either human or automated. Thus, both Election Official

(a human), and Scanner (an optical scanning machine) are

examples of types of agents for this process.

B. Identifying an Insider Sabotage Attack

We now consider possible insider sabotage attacks on the

process just described. Our approach, as suggested previously,

consists of:

• identifying a hazard (namely a successful insider attack)

as the delivery of an incorrect artifact to a step in the

process that delivers the artifact as a final process output;

• using that hazard definition and a sufficiently precisely-

defined model (e.g. a model defined using Little-JIL) of

a process to generate a fault tree that shows how the

hazard can occur;

• calculating the fault tree’s MCSs and identifying the steps

corresponding to the events in those MCSs; and finally

• identifying the combinations of insider agents who can

execute all of the steps associated with each of the MCSs.

If a single agent can execute all the steps associated with

an MCS, the process is shown to be vulnerable to a single

insider attack. When multiple agents are needed to execute

all the steps in an MCS, a multiple insider attack is possible,

assuming that all of these agents are colluding. The larger the

number of agents that must collude, the greater the difficulty

(and presumably the cost) of the insider attack, hopefully

making the attack impractical. Similarly, the kinds and number

of artifacts involved would impact the cost of an attack.
We now consider the hazard that the wrong finalTallies

artifact is delivered to the report final vote totals to

Secretary of State step (i.e. the reported election results

are incorrect). We use a tool we developed to generate the

fault tree shown in Figure 2. (Note, again, that the graph in

Figure 2 reflects some optimizations that combine different

instances of the same event, and thus is not actually a tree

but an equivalent directed acyclic graph). Generating this fault

tree requires both the activity structure in Figure 1, and the

artifact flow specifications shown in Table I, both of which

are part of a complete Little-JIL process definition. We then

use a fault tree analysis tool to calculate the MCSs. We are

particularly interested in sets of activities where all the agents

are insiders and are able to modify either the final process

output or any artifact used to create the final output. For this

example finalTallies is the final process output, and the

fault tree identifies steps involved in the artifact’s creation.

Thus our analysis concludes by identifying the agents that

perform these steps. Our tool finds a total of 12 MCSs for

this hazard and the process model shown in Figure 1. Three

of these MCSs are shown in Figure 3, one (MCS 1) having

two events, one (MCS 2) having three events, and one (MCS

3) consisting of only one event, a single point of failure.
MCS 3 indicates that the hazard occurs if the recount

votes step produces an incorrect result. Elaboration of this

step, not done here to save space, reinforces the point that

more process detail is sometimes needed to shed light on indi-

cated vulnerabilities. Further elaboration of recount votes

is needed to provide details of how the recount process can

be attacked. In Section VI we suggest an incremental analysis

approach that could be useful in helping to guide the acqui-

sition and analysis of such needed details, thereby providing

better understandings of such indicated vulnerabilities.
MCS 2 requires the step rescan to produce an incor-

rect tallies artifact and the step perform random audit,

which is intended to detect the discrepancy in tallies, to fail

252252257

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Fault tree for hazard “wrong finalTallies artifact is delivered to step report final vote totals to

Secretary of State”

to throw the VoteCountInconsistentException, which

in fact is propagated from the substep confirm audit

tallies are consistent1. It is important to note that

there are a number of possible explanations of how these two

1The fact that the MCS event indicates the step perform
random audit instead of confirm audit tallies are
consistent is the result of an optimization for scalability of our FTA
tool [15]. We might reconsider this optimization since it seems to decrease
the understandability of the resulting fault trees and therefore MCSs.

events could occur. One explanation is that the incorrect results

produced by the rescan are never presented as part of the

random audit and that the audit is done correctly. But it is

also possible that the incorrect results of the rescan are indeed

presented to the audit but the inconsistency is not reported

when the tallies are found to be inconsistent. In the first case,

the agent for the rescanning step can carry out a SISAS attack,

but risks detection by the random audit. To be sure of avoiding

detection, the agent who performs confirm audit tallies

253253258

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

• MCS 1

1) Step rescan produces wrong artifact tallies

2) Step perform random audit does not throw exception VoteCountInconsistentException

• MCS 2

1) Step scan votes produces wrong artifact tallies

2) Step confirm tallies match does not throw exception VoteCountInconsistentException

3) Step perform random audit does not throw exception VoteCountInconsistentException

• MCS 3

1) Step recount votes produces wrong artifact recountedVoteTotals

Fig. 3: Some MCSs for the hazard “wrong finalTallies artifact is delivered to step report final vote totals to

Secretary of State”

are consistent would have to either be the same as the

agent who performed the rescanning step (a successful SISAS

attack), or in collusion with the agent who performed the

rescanning step (a successful MISAS attack).

Table I specifies that the agents for both perform random

audit and rescan may be of type ElectionOfficial, and so

the process specification does not explicitly prevent the same

agent from performing both steps, thus revealing a possible

SISAS attack. If the process incorporated a check to ensure

that the same agent could not perform both steps the SISAS

attack is thwarted, but it could still succeed as a MISAS attack

if the two performers are in collusion.

We observed that the MCS does not distinguish between

the case where the random audit detects the problem and

where it does not. The scenario and analysis leave some other

questions unanswered as well. Note that the rescan step is

only executed as part of handling an exception thrown by

the confirm tallies match substep of perform ballot

and vote count, and the MCS sheds no light on why the

confirm tallies match step threw the exception in the

first place. This suggests the need for sharpened analysis

that might present more detailed scenarios, such as where

the scanning device has a defect, where the human operating

the scanner used it incorrectly, or where scanner output was

recorded incorrectly. Approaches to addressing these problems

are discussed in Section VI.

C. Identifying Insider Data Exfiltration Attacks

One of the requirements for voting is the secret ballot;

no one should be able to associate a specific voter with a

specific ballot. One danger is that, during the election process,

some information might enable an observer to match a voter’s

name to a specific ballot. Indeed, in Ohio, researchers were

able to do exactly that [23] by obtaining and correlating two

artifacts, a list of voters and a paper trail of the actual votes.

The time-stamped paper trail was the standard output of the

DRE voting machines being used, and, according to state law,

anyone could request a copy of it, as well as a copy of the

list of voters (which included the order in which they voted).

Given that both lists were chronologically ordered, it was easy

to match the voter names to the voter preferences, which

clearly violated voter confidentiality, and is a good example of

a data exfiltration attack. This attack was actually carried out

by voters requesting these two publicly available lists and has

since been thwarted by making one of the lists confidential.

We now consider this attack within the context of insiders,

considering the possibility that election officials who have

access to this information could carry out this attack.

We consider a slight variant of the election process, where

when a voter enters the polling station, he or she is authen-

ticated in some fashion, and a notation is made in the voting

roll (sometimes called a “poll book”) of the time the voter

arrived. The voter then goes to a DRE, and casts his or her

vote. As part of the process, the DRE time-stamps the paper

record of the ballot. At the end of the day, the voting rolls and

paper trails (and other ballots) are taken to Election Central

to be counted.2

Consider the process modeled in Figure 4. Step #33 in

this diagram, count votes, is the root of the process for

counting votes shown in Figure 1 that we have been dis-

cussing thus far. As previously explained, Little-JIL steps

can be thought of as being much like procedures, so con-

sider Figure 4 to be the context within which count votes

takes place. Intuitively, this process indeed describes the

high-level process for carrying out elections, thus conduct

election consists of sequentially performing pre-polling

activities, prepare for and conduct election at

precinct (done once for each precinct as indicated by the

Kleene “+”), and, finally, count votes. Focus now on the

activities that happen on Election Day, namely the elaboration

of prepare for and conduct election at precinct,

which includes as one of its sub steps authenticate and

vote, a sequential subprocess that is performed once for each

voter (again indicated by the Kleene “+” on the edge leading

to the step from its parent). This subprocess dictates that elec-

tion officials first perform pre-vote authentication,

2We have taken some liberties with the actual procedure in Yolo County.
Almost all voters use paper ballots, and they are never time-stamped. However,
the process modifications were inspired by the incident in Ohio and are
representative of real-world procedures.

254254259

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

��������	
	�����
�

��	���

������������	�
��

���������	�
��

��	���	�����������������	
	�����������	�����
��

��	���

������	��
��

����	������	��������	
��

��������	����

��������	��������
��

��������

���������	�����
	
��

�	���� ���	����	�����	���������
�!

��	����������	��������	�
�"

�	��������	����	�	�	��	
��

��

�������

��
��

������

�������	��������
��

����
	�����
	����

��
��

����	��	��
�����

��
�

����	�����������
���

��
��

#

#

������������ �������$
%��	�&�	
����
	'(�	�����

����	������	�����

����	�������	�

������������ 	��� ���	(�����
���	�)���� 	
�����	����������

�������	�����	������
���
%��	�&�	
����
	'(�	�����

�� 	��� ��������	�������

��
$�	����

��������������	��������

Fig. 4: Little-JIL process model: “conduct election” process

then check off voter as voted, and issue regular

ballot if the authentication is completed correctly and the

voter has not voted yet. Only then can the process go on to

record voter preference, where a voter will first fill

out ballot, then put ballot in repository.

Now focus on the fact that a voter’s vote should be confiden-

tial. If this process is executed as specified, the voter should

be the only person that knows how she or he voted (clearly,

the DRE voting machine that executes the step put ballot

in repository knows the voter preference, but does not

know the voter’s identity, and therefore cannot perform the

data exfiltration attack). However, when an election official

checks off the voter as having voted (in step #39), a timestamp

is added next to the voter’s name in the voting roll to indicate

when the ballot was issued. Also note that when a voter casts a

ballot on a DRE machine (step #44), the ballot is automatically

timestamped.

Therefore, one artifact in the process contains a list of

voters’ names and timestamps indicating when they voted

(the voting roll in which the election officials check off

voter as voted, step #39), and another artifact in the

process contains a list of timestamped votes (the ballot that the

DRE has put ballot in repository, step #44). Clearly,

if these two artifacts are combined, then voter confidentiality

can be compromised, comprising a data exfiltration attack.

A careful consideration of Figure 1 where the vote counting

occurs, and Table I which describes what artifacts are acces-

sible at what steps, reveals how this combination may hap-

pen. In Figure 1, step #18, reconcile voting roll and

cover sheet requires the voting roll as input, and step #19,

reconcile total ballots and counted ballots, re-

quires the repository (the collection of all timestamped votes

in this case) as input. Both of these artifacts are passed to

(and through) step #13, perform reconciliations, which

is executed by an agent of type “ElectionOfficial”, as shown

in Table I. Thus, the agent performing step #13 is able to carry

out a data exfiltration attack.

Identifying this possible data exfiltration attack is easy in

this example, but can be much more difficult in the case of

a very large and complex process. Indeed, note that the agent

executing step #19 in this example could also carry out the

data exfiltration attack if that agent received the voting roll

as input, suggesting the need for careful specification and

control of artifact flow. Or, indeed if steps # 18 and #19 were

executed in parallel, rather than sequentially, vulnerability to

a single insider attack (SIMADE) or collusion (MIMADE)

attack would exist. As noted above, may happen in parallel

and Finite-State Verification could be used to determine all

possible combinations of steps that might possibly be executed

at the same time. Such algorithms can then be used to

systematize searches for these kinds of vulnerabilities.

255255260

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

IV. EVALUATION

We believe it is important that this approach be evaluated

both subjectively and objectively. We will continue our use of

the election domain and the running example of the election

process definition to show how this is being done; again,

however, we emphasize that the approach outlined below is

general and will work for other election processes and for

processes in other domains. The previous section outlined two

different analysis approaches used to verify that the model of

the election process is robust with respect to certain attacks.

These analysis results can then be used to inform and improve

the real-world process, given that the model was an accurate

representation. Therefore, before it is analyzed, the process

model is first validated.

In the election domain, this validation is carried out by

working with election officials, who can identify the types

of insider sabotage that they are most concerned about, and

those having the greatest impact upon an election. They

also provide detailed information about the election process

being examined and the agents (voters, election officials, and

others) that perform the steps in these processes. Then, as we

developed and analyzed early versions of these models, the

domain experts provided initial evaluations of how effectively

our methods seem to be able to identify agents who might

launch insider attacks either deliberately or through errors.

Once the model has been validated through interactions

with domain experts, objective evaluations focus on the

effectiveness and efficiency of our process definition and

analysis approaches. The clarity and efficiency of the Little-JIL

process definitions in providing sufficient detail and supporting

effective analyses are key measures of the usefulness of the re-

sults. In previous research, these kinds of practical applications

of Little-JIL have led to important language improvements. As

noted above, some of our analyses seem to produce diagnoses

of hazards that may not be explained sufficiently well to

satisfy domain experts, thereby necessitating iterative analytic

explorations. There are several approaches to supporting such

analytic iteration, although formulating and performing more

detailed and in-depth analysis proactively can help to obviate

the need for analytic iteration in the first place. Undertaking

these more complex and detailed analysis problems necessi-

tated larger, more complex process definitions, and analyses

that generate larger (sometimes far larger) problem spaces.

Thus a key part of our objective evaluation has been to study

the scalability of our approaches, investigating both theoretical

complexity bounds and problem sizes actually encountered.

Finally, the evaluation approaches are being integrated by

having the domain experts provide their views of the relative

practical value and importance of the objective measures that

were developed. The feedback from the subjective evaluations

improved the development of the objective measures above.

V. RELATED WORK

Much work has examined insider threats and attacks. Hu et

al. [24] use role-based access control (RBAC) model to look

for unusual behavior, or behavior that violates job require-

ments to construct rules for intrusion detection. This approach,

however, leads to false positives. Park and Giordano [25]

reverse the Hu et al. approach, analyzing a user’s behavior and

checking that it is as expected. Several researchers [26]–[28]

incorporate risk assessment into an extended access control

framework, adapting user privileges based on role, attributes,

and level of trust, which drops when a user’s behavior becomes

suspicions. Other work extends the RBAC model by focusing

on generalized attributes of people and data, and placing the

insider threat in the context of modeling policies using layers

of abstraction [29], [30].

Schultz [31] proposes a framework based on attack-related

behaviors and symptoms, and correlates behaviors that typi-

cally precede an attack, with patterns of use, verbal behaviors,

and personal characteristics. Kandias et al. [6] extend this

work with a model identifying users who need additional

monitoring. Greitzer and Frincke [32] develop a predictive

system that identifies insiders through psychosocial indicators

and anomalies in system use, rather than focusing on the

process and artifacts as we do.

Other work focuses on user psychology. Chinchani et al.

[33] present a theory of insider assessment that models the

user’s view of the organization and of key information and

capabilities. Vance et al. [34] argue that user interface designs

that makes users feel more accountable for their actions

discourage insider attacks. Posey et al. [35] study how the per-

ception of the organization’s trust affects an insider’s mindset.

This type of work focuses on agents as organization members,

in contrast to our focus on them as process performers.

Probst et al. [36] use process algebras to model and reason

about the actions of entities in the context of the insider

problem. Magklaras and Furnell [37] predict insider threats

by projecting what agent actions can affect based on an

analysis of agent sophistication. This contrasts with our focus

on critical artifacts and the agents who can access them.

Some researchers [3], [38]–[40] propose using decoys to de-

tect insiders. Others study how to create effective decoys [41]

and honeypots [42]. Stolfo et al. [43] extend this work to the

cloud.

Kammüller and Probst [44] build vectors for insider attacks

by using organizational structure to identify sequences of

actions that lead to security policy violations. This work

focuses on the organization, whereas our work focuses on

the processes that the organization uses. Similarly, Ard et

al. [45] focus on workflows of documents as opposed to

processes. Intrusion detection approaches such as system call

analysis [46], [47], graph-based approaches [48], [49], and

signature analysis [50] have been explored, as have threat

specification languages [8]. Crampton and Huth [51] look

to next-generation access control mechanisms to address the

insider problem. Neumann [52] takes a holistic approach,

arguing that systems—their architecture, development, and

operation—must be made more trustworthy if insider misuse

is to be addressed effectively.

Attack trees, first introduced as such by Schneier [53], are

256256261

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

widely used, and several variants (such as the requires/provides

model [54]) enable the analyst to examine conditions neces-

sary for the attack to succeed. Unlike attack trees, fault trees

focus on threats rather than attacks. Fault tree analysis helps

identify vulnerabilities that are potentially exploited by attacks.

Also, in our work, fault trees are automatically derived from

the model of the process which takes into account the temporal

order of activities and the artifact flows between them, while

such specifications are not explicitly considered in attack trees.

VI. FUTURE DIRECTIONS AND WORK

As described earlier, the FTA techniques we have developed

already can identify vulnerabilities to some kinds of insider

attacks. In this section, we briefly describe the significant

research challenges that must be addressed to improve the

utility and generality of these techniques.

As noted above, the MCSs identified by our techniques for

automated analysis of processes identify vulnerabilities. But

our techniques are not always precise enough to fully describe

the vulnerabilities and explain how they arise. For instance, the

two-event MCS discussed earlier fails to distinguish between

the case where two steps must be performed incorrectly and

the case where only one step must be compromised. Moreover,

our analysis does not indicate that this attack scenario only

occurs in an exceptional situation.

These problems reflect the fact that our analysis does not

take into account the full control and data dependencies of

all the steps in the process. Identifying such dependencies is

itself nontrivial, especially when interprocedural (or interstep)

data flow must be taken into account. Our current tool uses a

relatively simple template-based approach which would need

to be extended or replaced to make use of more precise

dependence information. We intend to investigate techniques

for efficiently selecting what additional control and data flow

dependence information can be included in order to produce

more “useful” cut sets and more easily identify vulnerabilities

and ways to modify the process to defend against them. We

do not yet know the appropriate tradeoffs between using

enough information to facilitate this and using too much

information, leading to too many cut sets, therefore making the

approach unhelpful to process designers. It might be possible

to incrementally refine the FTA, using additional control and

data flow information when requested by the analyst.

Another important issue of the precision of our analyses has

to do with the modeling and analysis of the agent assignment

mechanism. The coarse approach described earlier depends

on identifying the type of agent required for each step.

But the particular assignment mechanism used by a given

process might give much more precise information about the

possible agents who could be assigned to execute a given step,

depending on the history of agent assignment on that particular

execution. The coarse analysis might detect that agents of the

same type are assigned to the steps in a cut set and indicate the

possibility that a single agent could sabotage the process. But

a more precise analysis might show that the agent assignment

mechanism would never assign the same agent instance to

those steps. Such an analysis would require consideration of

all possible process executions leading to those steps.

Given the concurrency and complicated branching inherent

in many processes, techniques like the flow analysis used

by our FLAVERS FSV tool [55] might be more appropriate

than FTA-based approaches for this kind of analysis. The

FLAVERS tool, which we have previously used for verification

of temporal properties of processes (e.g., [56], [57]), builds a

graph representing the control flow of the process (including

concurrency, using a May Happen in Parallel analysis [18]

to determine which steps can overlap in time) and uses data

flow techniques to propagate the states of automata through

this graph. The automata can represent a temporal property to

be checked as well as constraints that restrict the execution

according to data values. The use of constraints representing

the assignment of agents, including the assignment mechanism

and the characteristics of the agents that might be used in doing

that assignment, would enable flow analysis to determine

which agents could be assigned to what steps at what times.

It might also be possible to integrate some of this analysis

with FTA-based approaches to improve the analysis of agent

assignments to the steps associated with events in an MCS.

Given a significant vulnerability identified by one of these

analyses, process designers will be interested in modifying

the process to reduce or eliminate the vulnerability. While

repeating the analysis on a modified process can show whether

or not a proposed modification actually works, in some cases

the information produced in the original analysis might be

used to suggest (in an automated or semi-automated way)

appropriate modifications. How to use the analyses to identify

suitable process improvements is an open question.

Thus far, we have discussed only attacks in which insider

agents may perform a process step incorrectly by modifying

an output artifact or by causing an exception to be incorrectly

thrown or not thrown. But other kinds of deviation from correct

execution can be equally interesting and provide insights for

the domain experts. For instance, agents refusing to carry

out certain steps, or delaying them sufficiently, could produce

denials of service or related problems. In some cases, analysis

for deadlock or starvation might detect the potential for such

attacks in appropriate models. In other cases, the flow analysis

might need to include certain classes of executions not allowed

by the original process model in order to represent more

substantial deviations from the specified process.

VII. CONCLUSION

Process model-based analysis is a powerful tool, and has

been used to analyze processes ranging from medical proce-

dures [56], [58] to scientific workflows [59] to processes by

which elections are conducted [16], [17]. Many of these efforts

produce large and complex process models and fault trees.

As the analysis is automated, this has not been a problem.

Given the variety of domains in which the process model-

based analysis has been applied, we expect this approach —

using process model-based analysis to identify insider threats

— to also be general and applicable in various domains.

257257262

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

Our technique approaches the insider problem in a way

that is different from the approaches of prior research. Past

research has focused on analyses of how insiders might attack,

and has sought to identify attackers and attacks by tactics

such as decoys and anomaly detection, and to inhibit attacks

by adding technological constraints in accordance with the

principle of separation of privilege or separation of duty [60].

Those approaches essentially take the attacker’s point of view.
In contrast, our approach takes the point of view of the

process that is the target of attacks. We leverage a detailed

knowledge of the structure of the activities of the process, and

the ways in which different kinds of agents can be assigned

to carry out those activities. We focus on the assurance of the

process that the insider is trying to disrupt, including violations

of properties such as confidentiality of the data used by the

process, integrity of the process itself, and availability of both

results and the process, rather than how the insider is trying

to disrupt it. We look for places where the process could be

disrupted by modeling the process rigorously and formally, and

then using techniques such as fault tree analysis to examine

how to ameliorate or prevent the disruption. Thus, rather than

anticipating how an insider will attack, our approach identifies

points where the insider (or insiders) could disrupt the process,

and determines how to prevent that disruption if possible, and

if not possible, how to increase the cost to the attacker.
How effective this approach will be remains to be seen. It

is a new and promising direction for insider threat analysis.

ACKNOWLEDGMENTS

Matt Bishop and Sean Peisert acknowledge the support of

the National Science Foundation (NSF) under grant CNS-

1258577 and the National Institute of Standards and Tech-

nology (NIST) under grant 60NANB13D165. Sean Peisert

also acknowledges the support of the NSF under grant CCF-

1018871.
George Avrunin, Lori Clarke, Heather Conboy, Lee Oster-

weil, Huong Phan, and Borislava Simidchieva acknowledge

the support of NIST under grant 60NANB13D165 and of the

NSF under grants IIS-1239334 and CNS-1258588.
Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and

do not necessarily reflect the views of the NSF or NIST.
We also thank Freddie Oakley, Yolo County Clerk/Recorder;

Tom Stanionis, her chief deputy; and Elaine Ginnold, the

Registrar of Voters in Marin County, for their help.

REFERENCES

[1] M. Bishop, Computer Security: Art and Science. Boston, MA,
USA: Addison Wesley Professional, Dec. 2002. [Online]. Available:
http://www.amazon.com/gp/product/0201440997

[2] R. Brackney and R. Anderson, “Understanding the Insider Threat:
Proceedings of a March 2004 Workshop,” RAND Corporation, Santa
Monica, CA, Tech. Rep., Mar. 2004.

[3] B. M. Bowen, M. Ben Salem, S. Hershkop, A. D. Keromytis, and S. J.
Stolfo, “Designing host and network sensors to mitigate the insider
threat,” IEEE Security & Privacy, vol. 7, no. 6, pp. 22–29, Nov. 2009.

[4] D. Cappelli, A. Moore, R. Trzeciak, and T. J. Shimeall, “Common
sense guide to prevention and detection of insider threats, 3rd edition
— version 3.1,” CERT, Tech. Rep., Jan. 2009. [Online]. Available:
http://www.cert.org/archive/pdf/CSG-V3.pdf

[5] J. Hunker and C. W. Probst, “Insiders and insider threats—an overview
of definitions and mitigation techniques,” Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications, vol. 2,
no. 1, pp. 4–27, 2011.

[6] M. Kandias, A. Mylonas, N. Virvilis, M. Theoharidow, and D. Gritzalis,
“An insider threat prediction model,” in Proceedings of the 7th Interna-
tional Conference on Trust, Privacy and Security in Digital Business,
S. Katsikas, J. Lopez, and M. Soriano, Eds., vol. 6264. Berlin,
Germany: Springer-Verlag, 2010, pp. 26–37.

[7] M. Maloof and G. Stephens, “Elicit: A system for detecting insiders
who violate need-to-know,” in Recent Advances in Intrusion Detection.
Springer, 2007, pp. 146–166.

[8] G. B. Magklaras, S. M. Furnell, and P. J. Brooke, “Towards an insider
threat prediction specification language,” Information Management and
Computer Security, vol. 14, no. 4, pp. 361–381, 2006.

[9] J. Patzakis, “New incident response best practices: Patch and proceed is
no longer acceptable incident response,” Guidance Software, Pasadena,
CA, Tech. Rep., Sep. 2003.

[10] C. W. Probst and R. R. Hansen, “Analysing access control specifi-
cations,” in Proceedings of the Fourth International IEEE Workshop
on Systematic Approaches to Digital Forensic Engineering (SADFE),
Oakland, CA, 2009, pp. 22–33.

[11] ——, “An extensible analysable system model,” Information Security
Technical Report, vol. 13, no. 4, pp. 235–246, 2008.

[12] C. A. Ericson II, “Fault tree analysis—a history,” in 17th International
System Safety Conference, 1999.

[13] J. Ward, M. Lyons, S. Barclay, J. Anderson, P. Buckle, and P. Clarkson,
“Using fault tree analysis (FTA) in healthcare: A case study of repeat
prescribing in primary care,” in Patient Safety Research: Shaping the
European Agenda, 2007.

[14] E. Hyman, William A.; Johnson, “Fault tree analysis of clinical alarms,”
Journal of Clinical Engineering, pp. 85–94, 2008.

[15] B. Chen, “Improving processes using static analysis techniques,” Ph.D.
dissertation, University of Massachusetts Amherst, 2010.

[16] B. I. Simidchieva, S. J. Engle, M. Clifford, A. C. Jones, S. Peisert,
M. Bishop, L. A. Clarke, and L. J. Osterweil, “Modeling and analyzing
faults to improve election process robustness,” in Proceedings of
the 2010 Electronic Voting Technology/Workshop on Trustworthy
Elections. Berkeley, CA, USA: USENIX Association, Aug. 2010.
[Online]. Available: http://www.usenix.org/events/evtwote10/tech/full
papers/Simidchieva.pdf

[17] H. Phan, G. Avrunin, M. Bishop, L. A. Clarke, and L. J. Osterweil,
“A systematic process-model-based approach for synthesizing attacks
and evaluating them,” in Proceedings of the 2012 USENIX/ACCURATE
Electronic Voting Technology Workshop. Berkeley, CA, USA: USENIX
Association, Aug. 2012. [Online]. Available: https://www.usenix.org/
system/files/conference/evtwote12/evtwote12-final26.pdf

[18] G. Naumovich and G. S. Avrunin, “A conservative data flow algorithm
for detecting all pairs of statements that may happen in parallel,” in
Proceedings of the 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 1998, pp. 24–34.

[19] Yolo county elections office. [Online]. Available: http://www.
yoloelections.org

[20] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, J. S. M. Sutton,
and A. Wise, “Little-JIL/Juliette: A process definition language and
interpreter,” in Proceedings of the 22nd International Conference on
Software Engineering, Limerick, Ireland, 2000, pp. 754–757.

[21] “One percent manual tally,” California Elections Code Section 15360.
[Online]. Available: http://www.leginfo.ca.gov/cgi-bin/displaycode?
section=elec&group=15001-16000&file=15360

[22] “Postcanvass risk-limiting audit pilot program,” California Elections
Code Section 15560. [Online]. Available: http://www.leginfo.ca.gov/
cgi-bin/displaycode?section=elec&group=15001-16000&file=15560

[23] D. McCullagh, “E-voting predicament: Not-so-secret ballots,”
http://news.cnet.com/2100-1014 3-6203323.html, Aug. 2007.

[24] N. Hu, P. G. Bradford, and J. Liu, “Applying role based access control
and genetic algorithms to insider threat detection,” in Proceedings of the
44th Annual ACM Southeast Regional Conference, 2006, pp. 790–791.

[25] J. S. Park and J. Giordano, “Role-based profile analysis for scalable and
accurate insider-anomaly detection,” in Proceedings of the 25th IEEE In-
ternational Performance, Computing, and Communications Conference.
Piscataway, NJ, USA: IEEE, Apr. 2006, pp. 463–469.

[26] M. Bishop, S. Engle, D. A. Frincke, C. Gates, F. L. Greitzer, S. Peisert,
and S. Whalen, “A risk management approach to the “insider threat”,” in

258258263

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

Insider Threats in Cyber Security, ser. Advances in Information Security,
C. W. Probst, J. Hunker, D. Gollmann, and M. Bishop, Eds. New York,
NY, USA: Springer Science+Business Media, LLC, Jan. 2010, vol. 49,
pp. 115–137.

[27] N. Baracaldo and J. Joshi, “A trust-and-risk aware RBAC framework:
Tackling insider threat,” in Proceedings of the 17th ACM Symposium
on Access Control Models and Technologies, ser. SACMAT ’12. New
York, NY, USA: ACM, June 2012, pp. 167–176.

[28] S. Peisert and M. Bishop, “Dynamic, flexible, and optimistic access
control,” Dept. of Computer Science, University of California at Davis,
Davis, CA, USA, Technical Report CSE-2013-76, Mar. 2013.

[29] M. Bishop, S. Engle, S. Peisert, S. Whalen, and C. Gates, “We have
met the enemy and he is us,” in Proceedings of the 2008 Workshop on
New Security Paradigms, ser. NSPW ’08. New York, NY, USA: ACM,
Sep. 2008, pp. 1–12.

[30] ——, “Case studies of an insider framework,” in Proceedings of the
42nd Hawaii International Conference on System Science, Jan. 2009.

[31] E. E. Schultz, “A framework for understanding and predicting insider
attacks,” Computers & Security, vol. 21, no. 6, pp. 526–531, Oct. 2002.

[32] F. L. Greitzer and D. A. Frincke, “Combining traditional cyber security
audit data with psychosocial data: Towards predictive modeling for
insider threat mitigation,” in Insider Threats in Cyber Security, ser.
Advances in Information Security, C. W. Probst, J. Hunker, D. Gollmann,
and M. Bishop, Eds. New York, NY, USA: Springer Science+Business
Media, LLC, Jan. 2010, vol. 49, pp. 85–113.

[33] R. Chinchani, A. Iyer, H. Q. Ngo, and S. Upadhyaya, “Towards a theory
of insider threat assessment,” in Proceedings of the 2005 Internation
Conference on Dependable Systems and Networks. Los Alamitos, CA,
USA: IEEE Computer Society Press, June 2005, pp. 108–117.

[34] A. Vance, B. Molyneux, and P. B. Lowry, “Reducing unauthorized access
by insiders through user interface design: Making end users account-
able,” in Proceedings of the 45th Hawaii International Conference on
System Sciences. Los Alamitos, CA, USA: IEEE Computer Society
Press, Jan. 2012, pp. 4623–4632.

[35] C. Posey, R. J. Bennett, and T. L. Roberts, “Understanding the mindset
of the abusive insider: An examination of insiders’ causal reasoning
following internal security changes,” Computers & Security, vol. 30,
no. 6–7, pp. 486–497, Sep. 2011.

[36] C. Probst, R. Hansen, and F. Nielson, “Where can an insider attack?”
in Proceedings of the Fourth International Workshop on Formal Aspects
in Security and Trust, Aug. 2006.

[37] G. Magklaras and S. Furnell, “Insider threat specification as a threat
mitigation technique,” in Insider Threats in Cyber Security, ser. Ad-
vances in Information Security, C. W. Probst, J. Hunker, D. Gollmann,
and M. Bishop, Eds. New York, NY, USA: Springer Science+Business
Media, LLC, Jan. 2010, vol. 49, pp. 219–244.

[38] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting
inside attackers using decoy documents,” in Proceedings of the 5th Inter-
national ICST Conference on Security and Privacy in Communication
Networks, ser. Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, Y. Chen, T. D.
Dimitriou, and J. Zhou, Eds., vol. 19. Berlin, Germany: Springer, Sep.
2009, pp. 51–70.

[39] B. M. Bowen, M. Ben Salem, A. D. Keromytis, and S. J. Stolfo,
“Monitoring technologies for mitigating insider threats,” in Insider
Threats in Cyber Security, ser. Advances in Information Security, C. W.
Probst, J. Hunker, D. Gollmann, and M. Bishop, Eds. New York, NY,
USA: Springer Science+Business Media, LLC, Jan. 2010, vol. 49, pp.
197–217.

[40] M. Ben Salem and S. J. Stolfo, “Decoy document deployment for
effective masquerade attack detection,” in Proceedings of the 8th In-
ternational Conference on the Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. Lecture Notes in Computer Science,
T. Holz and H. Bos, Eds., vol. 6739. Berlin, Germany: Springer-Verlag,
Aug. 2011.

[41] J. Voris, N. Boggs, and S. J. Stolfo, “Lost in translation: Improving
decoy documents via automated translation,” in Proceedings of the 2012
IEEE Symposium on Security and Privacy Workshops, May 2012, pp.
129–133.

[42] L. Spitzner, “Honeypots: Catching the insider threat,” in Proceedings
of the 19th Annual Computer Security Applications Conference. Los
Alamitos, CA, USA: IEEE Computer Society Press, Dec. 2003, pp.
170–179.

[43] S. J. Stolfo, M. Ben Salem, and A. D. Keromytis, “Fog computing:
Mitigating insider data theft attacks in the cloud,” in Proceedings of the
2012 IEEE Symposium on Security and Privacy Workshops, May 2012,
pp. 125–128.

[44] F. Kammüller and C. W. Probst, “Invalidating policies using structural
information,” in Workshop on Research for Insider Threat, May 2013.

[45] J. Ard, M. Bishop, C. Gates, and M. Sun, “Information behaving badly,”
in Proceedings of the 2013 Workshop on New Security Paradigms, Sep.
2013, pp. 107–118.

[46] A. Liu, C. Martin, T. Hetherington, and S. Matzner, “A comparison
of system call feature representations for insider threat detection,” in
Proceedings of the Sixth Annual IEEE Systems, Man and Cybernetics
Information Assurance Workshop. Piscataway, NJ, USA: IEEE, June
2005, pp. 340–347.

[47] N. Nguyen, P. Reiher, and G. H. Kuenning, “Detecting insider threats
by monitoring system call activity,” in Proceedings of the 2003 IEEE
Workshop on Information Assurance. Los Alamitos, CA, USA: IEEE
Computer Society, June 2003, pp. 45–52.

[48] W. Eberle and L. Holder, “Insider threat detection using graph-based
approaches,” in Proceedings of the 2009 Conference for Homeland
Security, Cybersecurity Applications & Technology, Mar. 2009, pp. 237–
241.

[49] ——, “Applying graph-based anomaly detection approaches to the dis-
covery of insider threats,” in Proceedings of the 2009 IEEE International
Conference on Intelligence and Security Informatics, June 2009, pp.
206–208.

[50] Y. Liu, C. Corbett, K. Chiang, R. Archibald, B. Mukherjee, and
D. Ghosal, “Detecting sensitive data exfiltration by an insider attack,”
in Proceedings of the 4th Annual Workshop on Cyber Security and
Information Intelligence Research, ser. CSIIRW ’08. New York, NY,
USA: ACM, May 2008, pp. 16:1–16:3.

[51] J. Crampton and M. Huth, “Towards an access-control framework for
countering insider threats,” in Insider Threats in Cyber Security, ser.
Advances in Information Security, C. W. Probst, J. Hunker, D. Gollmann,
and M. Bishop, Eds. New York, NY, USA: Springer Science+Business
Media, LLC, Jan. 2010, vol. 49, pp. 173–195.

[52] P. G. Neumann, “Combatting insider threats,” in Insider Threats in Cyber
Security, ser. Advances in Information Security, C. W. Probst, J. Hunker,
D. Gollmann, and M. Bishop, Eds. New York, NY, USA: Springer
Science+Business Media, LLC, Jan. 2010, vol. 49, pp. 17–44.

[53] B. Schneier, “Attack trees,” in Dr. Dobb’s Journal, vol. 24, no. 12, Dec.
1999, pp. 21–29.

[54] S. J. Templeton and K. Levitt, “A requires/provides model for computer
attacks,” in Proceedings of the 2000 New Security Paradigms Workshop,
ser. NSPW ’00. New York, NY, USA: ACM, 2000, pp. 31–38.

[55] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich, “Flow
analysis for verifying properties of concurrent software systems,” ACM
Transactions on Software Engineering and Methodology, vol. 13, no. 4,
pp. 359–430, Oct. 2004.

[56] B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J. Osterweil,
and P. L. Henneman, “Analyzing medical processes,” in ICSE ’08: Pro-
ceedings of the 30th International Conference on Software Engineering.
ACM, May 2008, pp. 623–632.

[57] S. Christov, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, and E. A. Hen-
neman, “A benchmark for evaluating software engineering techniques for
improving medical processes,” in SEHC ’10: Proceedings of the 2010
ICSE Workshop on Software Engineering in Health Care, L. A. Clarke
and J. Weber-Jahnke, Eds., Cape Town, South Africa, May 2010, pp.
50–56.

[58] G. Avrunin, L. Clarke, L. Osterweil, S. Christov, B. Chen, E. Henneman,
P. Henneman, C. L., and W. Mertens, “Experience modeling and analyz-
ing medical processes: Umass/baystate medical safety project overview,”
in Proceedings of the First ACM International Health Informatics
Symposium, Nov. 2010, pp. 316–325.

[59] L. J. Osterweil, L. A. Clarke, A. M. Ellison, R. Podorozhny, A. Wise,
E. Boose, and J. Hadley, “Experience in using a process language
to define scientific workflow and generate dataset provenance,” in
Proceedings of the ACM SIGSOFT 16th International Symposium on
Foundations of Software Engineering, Nov. 2008, pp. 319–329.

[60] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, Sep. 1975.

259259264

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:33:24 UTC from IEEE Xplore. Restrictions apply.

