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Abstract—Usage control (UC) is concerned with how data may
or may not be used after initial access has been granted. UC
requirements are expressed in terms of data (e.g. a picture, a song)
which exist within a system in forms of different technical repre-
sentations (containers, e.g. files, memory locations, windows). A
model combining UC enforcement with data flow tracking across
containers has been proposed in the literature, but it exhibits
a high false positives detection rate. In this paper we propose
a refined approach for data flow tracking that mitigates this
overapproximation problem by leveraging information about the
inherent structure of the data being tracked. We propose a formal
model and show some exemplary instantiations.

I. INTRODUCTION

The goal of Data Flow Tracking (DFT) is to know where

particular data resides within a computing system. Correspond-

ing locations, or containers, for data include, among others,

memory locations, files, Java objects, windows, and hardware

registers. DFT has been investigated for many different system
layers using different approaches [1]–[4]. A common idea is

to mark containers with taint marks representing particular

data and to propagate these taint marks according to observed

system events. At any moment in time, every marked container

possibly contains the data represented by its taint marks.

Taint analysis is usually performed in three phases: (1)

Initial classification of containers; (2) Propagation of taint

marks according to the general rule “the result of an oper-
ation is marked with all taint marks of its operands”; (3)

Declassification of containers, e.g. if all content of a container

is deleted.1 The results of the taint analysis can then be

used for security purposes such as data leakage prevention or

enforcement of data integrity and data usage policies [5]–[7].

Because of these security goals, taint analyses tends to be

conservative, resulting in many false positives. Over time,

these overapproximations cumulate and lead to the so-called

label creep situation, where all taint marks are associated with

many system containers, making further data flow tracking

pointless. In particular, if the usage of tracked data is con-

strained by policies, the system’s stability might get compro-

mised because every marked container, actually containing the

data or not, would be subject to these constraints.

1 Because a taint mark represents a policy that imposes restrictions on
the usage of data, classification corresponds to assigning a taint mark to a
container and declassification corresponds to removing it.

Example Scenario: Email application
In an email application, where each different part of a mail

(Recipients, Subject, Body, Attachments, etc.) is modeled as

a container, events causing data flows are user actions such as

send, reply, forward, save, load, and print [8]. Assume a data

usage policy for the message body stating “this content must

not be printed”. Therefore, container ‘Body’ will be marked

with the “no-print” taint mark d3—in addition to other existing

restrictions, represented by taint marks d1 and d2 in Fig. 1.
If containers with different taint marks are combined into

one single container, existing DFT approaches will lead to

the result that these taint marks can no longer be separated. In

other words, all further operations on this single container will

propagate all taint marks, even if only part of it is accessed. If

the mail is saved into a file and then reopened (Fig. 1, top), a

naive application of the basic DFT principle leads to a situation

in which also the attachment could not be printed, because it

gets erroneously marked with d3 due to overapproximation.
Instead, what we would like to achieve is presented in

the bottom part of Fig. 1: After reopening a saved mail,

the association between containers and taint marks should

correspond to their association before the mail was saved.
Our solution works as follows: Once the mail’s containers

are aggregated into the single file container upon save, the file

is marked with a special taint mark dnew that captures which

source container is related to which taint marks (Fig. 1, bottom

center). From then on, dnew is propagated like any other taint

mark by the operating system’s and other applications’ DFT,

e.g. upon copying, compression, or encryption. Even if these

layers are not able to interpret the structure associated with

dnew, they will preserve and propagate it. Once the file, or any

copy of it, is reopened by the mail client (load), the structure

of dnew is used to properly declassify each part of the mail,

maintaining only the original taint marks (Fig. 1, bottom right).

Proposed Solution
Generalizing from the example, a common source of over-

approximations is the bottle-neck pattern depicted in Fig. 2: If

the content of multiple containers with different taint marks is

merged into one single container, then the resulting container

(intermediate container, from now on) is marked with all

taint marks of its sources. By applying the basic rule of

taint propagation explained above, further operations on this

intermediate container will unconditionally propagate all taint

marks, resulting in the aforementioned overapproximation.
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Fig. 1. Result of tracking the flow of data while saving a mail to a file and reopening it with (above) and without (below) the use of structured taint marks.

Other scenarios in which the bottleneck pattern can be

observed include: compression of several files into one archive

and subsequent decompression, copy-pasting data via the

clipboard, and transferring content via pipes or sockets. In all

of them, each destination container (like a file extracted from

an archive) should only be tainted with the taint marks of one

specific source (the same file before compression), rather than

with all taint marks of the intermediate container (archive file).

Our solution builds on one central observation common to

all of these scenarios: there exists a pair of dual merge and split
operations. While a merge operation (such as save) aggregates

content from different sources into one intermediate container,

like c in Fig. 2, the corresponding split operation (such as

load) reads the same content and separates it into multiple

containers, each matching exactly one of the source containers.

The solution we propose is a generic model for data flow

tracking that, in correspondence of a merge operation, marks

the intermediate container with a special structured taint mark
that represents all taint marks of the source containers. Such

taint mark is then leveraged by split operations to propagate

only selected taint marks to each destination, thus effectively

declassifying the destination containers. This mitigates the

label creep issue by decreasing the amount of false positives.

Note that a trivial solution for the email example is to

embody the taint mark as additional content in the file while

saving, and to use this information at loading time. Because we

src1

merge c split

src2

dst1

dst2

Fig. 2. Bottle-neck pattern.

believe that DFT analysis should not interfere with the original

behavior of the system, our solution achieves the same result

in a transparent way, never changing the actual content. The

reasons behind this choice are that (a) adding to the content

may compromise its integrity or make it unusable (e.g. if a file

is signed, adding content would invalidate the signature), and

(b) this way our model is generic enough to be applicable at

any layer and does not depend on the technical representation

of a container nor on how taint marks can be embodied.

Also note, that the precision of our analysis for the interme-

diate container is equivalent to that of basic taint propagation

(cf. §III-C); the reduction in terms of false positives is in the

destination containers of the split operation.

Before performing declassification, however, we must make

sure that the structured taint mark associated with an interme-

diate container is valid: the structured taint mark must not have

been propagated due to overapproximations, and the integrity

of the intermediate container’s content must be assured; if this

is not the case, we fall back to basic taint propagation. To this

end we perform additional integrity checks.

Problem. We tackle the problem of label creep in taint-

based data flow tracking analyses.

Solution. We propose a generic model for taint-based data-

flow tracking of structured data. Our model can be instantiated

for different contexts at different system layers.

Contribution. We see our contribution in the first generic

solution for event-based structured data-flow tracking. Our

model transparently builds, propagates, and uses taint marks

that reflect the inherent structure of data without semantic anal-

ysis of the tracked content. With minimal assumptions on the

system and without modifying the number or the granularity of

events or containers, we can increase the precision of existing

DFT analyses and mitigate the label creep problem.

Assumptions. We assume the existence of dual merge and

split events as explained above. These events (i) must be
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detectable and identifiable at runtime, (ii) must have clearly

defined semantics, in particular in terms of how they propagate

data, (iii) must be trusted, i.e. there must exist confidence that

they behave according to the expected semantics.

Structure. We introduce the formal model underlying our

work in §II. §III presents our model, formally defining struc-

tured taint marks, describing how the structure is constructed,

and how it can be used for declassification. §IV describes

instantiations of the model; §V compares our work to existing

solutions; §VI concludes and discusses remaining challenges.

II. FORMAL MODEL

We base our model on a model for generic data flow tracking

from the literature [7]. A system is described as a tuple

(D ,E,C ,F,V , partId , checksum,Σ, σ0, �)

where D is the set of data taint marks, E is the set of system

events, C is the set of containers, and F = FC ∪FP is the set

of identifiers, where FC is a set of container names and FP

is a set of identifiers for parts of data structures (explained in

more detail in §III-A), also called partIDs.

partId : C �→ FP assigns partIDs to containers. We use it in

split operations to decide which part of a structured taint mark

corresponds to a destination container. In the model partId is

an oracle, while §IV describes possible instantiations of it.

checksum : (C ×D) → V is another oracle that computes

a checksum of the content of a specific container (e.g. the hash

of a file), with V the set of all possible checksum values. The

set of system states Σ = (t, struct , checkList) is defined as

(1) a taint function of type t : C → P(D), describing which

container is marked with which taint marks; if two containers

are marked with the same taint mark, they are (possibly) two

different representations for the same abstract data;

(2) a structure function of type struct : D → P(FP × P(D)),
mapping taint marks to a structure, cf. §III;

(3) a checklist checkList ⊆ P(D×V ), used to check whether

a certain structured taint mark is valid, cf. §III.

σ0 = (∅,∅,∅) ∈ Σ is the initial state. The transition

relation � ⊆ Σ × E → Σ is the core of the model, as it

encodes how σ ∈ Σ must be updated in case an event occurs.

III. STRUCTURED DATA FLOW TRACKING

A. Structured Taint Marks

Sometimes data presents an inherent structure: a mail has a

recipient, a subject, and a body; a story is divided into chapters

and sections; a song into chorus and verses, etc. Although

sometimes this structure is reflected by the container in which

the data is stored, conceptually it remains a property of the

data rather than the container. Data structure is preserved even

when its concrete representation is “obfuscated”, e.g. by means

of compression. For this reason, our model binds the structure

to the data (i.e. the taint mark) rather than to the container.

More precisely, if some data has an inherent struc-

ture, we associate its taint mark with a set of partIDs

{partID1, . . . , partIDn} ⊆ FP , each of which is in turn

associated with a set of taint marks. The rationale is that

these partIDs identify the different parts of the structured data

(‘Recipient’, ‘Subject’, ‘Body’, ‘Attachment’ in Fig. 1), whilst

the associated taint marks represent the data items associated

with the corresponding part (e.g., d4 and d5 for ‘Attachment’).

Formally, the relation between each taint mark and its structure

is given by the function struct : D → P(FP × P(D)).
Associating the structure with the taint mark rather than

a container has the advantage that the taint mark is then

propagated independently of the type of containers in which

the content is actually stored and independently of whether

operations on such containers are aware of the structure or not.

This allows us to easily reuse DFT event semantics described

in earlier work [1], [2], [5], [7], [9], and thus to seamlessly

integrate with existing DFT instantiations at different system

layers. Only the semantics of those events that correspond to

merge and split operations need to be updated.
Note, that our model allows us to nest structured taint marks.

Also note, that if a container c is marked with a structured

taint mark d, then if σ.struct(d) = {(p1, {d1}), (p2, {d2})}
the restrictions imposed by d1 and d2 both apply to c.

B. Merge Operations
Some scenarios allow to mitigate overapproximations by

leveraging additional information about merge operations. In

our terminology, merge operations are special system events

that (1) aggregate data from multiple sources into a single

destination container, (2) have corresponding dual split opera-
tions, and (3) allow us to infer information about the structure

of data. The latter usually comes from external knowledge

about the system, e.g. the fact that process ‘zip’ is an archiver.

The inferred structure is associated with a new structured

taint mark for the destination container (i.e. the intermediate

container in a bottleneck pattern).
Formally, a merge operation me(SRC , dst) merges the

content of the set of source containers SRC ⊆ C into the

single destination container dst ∈ (C\SRC ) in a structured

way. This means that all taint marks associated with all source

containers are grouped into multiple (possibly overlapping)

sets, each of which is identified by a partID. The partIDs are

derived by some properties of the set SRC , e.g. the name

of the containers, and they are captured by the layer-specific

function partId : C �→ FP . At the model level, we use partId
as an oracle to determine which parts of a structured taint mark

correspond to which destination container of a split operation.

The implementation of partId is instantiation-specific, cf. §IV

for some examples. In contrast, the semantics of any merge
event me can be described in a generic way:

∀σ, σ′ ∈ Σ, ∀SRC ⊆ C , ∀ dst ∈ C\SRC :
(σ,me(SRC , dst), σ′) ∈ �

⇒ σ′.t(dst) = σ.t(dst) ∪ {dnew}
σ′.struct(dnew) = {(partId(c), σ.t(c)) | c ∈ SRC}
σ′.checkList = σ.checkList ∪

{(dnew, checksum(dst , dnew))}
\ {(dnew, v) | v 	= checksum(dst , dnew)}

where dnew represents a previously unused taint mark and

σ.t, σ.struct and σ.checkList indicate, respectively, the taint
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function, the structure function, and the checklist of state σ.

Performing a merge operation requires updating the list of

valid checksums, which is why we replace all old checksum

values of (dst , dnew) with the new checksum value.

While we implicitly assumed merge operations to be atomic,

a merge operation might be composed of multiple subsequent

events. In this case, the structure must be built incrementally;

this more complex case is work in progress (§VI).

C. Split Operations

A split operation se(src,DST ) is the dual of a corre-

sponding merge operation. It propagates the content of one

source container src ∈ C to a set of destination containers

DST ⊆ C . In the bottleneck pattern, the source container

src corresponds to the intermediate container. In contrast to

normal taint propagation events, split operations leverage the

fact that the source container is marked with a structured taint

mark. As this structure was built based on information about

the corresponding merge operation, split operations use this

additional information to declassify the destination containers

DST . In other words, split operations do not necessarily

propagate all taint marks associated with the source container

src to all destination containers DST , but only selected taint

marks to selected containers.

For this reason, split operations do not follow the conserva-

tive approach of overapproximating data flows. Instead, they

perform selected declassification of the destination containers,

thus mitigating the label creep problem. Which taint marks

are in fact propagated to which destination containers is

determined by applying the partId function to each destination

container. If the result is such that a corresponding partID

exists in one of the source container’s structured taint marks,

only the taint marks related to this partID are propagated; if

no such match is found, all taint marks are blindly propagated,

which is equivalent to basic taint propagation. Formally:

∀σ, σ′ ∈ Σ, ∀ src ∈ C , ∀DST ⊆ C\{src} :
(σ, se(src,DST ), σ′) ∈ �

⇒ ∀ dst ∈ DST , ∀ d ∈ σ.t(src) :
σ′.t(dst) =⎧⎨
⎩
σ.t(dst) ∪ D′ if (partId(dst),D′) ∈ σ.struct(d) ∧

(d, checksum(src, d)) ∈ σ.checkList
σ.t(dst) ∪ {d} otherwise

Note, that if (d, checksum(src, d)) is not in σ.checkList , the

integrity of the source container has been compromised and

we fall back to basic taint propagation.

Let us call closure(c) the set of all taint marks associated

with a container c—either directly via tainting function t, or

indirectly, i.e. as part of a structured taint mark which, in turn,

is directly or indirectly associated with c. Note, that whenever

a restriction is associated with a taint mark d, it applies

to every container c that is marked with d, either directly

(d ∈ t(c)) or indirectly (d ∈ closure(c)). Considering the mail

example from Fig. 1, it is thus irrelevant from a precision

perspective whether we taint the intermediate file container

with dnew or with {d1, . . . , d8}. The enhanced precision is only

achieved at the time of the split operation.

IV. INSTANTIATIONS

The model we have described is applicable to any scenario

similar to the described mail example, where application-

specific DFT is combined with tracking at the operating system

layer. However, there are more situations in which our model

can improve the precision of basic taint propagation.

Consider the action of copy-and-pasting multiple data

within an application. Although the system clipboard will

preserve the structure of the content, if the clipboard is

modeled as a single container [5], [8], it will behave as an

intermediate container in the bottleneck pattern and propagate

all taint marks of the sources to all destination containers. In

this case the event “copy” (“paste”) corresponds to a merge

(split) operation. The instantiation of partId is application-

specific: for a spreadsheet application it would map the cells

to their ‘coordinates’, while for a word processor it would

work on internal identifiers of sections, paragraphs, or words.

Similarly, consider a DFT analysis for the operating system

[1], where containers are files, pipes and memory locations,

and events are system calls. Unless there exists a ded icated

monitor for the application, whenever a process reads from a

file, its memory gets tainted with all taint marks of that file.

These taint marks will then be propagated to every file the

process writes. However, if we consider the special case of

an archive process such as ‘zip’, the extraction (split) of an

archive should propagate to each extracted file only the taint

marks that were associated with it at the moment the archive

was created (merge), rather than all taint marks associated

with the archive file. Function partId would map source and

destination containers using their relative filenames.

Our model also applies in distributed scenarios, e.g. if many

files are transferred over a TCP connection. While existing

solutions [9] explain how to propagate the taint marks from

one system to another, the communication channel behaves

like the intermediate container in the bottle-neck pattern. In

this scenario, the merge operation would be the sequence of

read (from files) and write (to the socket) events observed

on the “sender” side, whereas the split operation corresponds

to the dual sequence on the “receiver” side. In a simple

file transfer scenario, function partId would map source and

destination containers using filenames.

In all these examples, a simple hash of the content or a set

of hash values for the different parts of the content could be

used for the checksum function, to guarantee that the content

to-be-split exactly matches the one at the moment of merge.

V. RELATED WORK

Several techniques have been proposed for dynamic taint

analysis, usually tailored to one specific system layer, like

a programming language (Java [10], Perl [11], PHP [12]), a

particular application (Internet Explorer [13], Mozilla Thun-

derbird [8]), a service (ESB [14]), an operating system [15],

[16] or a certain hardware/machine level code. In this last
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category we find solutions based on binary rewriting [17]–[20],

memory and pointer analysis [21], and partial- or full-system

emulation [6], [22], [23]. The goal of all these solutions is a

dedicated model for one particular system layer. Our model, in

contrast, is generic and not bound to one specific architecture

or platform, thus making it instantiable at any or all of them.

An interesting exception stems from the area of provenance

aware storage systems [24], where representations of data are

considered at three system layers at the same time (network,

file system, workflow engine). Depending on the type of the

content being handled, different tracking solutions are used.

However, taint marks are propagated like in other taint analy-

ses, i.e. without any special form of structured aggregation.

In parallel to us, Alvim et al. [25] developed an abstract

model for quantitative information flow tracking that accounts

for the structure of data. While promising from a theoretical

perspective, no realistic instantiation of the model is presented.

Lastly, the model presented in this paper builds on top of the

generic data flow tracking model presented in [7] and refines

it in terms of precision. For this reason, our solution can easily

be integrated in a fully-fledged usage control architecture like

[2], [5], [7], [8] to support advanced policy enforcement.

VI. CHALLENGES AND CONCLUSIONS

We presented a new idea for a generic model to reduce

overapproximations in taint-based data flow tracking. While

an implementation is still work in progress, the core of the

model is formalized and example instantiations are discussed.

In terms of limitations, this work assumes merge and

split operations to be atomic. Yet, in some scenarios these

operations actually correspond to sequences of events, e.g.

if data is consecutively written to the same pipe. An easy

solution is to model every event in the sequence using basic

taint-propagation and then, in correspondence of the last event,

replace the result with the structured taint mark. The drawback

of this solution is that in some scenarios merge/split operations

correspond to possibly infinite sequences of events, like a

network stream of data. In these cases, split events may take

place before the merge sequence is over. For this reason, we

are working on extending our model to support an incremental

building of the structure that copes with these situations.

At a technical level, additional challenges come from find-

ing appropriate checksum and partId functions. In general, a

basic hash function like SHA1 is enough for the checksum,

but in some scenarios, like the archiver example, it is not

obvious what a good choice for a partId function is. Our

model is general enough to support any choice, as long as

partId maps each source container (before merge) and its

respective destination container (after split) to the same partID.

Depending on the monitor capabilities and the assumptions

about the archiver process, we may use just the filename or

additional information, like creation date or checksum.

After extending the model to cope with the above challenges

and implementing it, the next step is a proper comparison

of this work in terms of performance and precision (false

positives vs. false negatives) with existing DFT technologies.
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