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Abstract—The web constitutes a complex infrastructure and,
as demonstrated by numerous attacks, rigorous analysis of
standards and web applications is indispensable.

Inspired by successful prior work, in particular the work
by Akhawe et al. as well as Bansal et al., in this work we
propose a formal model for the web infrastructure. While
unlike prior works, which aim at automatic analysis, our model
so far is not directly amenable to automation, it is much more
comprehensive and accurate with respect to the standards and
specifications. As such, it can serve as a solid basis for the
analysis of a broad range of standards and applications.

As a case study and another important contribution of our
work, we use our model to carry out the first rigorous analysis
of the BrowserID system (a.k.a. Mozilla Persona), a recently de-
veloped complex real-world single sign-on system that employs
technologies such as AJAX, cross-document messaging, and
HTML5 web storage. Our analysis revealed a number of very
critical flaws that could not have been captured in prior models.
We propose fixes for the flaws, formally state relevant security
properties, and prove that the fixed system in a setting with
a so-called secondary identity provider satisfies these security
properties in our model. The fixes for the most critical flaws
have already been adopted by Mozilla and our findings have
been rewarded by the Mozilla Security Bug Bounty Program.

Keywords-Web Security; Formal Security Analysis; Web
Model; Single Sign-on

I. INTRODUCTION

The World Wide Web is a complex infrastructure, with

a rich set of security requirements and entities, such as

DNS servers, web servers, and web browsers, interacting

using diverse technologies. New technologies and standards

(for example, HTML5 and related technologies) introduce

even more complexity and security issues. As illustrated by

numerous attacks (see, e.g., [2], [6], [20], [27], [30]), rigorous

analysis of the web infrastructure and web applications is

indispensable.

Inspired by successful prior work, in particular the work

by Akhawe et al. [2] and Bansal et al. [5], [6], one goal of our

work is to develop an expressive formal model that precisely

captures core security aspects of the web infrastructure,

where we intend to stay as closely to the standards as

possible, with a level of abstraction that is suitable for precise

formal analysis. As further discussed in Section VI, while

prior work aimed at automatic analysis, here our main focus

is to obtain a comprehensive and more accurate model with

respect to the standards and specifications. As such, our

model constitutes a solid basis for the analysis of a broad

range of standards and applications.

The standards and specifications that define the web are

spread across many documents, including the HTTP standard

RFC2616 (with its successor HTTPbis) and the HTML5

specification [18], with certain aspects covered in related

documents, such as RFC6265, RFC6797, RFC6454, the

WHATWG Fetch living standard [32], the W3C Web Storage

specification [31], and the W3C Cross-Origin Resource

Sharing specification [12], to name just a few. Specifications

for the DNS system and communication protocols, such

as TCP, are relevant as well. The documents often build

upon each other, replace older versions or other documents,

and sometimes different versions coexist. Some details or

behaviors are not specified at all and are only documented

in the form of the source code of a web browser.

Coming up with an accurate formal model is, hence, very

valuable not only because it is required as a basis to precisely

state security properties and perform formal analysis, but

also because it summarizes and condenses important aspects

in several specifications that are otherwise spread across

different documents.

Another goal and important contribution of our work is

to apply our model to the BrowserID system (also known

under the marketing name Mozilla Persona), a complex

real-world single sign-on system developed by Mozilla.

BrowserID makes heavy use of several web technologies,

including AJAX, cross-document messaging (postMessages),

and HTML5 web storage, and as such, is a very suitable and

practically relevant target to demonstrate the importance of

a comprehensive and accurate model.

More precisely, the main contributions of our work can

be summarized as follows.

Web model: We propose a formal model of the web

infrastructure and web applications. Our model is based on

a general Dolev-Yao-style communication model, in which

processes have addresses (modeling IP addresses) and, as

usual in Dolev-Yao-style models for cryptographic protocols

(see, e.g., [1]), messages are modeled as formal terms, with

properties of cryptographic primitives, such as encryption

and digital signatures, expressed as equational theories on

terms.
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As mentioned before, our model is intended to be ex-

pressive and close to the standards and specifications, while

providing a suitable level of abstraction. Our model includes

web servers, web browsers, and DNS servers. We model

HTTP(S) requests and responses, including several headers,

such as host, cookie, location, strict-transport-security (STS),

and origin headers. Our model of web browsers captures

the concepts of windows, documents, and iframes as well as

new technologies, such as web storage and cross-document

messaging. It takes into account the complex security re-

strictions that are applied when accessing or navigating

other windows. JavaScript is modeled in an abstract way

by what we call scripting processes. These processes can

be sent around and, among others, they can create iframes

and initiate XMLHTTPRequests (XHRs). We also consider

two ways of dynamically corrupting browsers. Altogether,

our model is the most comprehensive model for the web

infrastructure to date (see also Section VI).

Analysis of the BrowserID system: We use our model to

perform the first rigorous security analysis of the BrowserID

system, which supports both so-called primary and secondary

identity providers. Our security analysis reveals a number of

very critical and previously unknown flaws, most of which

cannot be captured by previous models (see Section VI).

The most severe attack allows an adversary to login to

any service that supports authentication via BrowserID with

the email address of any Gmail and Yahoo user (without

knowing the Gmail/Yahoo credentials of these users), hence,

breaking the system completely. Another critical attack

allows an attacker to force a user to login with the attacker’s

identity. We confirmed that the attacks work on the actual

BrowserID implementation. We propose fixes and formulate

relevant security properties. For the BrowserID system with

a secondary identity provider, we prove that the fixed system

satisfies these properties in our model. By this, we provide

the first rigorous formal analysis of the BrowserID system.

Our attacks have been acknowledged by Mozilla, with the

fixes for the most severe problems having been adopted by

Mozilla already and other fixes being under discussion. Our

findings have been rewarded by the Mozilla Security Bug

Bounty Program.

Structure of this Paper: In Section II, we present the

basic communication model. Our web model is introduced

in Section III. For our case study, we first, in Section IV,

provide a description of the BrowserID system. We then,

in Section V, present the analysis of BrowserID using our

model. Related work is discussed in Section VI. We conclude

in Section VII. We refer the reader to [14] for the full version

of this paper.

II. COMMUNICATION MODEL

We now present a generic Dolev-Yao-style communication

model on which our web model (see Section III) is based.

While the model is stated in a concise mathematical fashion,

instantiations, for example, using the applied pi-calculus [1]

or multi-set rewriting [13], are conceivable.

The main entities in the communication model are what

we call atomic processes, which in Section III are used to

model web browsers, web servers, DNS servers as well as

web and network attackers. Each atomic process has a list of

addresses (representing IP addresses) it listens to. A set of

atomic processes forms what we call a system. The different

atomic processes in such a system can communicate via

events, which consist of a message as well as a receiver and

a sender address. In every step of a run one event is chosen

non-deterministically from the current “pool” of events and

is delivered to an atomic process that listens to the receiver

address of that event; if different atomic processes can listen

to the same address, the atomic process to which the event is

delivered is chosen non-deterministically among the possible

processes. The (chosen) atomic process can then process

the event and output new events, which are added to the

pool of events, and so on. (In our web model, presented in

Section III, only network attackers may listen to addresses

of other atomic processes.)

Terms, Messages and Events: To define the communica-

tion model just sketched, we first define, as usual in Dolev-

Yao models, messages, such as HTTP messages, as formal

terms over a signature, and based on this notion of messages,

we introduce events.

The signature Σ for the terms and messages considered

in this work is the union of the following pairwise disjoint

sets of function symbols: (1) constants C = IPs ∪ S ∪
{�,⊥,♦} where the three sets are pairwise disjoint, S

is interpreted to be the set of ASCII strings (including

the empty string ε), and IPs is interpreted to be a set

of (IP) addresses, (2) function symbols for public keys,

asymmetric/symmetric encryption/decryption, and digital

signatures: pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·),
sig(·, ·), checksig(·, ·), extractmsg(·), (3) n-ary sequences

〈〉, 〈·〉, 〈·, ·〉, 〈·, ·, ·〉, etc., and (4) projection symbols πi(·) for

all i ∈ N.

Let X = {x0, x1, . . . } be a set of variables and N be

an infinite set of constants (nonces) such that Σ, X , and

N are pairwise disjoint. For N ⊆ N , we define the set

TN (X) of terms over Σ∪N ∪X inductively as usual: (1) If

t ∈ N∪X , then t is a term. (2) If f ∈ Σ is an n-ary function

symbol in Σ for some n ≥ 0 and t1, . . . , tn are terms, then

f(t1, . . . , tn) is a term. By TN = TN (∅), we denote the set

of all terms over Σ ∪ N without variables, called ground
terms. The set M of messages (over N ) is defined to be the

set of ground terms TN . For example, k ∈ N and pub(k)
are messages, where k typically models a private key and

pub(k) the corresponding public key. For constants a, b, c
and the nonce k ∈ N , the message enca(〈a, b, c〉, pub(k))
is interpreted to be the message 〈a, b, c〉 (the sequence of

constants a, b, c) encrypted by the public key pub(k).
For strings, i.e., elements in S, we use a specific font. For
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example, HTTPReq and HTTPResp are strings. We denote by

Doms ⊆ S the set of domains, e.g., www.example.com ∈
Doms. We denote by Methods ⊆ S the set of methods used

in HTTP requests, e.g., GET, POST ∈ Methods.
The equational theory associated with the signature

Σ is given as follows: deca(enca(x, pub(y)), y) = x,
decs(encs(x, y), y) = x, checksig(sig(x, y), pub(y)) = �,

extractmsg(sig(x, y)) = x, and πi(〈x1, . . . , xn〉) = xi for

1 ≤ i ≤ n. By ≡ we denote the congruence relation on

TN (X) induced by this theory. For example, we have that

π1(deca(enca(〈a, b〉, pub(k)), k)) ≡ a.

An event (over IPs and M ) is of the form (a:f :m), for
a, f ∈ IPs and m ∈ M , where a is interpreted to be the

receiver address and f is the sender address. We denote by

E the set of all events.

Atomic Processes, Systems and Runs: We now define

atomic processes, systems, and runs of systems.

An atomic process takes its current state and an event as

input, and then (non-deterministically) outputs a new state

and a set of events.

Definition 1. A (generic) atomic process is a tuple p =
(Ip, Zp, Rp, sp0) where Ip ⊆ IPs, Zp is a set of states, Rp ⊆
(E ×Zp)× (2E ×Zp), and sp0 ∈ Zp is the initial state of p.
We write (e, z)R(E, z′) instead of ((e, z), (E, z′)) ∈ R.

A system P is a (possibly infinite) set of atomic processes.

In order to define a run of a system, we first define

configurations and processing steps.

A configuration of a system P is a tuple (S,E) where

S maps every atomic process p ∈ P to its current state

S(p) ∈ Zp and E is a (possibly infinite) multi-set of events

waiting to be delivered.

A processing step of the system P is of the form

(S,E)−→(S′, E′) such that there exist e = (a:f :m) ∈ E,

Eout ⊆ E′, and p ∈ P with (e, S(p))Rp(Eout, S
′(p)), a ∈ Ip,

S′(p′) = S(p′) for all p′ �= p, and E′ = (E \ {e}) ∪ Eout

(multi-set operations).

Definition 2. Let P be a system and E0 be a multi-set
of events. A run ρ of a system P initiated by E0 is a
finite sequence of configurations (S0, E0), . . . , (Sn, En) or
an infinite sequence of configurations (S0, E0), . . . such that
S0(p) = sp0 for all p ∈ P and (Si, Ei) −→ (Si+1, Ei+1) for
all 0 ≤ i < n (finite run) or for all i ≥ 0 (infinite run).

Atomic Dolev-Yao Processes: We next define atomic

Dolev-Yao processes, for which we require that the messages

and states that they output can be computed (more formally,

derived) from the current input event and state. For this

purpose, we first define what it means to derive a message

from given messages.

Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈
TN . Then, by τ [t1/x1, . . . , tn/xn] we denote the (ground)

term obtained from τ by replacing all occurrences of xi

in τ by ti, for all i ∈ {1, . . . , n}. Let M ⊆ M be

a set of messages. We say that a message m can be
derived from M with nonces N if there exist n ≥ 0,
m1, . . . ,mn ∈ M , and τ ∈ TN ({x1, . . . , xn}) such that

m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by dN (M) the set

of all messages that can be derived from M with nonces N .

For example, a ∈ d{k}({enca(〈a, b, c〉, pub(k))}).
Definition 3. An atomic Dolev-Yao process (or simply, a

DY process) is a tuple p = (Ip, Zp, Rp, sp0, N
p) such that

(Ip, Zp, Rp, sp0) is an atomic process and (1) Np ⊆ N is an
(initial) set of nonces, (2) Zp ⊆ TN (and hence, sp0 ∈ TN ),
and (3) for all a, a′, f , f ′ ∈ IPs, m, m′, s, s′ ∈ TN , set
of events E with ((a:f :m), s)R(E, s′) and (a′:f ′:m′) ∈ E
it holds true that m′, s′ ∈ dN ({m, s}). (Note that a′, f ′ ∈
dN ({m, s}).)

In the rest of this paper, we will only consider DY

processes and assume different DY processes to have disjoint

initial sets of nonces.

We define a specific DY process, called an attacker process,

which records all messages it receives and outputs all

messages it can possibly derive from its recorded messages.

Hence, an attacker process is the maximally powerful DY

process. It can carry out all attacks any DY process could

possibly perform. The attacker process is parametrized by

the set of sender addresses it may use.

Definition 4. An (atomic) attacker process for a set of

sender addresses A ⊆ IPs is an atomic DY process p =
(I, Z,R, s0, N) such that for all a, f ∈ IPs, m ∈ TN ,
and s ∈ Z we have that ((a:f :m), s)R(E, s′) iff s′ =
〈〈a, f,m〉, s〉 and E = {(a′:f ′:m′) | a′ ∈ IPs, f ′ ∈ A,
m′ ∈ dN ({m, s})}.

III. OUR WEB MODEL

We now present our web model. We formalize the web

infrastructure and web applications by what we call a web

system. A web system, among others, contains a (possibly

infinite) set of DY processes, which model web browsers,

web servers, DNS servers as well as web and network

attackers.

As already mentioned in the introduction, the model

has been carefully designed, closely following published

(de-facto) standards, for instance, the HTTP/1.1 standard,

associated (proposed) standards (mainly RFCs), and the

HTML5 W3C candidate recommendation. We also checked

these standards against the actual implementations (primarily,

Chromium and Firefox).

A. Web System

Before we can define a web system, we define scripting

processes, which model client-side scripting technologies,

such as JavaScript, in our browser model. Scripting processes

are defined similarly to DY processes.
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Definition 5. A scripting process (or simply, a script) is a
relation R ⊆ (TN × 2N )× TN such that for all s, s′ ∈ TN
and N ⊆ N with (s,N)Rs′ it follows that s′ ∈ dN (s).

A script is called by the browser which provides it with

a (fresh, infinite) set N of nonces and state information s.
The script then outputs a term s′, which represents the new

internal state and some command which is interpreted by

the browser (see Section III-D for details).

Similarly to an attacker process, we define the attacker
script Ratt. This script outputs everything that is derivable

from the input, i.e., Ratt = {((s,N), s′) | s ∈ TN , N ⊆
N , s′ ∈ dN (s)}.

We can now define web systems, where we distinguish

between web and network attackers. Unlike web attackers,

network attackers can listen to addresses of other parties

and can spoof the sender address, i.e., they can control the

network. Typically, a web system has either one network

attacker or one or more web attackers, as network attackers

subsume all web attackers. As we will see later, web and

network attacks may corrupt other entities, such as browsers.

Definition 6. A web system WS = (W , S , script, E0) is a
tuple with its components defined as follows:

The first component, W , denotes a system (a set of DY
processes) and is partitioned into the sets Hon, Web, and
Net of honest, web attacker, and network attacker processes,
respectively. We require that all DY processes in W have
disjoint sets of nonces, i.e., Np ∩Np′

= ∅ for every distinct
p, p′ ∈ W .

Every p ∈Web ∪Net is an attacker process for some set
of sender addresses A ⊆ IPs. For a web attacker p ∈Web,
we require its set of addresses Ip to be disjoint from the set
of addresses of all other web attackers and honest processes,
i.e., Ip ∩ Ip

′
= ∅ for all p′ ∈ Hon ∪Web. Hence, a web

attacker cannot listen to traffic intended for other processes.
Also, we require that A = Ip, i.e., a web attacker can only
use sender addresses it owns. Conversely, a network attacker
may listen to all addresses (i.e., no restrictions on Ip) and
may spoof all addresses (i.e., the set A may be IPs).

Every p ∈ Hon is a DY process which models either a web

server, a web browser, or a DNS server, as further described
in the following subsections. Just as for web attackers, we
require that p does not spoof sender addresses and that its
set of addresses Ip is disjoint from those of other honest
processes and the web attackers.

The second component, S , is a finite set of scripts such
that Ratt ∈ S . The third component, script, is an injective
mapping from S to S, i.e., by script every s ∈ S is assigned
its string representation script(s).

Finally, E0 is a multi-set of events, containing an infinite
number of events of the form (a:a:TRIGGER) for every a ∈⋃

p∈W Ip.
A run of WS is a run of W initiated by E0.

In the definition above, the multi-set E0 of initial events

contains for every process and address an infinite number of

TRIGGER messages in order to make sure that every process

in W can be triggered arbitrarily often. In particular, by this

it is guaranteed that an adversary (a dishonest server/browser)

can be triggered arbitrarily often. Also, we use trigger events

to model that an honest browser takes an action triggered

by a user, who might, for example, enter a URL or click on

some link.

The set S \ {Ratt} specified in a web system as defined

above is meant to describe the set of honest scripts used

in the considered web application. These scripts are those

sent out by an honest web server to a browser as part

of a web application. In real web applications, possibly

several dynamically loaded scripts may run in one document.

However, if these scripts originate from honest sites, their

composition can be considered to be one honest script (which

is loaded right from the start into the document). In this

sense, every script in S \ {Ratt} models an honest script

or a combination of such scripts in a web application. (In

our case study, the combination is illustrated by the script

running in RP-Doc.)

We model the situation where some malicious script was

loaded into a document by the “worst-case” scenario, i.e., we

allow such a script to be the script Ratt. This script subsumes

everything any malicious (and honest) script can do.

We emphasize that script representations being modeled

as strings are public information, i.e., any server or attacker

is free to send out the string representation for any script.

Since we do not model client-side or server-side language

details, and hence details such as correct escaping of user

input, we cannot analyze whether a server application

(say, written in PHP) is vulnerable to Cross-Site-Scripting.

However, we can model the effects of Cross-Site-Scripting

by letting the (model of the) server output the script Ratt,

say, if it receives certain malicious input.

In the following subsections, (honest) DNS servers and

web browsers are modeled as DY processes, including the

modeling of HTTP messages. We also discuss the modeling

of web servers.

B. DNS Servers

For the sake of brevity, in this paper we consider a flat

DNS model in which DNS queries are answered directly

by one DNS server and always with the same address for

a domain. A full (hierarchical) DNS system with recursive

DNS resolution, DNS caches, etc. could also be modeled to

cover certain attacks on the DNS system itself.

A DNS server d (in a flat DNS model) is modeled in a

straightforward way as a DY process (Id, {sd0}, Rd, sd0, N
d).

It has a finite set of addresses Id and its initial (and only)

state sd0 encodes a mapping from domain names to ad-

dresses of the form sd0=〈〈domain1, a1〉, 〈domain2, a2〉, . . .〉.
DNS queries are answered according to this table. DNS
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Algorithm 1 Relation of a DNS server Rd

Input: (a:f :m), s
1: let domain , n such that 〈DNSResolve, domain, n〉 ≡ m if

possible; otherwise stop {}, s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := 〈DNSResolved, addr , n〉
5: stop {(f :a:m′)}, s
6: stop {}, s

queries have the following form, illustrated by an example:

〈DNSResolve, example.com, n〉, where example.com is the

domain name to be resolved and n is a nonce representing

the random query ID and UDP source port number selected

by the sender of the query. The corresponding response is

of the form 〈DNSResolved, a, n〉, where a ∈ IPs is the IP

address of the queried domain name and n is the nonce from

the query.

In Algorithm 1, we specify the relation Rd ⊆ (E×{sd0})×
(2E ×{sd0}) of the DNS server d precisely, where stop E, s
means that the process stops its execution at this point, that s
is the new state of the process, and that it outputs all events

in the set E. First, it is checked whether the input message m
is a sequence of the form 〈DNSResolve, domain, n〉; if not,
the process stops without changing the state and producing

output. Then, it is checked whether domain is recorded in

s. If so, the corresponding address, denoted by s[domain],
is retrieved from s. Finally, the corresponding response

message m′ is constructed and this message is output as

event (f :a:m′), with the state of d being unchanged.

C. HTTP Messages

In order to model web browsers and servers, we first need

to model HTTP requests and responses.

HTTP requests and responses are encoded as messages

(ground terms). An HTTP request (modeled as a message)

contains a nonce, a method (for example, GET or POST),

a domain name, a path, URL parameters, request headers

(such as Cookie or Origin), and a message body.

For example, an HTTP GET request for the URL http:

//example.com/show?page=1 is modeled as the term r :=
〈HTTPReq, n1, GET, example.com, /show, 〈〈page, 1〉〉, 〈〉,〈〉〉,
where body and headers are empty. A web server that

responds to this request is supposed to include the nonce

n1 contained in r in the response so that the browser can

match the request to the corresponding response. More

specifically, an HTTP response (modeled as a message)

contains a nonce (matching the request), a status code (e.g.,

200 for a normal successful response), response headers

(such as Set-Cookie and Location), and a body. For

example, a response to r could be s := 〈HTTPResp, n1,
200, 〈〈Set-Cookie, 〈SID, 〈n2,⊥,�,⊥〉〉〉〉, 〈script1, n3〉〉,
where s contains (1) in the headers section, a cookie with

the name SID, the value n2, and the attributes secure

and httpOnly not set but the attribute session set (see

Section III-D for details on cookies) and (2) in the body

section, the string representation script1 of the scripting

process script−1(script1) (which should be an element of

S ) and its initial state n3.

For the HTTP request and response in the above examples,

the corresponding HTTPS request would be of the form

enca(〈r, k′〉, pub(kexample.com)) and the response of the form

encs(s, k
′) where k′ is a fresh symmetric key (a nonce)

which is typically generated by the sender of the request.

The responder is supposed to use this key to encrypt the

response.

D. Web Browsers

We think of an honest browser to be used by one honest

user. However, we also allow browsers to be taken over by

attackers. The honest user is modeled as part of the web

browser model. Actions a user takes are modeled as non-

deterministic actions of the web browser. For example, the

web browser itself can non-deterministically follow the links

provided by a web page. Secrets, such as passwords, typically

provided by the user are stored in the initial state of a browser

and are given to a web page when needed, similar to the

AutoFill function in browsers (see below).

A web browser p is modeled as a DY process (Ip, Zp,
Rp, sp0, N

p) where Ip ⊆ IPs is a finite set and Np ⊆ N is an

infinite set. The set of states Zp, the initial state sp0, and the

relation Rp are defined below (Sections III-D1 and III-D2).

In the full version of this paper [14], Rp is formally defined

as a (non-deterministic) algorithm in the style of Algorithm 1.

1) Browser State (Zp and sp0): The set Zp of states of a

browser consists of terms of the form

〈windows , secrets, cookies, localStorage,
sessionStorage, keyMapping , sts,DNSaddress ,

nonces, pendingDNS , pendingRequests, isCorrupted〉.
Windows and documents. The most important part of the

state are windows and documents, both stored in the subterm

windows . A browser may have a number of windows open

at any time (resembling the tabs in a real browser). Each

window contains a list of documents of which one is “active”.

Being active means that this document is currently presented

to the user and is available for interaction, similarly to

the definition of active documents in the HTML5 specifi-

cation [18]. The document list of a window represents the

history of visited web pages in that window. A window may

be navigated forward and backward (modeling forward and

back buttons). This deactivates one document and activates

its successor or predecessor.

A document is specified by a term which essentially

contains (the string representing) a script, the current state

of the script, the input that the script obtained so far

(from XHRs and postMessages), the origin (domain name
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plus HTTP or HTTPS) of the document, and a list of

windows (called subwindows), which correspond to iframes

embedded in the document, resulting in a tree of windows

and documents. The (single) script is meant to model the

static HTML code, including, for example, links and forms,

and possibly multiple JavaScript code parts. When called by

the browser, a script essentially outputs a command which

is then interpreted by the browser, such as following a link,

creating an iframe, or issuing an XHR. In particular, a script

can represent a plain HTML document consisting merely of

links, say: when called by the browser such a script would

non-deterministically choose such a link and output it to the

browser, which would then load the corresponding web page

(see below for details).

We use the terms top-level window (a window which is not

a subwindow itself), parent window (the window of which

the current window is a direct subwindow) and ancestor
window (some window of which the current window is a not

necessarily direct subwindow) to describe the relationships

in a tree of windows and documents.

A term describing a window or a document also contains a

unique nonce, which we refer to by reference. This reference

is used to match HTTP responses to the corresponding

windows and documents from which they originate (see

below).

Top-level windows may have been opened by another

window. In this case, the term of the opened window contains

a reference to the window by which it was opened (the

opener). Following the HTML5 standard, we call such a

window an auxiliary window. Note that auxiliary windows

are always top-level windows.

We call a window active if it is a top-level window or if it

is a subwindow of an active document in an active window.

Note that the active documents in all active windows are

exactly those documents a user can currently see/interact

with in the browser.

The following is an example of a window term with

reference n1, two documents, and an opener (n4):

〈n1,〈〈n2,〈example.com, P〉, script1, 〈〉, 〈〉, 〈〉,⊥〉,
〈n3,〈example.com, S〉, script2, 〈〉, 〈〉, 〈〉,�〉〉, n4〉

The first document has reference n2. It was loaded from

the origin 〈example.com, P〉, which translates into http:

//example.com. Its scripting process has the string represen-

tation script1, the last state and the input history of this

process are empty. The document does not have subwindows

and is inactive (⊥). The second document has the reference

n3, its origin corresponds to https://example.com, the script-

ing process is represented by script2, and the document

is active (�). All other components are empty.

Secrets. This subterm of the state term of a browser holds

the secrets of the user of the web browser. Secrets (such

as passwords) are modeled as nonces and they are indexed

by origins. Secrets are only released to documents (scripts)

with the corresponding origin, similarly to the AutoFill

mechanism in browsers.

Cookies, localStorage, and sessionStorage. These subterms

contain the cookies (indexed by domains), localStorage

data (indexed by origins), and sessionStorage data (indexed

by origins and top-level window references) stored in the

browser. Cookies are stored together with their secure,

httpOnly, and session attributes: If secure is set, the

cookie is only delivered to HTTPS origins. If httpOnly

is set, the cookie cannot be accessed by JavaScript (the

script). According to the proposed standard RFC6265 (which

we follow in our model) and the majority of the existing

implementations, cookies that neither have the (real) “max-

age” nor the “expires” attribute should be deleted by the

browser when the session ends (usually when the browser

is closed). In our model, such cookies carry the session

attribute.

KeyMapping. This term is our equivalent to a certificate

authority (CA) certificate store in the browser. Since, for

simplicity, we currently do not formalize CAs in the model,

this term simply encodes a mapping assigning domains d ∈
Doms to their respective public keys pub(kd).

STS. Domains that are listed in this term are contacted by the

web browser only over HTTPS. Connection attempts over

HTTP are transparently rewritten to HTTPS requests. Web

sites can issue the Strict-Transport-Security header to

clients in order to add their domain to this list, see below.

DNSaddress. This term contains the address of the DY

process that is to be contacted for DNS requests; typically

a DNS server.

Nonces, pendingDNS, and pendingRequests. These terms

are used for bookkeeping purposes, recording the nonces that

have been used by the browser so far, the HTTP requests

that await successful DNS resolution, and HTTP requests

that await a response, respectively.

IsCorrupted. This term indicates whether the browser is

corrupted ( �= ⊥) or not (= ⊥). A corrupted browser behaves

like a web attacker (see Section III-D2).

Initial state sp0 of a web browser. In the initial state,

keyMapping , DNSAddress , and secrets are defined as

needed, isCorrupted is set to ⊥, and all other subterms

are 〈〉.
2) Web Browser Relation Rp: Before we define the

relation Rp, we first sketch the processing of HTTP(S)

requests and responses by a web browser, and also provide

some intuition about the corruption of browsers.

HTTP(S) Requests and Responses. An HTTP request,

contains, as mentioned before, a nonce created by the

browser. In the example in Section III-C, this nonce is n1.

A server is supposed to include this nonce into its HTTP

response. By this, the browser can match the response to the

request (a real web browser would use the TCP sequence

number for this purpose). If a browser wants to send an
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HTTP request, it first resolves the domain name to an IP

address. (For simplicity, we do not model DNS response

caching.) It therefore first records the HTTP request in

pendingDNS along with the reference of the window (in the

case of HTTP(S) requests) or the reference of the document1

(in the case of XHRs) from which the request originated and

then sends a DNS request. Upon receipt of the corresponding

DNS response it sends the HTTP request and stores it (again

along with the reference as well as the server address) in

pendingRequests . Before sending the HTTP request, the

cookies stored in the browser for the domain of the request

are added as cookie headers to the request. Cookies with

attribute secure are only added for HTTPS requests. If

an HTTP response arrives, the browser uses the nonce in

this response to match it with the recorded corresponding

HTTP request (if any) and checks whether the address of

the sender is as expected. The reference recorded along with

the request then determines to which window/document the

response belongs. The further processing of a response is

described below.

We note that before HTTPS requests are sent out, a

fresh symmetric key (a nonce) is generated and added to

the request by the browser. The resulting message is then

encrypted using the public key corresponding to the domain

in the request (according to keyMapping). The symmetric

key is recorded along with the request in pendingRequests .
The response is, as mentioned, supposed to be encrypted

with this symmetric key.

Corruption of Browsers. We model two types of corruption

of browsers, namely full corruption and close-corruption,
which are triggered by special network messages in our

model. In the real world, an attacker can exploit buffer

overflows in web browsers, compromise operating systems

(e.g., using trojan horses), and physically take control over

shared terminals.

Full corruption models an attacker that gained full control

over a web browser and its user. Besides modeling a

compromised system, full corruption can also serve as a

vehicle for the attacker to participate in a protocol using

secrets of honest browsers: In our case study (Section V),

the attacker starts with no user secrets in its knowledge, but

may fully corrupt any number of browsers, so, in particular,

he is able to impersonate browsers/users.

Close-corruption models a browser that is taken over by

the attacker after a user finished her browsing session, i.e.,

after closing all windows of the browser. This form of

corruption is relevant in situations where one browser can be

used by many people, e.g., in an Internet café. Information

left in the browser state after closing the browser could be

misused by malicious users.

1As we will see later, in the case of XHRs this reference is actually
a sequence of two elements, a document reference and a nonce that was
chosen by the script that issued the XHR. For now, we will refer to this
sequence simply as the document reference.

PROCESSING INPUT MESSAGE m
m = FULLCORRUPT: isCorrupted := FULLCORRUPT
m = CLOSECORRUPT: isCorrupted := CLOSECORRUPT
m = TRIGGER: non-det. choose action from {1, 2}
action = 1: Call script of some active document. Outputs

new state and command cmd.
cmd = HREF: → Initiate request
cmd = IFRAME: Create subwindow, → Initiate request
cmd = FORM: → Initiate request
cmd = SETSCRIPT: Change script in given document.
cmd = SETSCRIPTSTATE: Change state of script in

given document.
cmd = XMLHTTPREQUEST: → Initiate request
cmd = BACK or FORWARD: Navigate given window.
cmd = CLOSE: Close given window.
cmd = POSTMESSAGE: Send postMessage to specified

document.
action = 2: → Initiate request to some URL in new

window
m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s

script input

Figure 1. The basic structure of the web browser relation Rp with
an extract of the most important processing steps, in the case that
isCorrupted = ⊥.

The Relation Rp. To define Rp, we need to specify, given

the current state of the browser and an input message m,

the new state of the browser and the set of events output by

the browser. Figure 1 provides an overview of the structure

of the following definition of Rp. The input message m is

expected to be FULLCORRUPT, CLOSECORRUPT, TRIGGER, a

DNS response, or an HTTP(S) response.

If isCorrupted �= ⊥ (browser is corrupted), the browser,

just like an attacker process, simply adds m to its current

state, and then outputs all events it can derive from its state.

Once corrupted, the browser stays corrupted. Otherwise, if

isCorrupted = ⊥, on input m the browser behaves as

follows.

m = FULLCORRUPT: If the browser receives this message,

it sets isCorrupted to FULLCORRUPT. From then on the

browser is corrupted as described above, with the attacker

having full access to the browser’s internal state, including

all secrets.

m = CLOSECORRUPT: If the browser receives this message,

it first removes the user secrets, open windows and docu-

ments, all session cookies, all sessionStorage data, and all

pending requests from its current state; nonces used so far

by the browser may not be used any longer. LocalStorage

data and persistent cookies are not deleted. The browser then

sets isCorrupted to CLOSECORRUPT (and hence, from then

on is corrupted). As already mentioned, this models that the

browser is closed by a user and that then the browser is used

by another, potentially malicious user (an attacker), such as

in an Internet café.

m = TRIGGER: Upon receipt of this message, the browser
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non-deterministically chooses one of two actions: (1) trigger
a script or (2) request a new document.

m = TRIGGER, action = 1: Some active window

(possibly an iframe) is chosen non-deterministically. Then

the script of the active document of that window is triggered

(see below).

m = TRIGGER, action = 2: A new HTTP(S) GET request

(i.e., an HTTP(S) request with method GET) is created where

the URL is some message derivable from the current state of

the browser. However, nonces may not be used. This models

the user typing in a URL herself, but we do not allow her

to type in secrets, e.g., passwords or session tokens. A new

window is created to show the response. (HTTP requests to

domains listed in sts are automatically rewritten to HTTPS

requests).

m = DNS response: DNS responses are processed as al-

ready described above, resulting in sending the corresponding

HTTP(S) request (if any).

m = HTTP(S) response: The browser performs the steps

(I) to (IV) in this order.

(I) The browser identifies the corresponding HTTP(S)

request (if any), say q, and the window or document from

which q originated. (In case of HTTPS, the browser also

decrypts m using the recorded symmetric key.)

(II) If there is a Set-Cookie header in the response, its

content (name, value, and if present, the attributes httpOnly,

secure, session) is evaluated: The cookie’s name, value,

and attributes are saved in the browser’s list of cookies. If

a cookie with the same name already exists, the old values

and attributes are overwritten, as specified in RFC6265.

(III) If there is a Strict-Transport-Security header in

the response, the domain of q is added to the term sts . As

defined in RFC6797, all future requests to this domain, if

not already HTTPS requests, are automatically altered to use

HTTPS.

(IV) If there is a Location header (with some URL u) in

the response and the HTTP status code is 303 or 307, the

browser performs a redirection (unless it is a non-same-origin

redirect of an XHR) by issuing a new HTTP request to u,
retaining the body of the original request. Rewriting POST

to GET requests for 303 redirects and extending the origin

header value are handled as defined in RFC2616 and in the

W3C Cross-Origin Resource Sharing specification [12].

Otherwise, if no redirection is requested, the browser does

the following: If the request originated from a window, a

new document is created from the response body. For this,

the response body is expected to be a term of the form

〈sp, stat〉 where sp is a string such that script−1(sp) ∈ S
is a script and stat is a term used as its initial state. The

document is then added to the window the reference points

to, it becomes the active document, and the successor of the

currently active document. All previously existing successors

are removed. If the request originated from a document (and

hence, was the result of an XHR), the body of the response

is appended to the script input term of the document. When

later the script of this document is activated, it can read and

process the response.

Triggering the Script of a Document (m = TRIGGER,
action = 1). First, the script of the document is called

with the following input:

- all active windows2 and their active documents (with

limited information about non-same-origin documents),

- the last state and the input history (i.e., previous inputs

from postMessages and XHRs) of the script as recorded

in the document,

- cookies (names and values only) indexed with the

document’s domain, except for httpOnly cookies,

- localStorage data and secrets indexed with the docu-

ment’s origin, and

- sessionStorage data indexed with the document’s origin

and top-level window reference.

In addition, the script is given an infinite set of fresh nonces

from the browser’s set of (unused) nonces.

Now, given the above input, according to the definition of

scripts (Definition 5), the script outputs a term. The browser

expects terms of the form

〈state, cookies, localStorage, sessionStorage, cmd〉
(and otherwise ignores the output) where state is an

arbitrary term describing the new state of the script,

cookies is a sequence of name/value pairs, localStorage
and sessionStorage are arbitrary terms, and cmd is a term

which is interpreted as a command which is to be processed

by the browser. The old state of the script recorded in

the document is replaced by the new one (state), the

local/session storage recorded in the browser for the doc-

ument’s origin (and top-level window reference) is replaced

by localStorage/sessionStorage , and the old cookie store of

the document’s origin is updated using cookies similarly to

the case of HTTP(S) responses with cookie headers, except

that now no httpOnly cookies can be set or replaced, as

defined by the HTML5 standard [18] and RFC6265.

Subsequently, cmd (if not empty) is interpreted by the

browser, as described briefly next. We note that commands

may contain parameters.

cmd = HREF (parameters: URL u, window reference w):

A new GET request to u is initiated. If w is _BLANK, the

response to the request will be shown in a new auxiliary
window. Otherwise, if w is not _BLANK, the window with

reference w is navigated (upon receipt of the response and

only if it is active) to the given URL. Navigation is subject

2Note that we overapproximate here: In real-world browsers, only a
limited set of window handles are available to a script. Our approach is
motivated by the fact that in some cases windows can be navigated by
names (without a handle). However, as we will see, specific restrictions for
navigating windows and accessing/changing their data apply.
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to several restrictions.3

cmd = IFRAME: Similar to HREF, but opens the document in

a new subwindow of the given window (when same origin).

cmd = FORM: Similar to HREF, but allows for methods

other than GET and request body data. For this request, an

Origin header is set if the method is POST. Its value is the

origin of the document.

cmd = SETSCRIPT, SETSCRIPTSTATE, BACK, FORWARD,
CLOSE: These commands change the browser’s state such

that the script (state) in a document is changed or the window

is navigated back/forward or closed (if the document is same

origin or the window is navigable, respectively).

cmd = XMLHTTPREQUEST (parameters: URL u, method

md , data d, nonce xhrreference): Initiate a request with

method md and data d for u, if u is same origin. The

reference (for pendingRequests) used for this request is

〈r, xhrreference〉, where r is the reference of the script’s

document and xhrreference is a nonce chosen by the script

(for later correlation). The Origin header is set as in the

case of FORM.

cmd = POSTMESSAGE (parameter: message msg , window

reference w, origin o): msg , the origin of the sending

document, and a reference to its window are appended to the

input history of the active document in w if that document’s

origin matches o or if o = ⊥.

E. Web Servers

While the modeling of DNS servers and browsers is

independent of specific web applications, and hence, forms

the core of the model of the web infrastructure, the modeling

of a web server heavily depends on the specific web

application under consideration. Conversely, the model of

a specific web application is determined by the model of the

web server. We therefore do not and cannot fix a model for

web servers at this point. Such a model should be provided

as part of the analysis of a specific web application, as

illustrated by our case study (see Section IV and following).

F. Limitations

We now briefly discuss main limitations of the model. As

will be illustrated by our case study, our model is formulated

on a level of abstraction that is suitable to capture many

security relevant features of the web, and hence, a relevant

class of attacks. However, as with all models, certain attacks

are out of the scope of our model. For example, as already

mentioned, we currently cannot reason about language details

(e.g., how two JavaScripts running in the same document

interact). Also, we currently do not model user interface

details, such as frames that may overlap in Clickjacking

3We follow the rules defined in [18]: A window A can navigate a
window B if the active documents of both are same origin, or B is an
ancestor window of A and B is a top-level window, or if there is an
ancestor window of B whose active document has the same origin as the
active document of A (including A itself). Also, A may navigate B if B
is an auxiliary window and A is allowed to navigate the opener of B.

attacks. Being a Dolev-Yao-style model, our model clearly

does not aim at lower-level cryptographic attacks. Also, byte-

level attacks, such as buffer overflows, are out of scope.

IV. THE BROWSERID SYSTEM

BrowserID [23] is a new decentralized single sign-on

(SSO) system developed by Mozilla for user authentication

on web sites. It is a complex full-fledged web application

deployed in practice, with currently ∼47k LOC (excluding

code for Sideshow/BigTent, see below, and some libraries).

It allows web sites to delegate user authentication to email

providers, where users use their email addresses as identities.

The BrowserID implementation makes use of a broad variety

of browser features, such as XHRs, postMessage, local- and

sessionStorage, cookies, etc.

We first, in Section IV-A, provide a high-level overview

of the BrowserID system. A more detailed description of the

BrowserID implementation is then given in Sections IV-B

to IV-D.

A. Overview

The BrowserID system knows three distinct parties: the

user, which wants to authenticate herself using a browser, the

relying party (RP) to which the user wants to authenticate

(log in) with one of her email addresses (say, user@eyedee.

me), and the identity/email address provider IdP. If the email

provider (eyedee.me) supports BrowserID directly, it is called

a primary IdP. Otherwise, a Mozilla-provided service, a so-

called secondary IdP, takes the role of the IdP. In what

follows, we describe the case of a primary IdP, with more

information on secondary IdPs given in Section IV-D.

A primary IdP provides information about its BrowserID

setup in a so-called support document, which it provides at

a fixed URL derivable from the email domain, e.g., https:

//eyedee.me/.well-known/browserid.

A user who wants to log in at an RP with an email

address for some IdP has to present two signed documents:

A user certificate (UC) and an identity assertion (IA). The

UC contains the user’s email address and a public key. It

is signed by the IdP. The IA contains the origin of the

RP and is signed with the private key corresponding to the

user’s public key. Both documents have a limited validity

period. A pair consisting of a UC and a matching IA is

called a certificate assertion pair (CAP) or a backed identity
assertion. Intuitively, the UC in the CAP tells the RP that

(the IdP certified that) the owner of the email address is (or

at least claimed to be) the owner of the public key. By the

IA contained in the CAP, the RP is ensured that the owner

of the given public key wants to log in. Altogether, given

a valid CAP, RP would consider the user (with the email

address mentioned in the CAP) to be logged in.

The BrowserID authentication process (with a primary

IdP) consists of three phases (see Figure 2 for an overview):
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RP Browser IdP

A gen. key pair

B pkb, email

C create UC

D UC

E gen. IA

F CAP

G pkIdP

H verify CAP

I

II

III

Figure 2. BrowserID authentication: basic overview

I provisioning of the UC, II CAP creation, and III

verification of the CAP.

In Phase I , the (browser of the) user creates a public/pri-

vate key pair A . She then sends her public key as well as

the email address she wants to use to log in at some RP to

IdP B . IdP now creates the UC C , which is then sent to the

user D . The above requires the user to be logged in at IdP.

With the user having received the UC, Phase II can start.

The user wants to authenticate to an RP, so she creates the

IA E . The UC and the IA are concatenated to a CAP, which

is then sent to the RP F .

In Phase III , the RP checks the authenticity of the CAP.

For this purpose, the RP could use an external verification

service provided by Mozilla or check the CAP itself as

follows: First, the RP fetches the public key of IdP G , which

is contained in the support document. Afterwards, the RP

checks the signatures of the UC and the IA H . If this check

is successful, the RP can, as mentioned before, consider the

user to be logged in with the given email address and send

her some token (e.g., a session ID), which we refer to as an

RP service token.

B. Implementation Details

We now provide a more detailed description of the

BrowserID implementation (see also Figure 3). Since the

system is very complex, with many HTTPS requests, XHRs,

and postMessages sent between different entities (servers

as well as windows and iframes within the browser), we

here describe mainly the phases of the login process without

explaining every single message exchange done in the

implementation.

In addition to the parties mentioned in the rough overview

in Section IV-A, the actual implementation uses another

party, login.persona.org (LPO). The role of LPO is as follows:

First, LPO provides the HTML and JavaScript files of

the implementation. Thus, the BrowserID implementation

LPO IdP RP-Doc

LD

PIF

/PIF

/LD

i

ii

iii

iv

v

vi

vii

1 open

2 GET LD

3 ready

4 request
5 GET session_context

6 email address
7 GET address_info

8 GET wk

9

10 create

11 GET PIF

12 PMs

13 close

14 auth IdP

repeat i

re
p
ea
t

ii

PIF

15 gen. key pair

16 pkb, email

17 pkb, email

18 create UC
19 UC

20 UC

/PIF

21 gen. IALPO

22 POST auth_with_assertion (CAPLPO)

23 GET list_emails

24 GET address_info

25 gen. IARP

26 response (CAPRP)

27 close

Browser

Figure 3. BrowserID implementation overview. Black arrows (open
tips) denote HTTPS messages, blue arrows (filled tips) denote XHRs
(over HTTPS), red (dashed) arrows are postMessages, snake lines
are commands to the browser.

mainly runs under the origin of LPO.4 When the JavaScript

implementation running in the browser under the origin of

LPO needs to retrieve information from the IdP (support

document), LPO acts as a proxy to circumvent cross-origin

restrictions.

Before explaining the login process, we provide a quick

overview of the windows and iframes in the browser. By

RP-Doc we denote the window (see Figure 3) containing

the document loaded from some RP, a web page on which

the user wants to log in with an email address of some

IdP. This document typically includes JavaScript from LPO

4It is envisioned by Mozilla to integrate the part of LPO directly into
the browser in the future.
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and contains a button “Login with BrowserID”. (Loading of

RP-Doc from the RP and the JavaScript from LPO is not

depicted in Figure 3). The LPO JavaScript running in RP-
Doc opens an auxiliary window called the login dialog (LD).

Its content is provided by LPO and it handles the interaction

with the user. During the login process, a temporary invisible

iframe called the provisioning iframe (PIF) can be created

in the LD. The PIF is loaded from IdP. It is used by LD to

communicate (cross-origin) with IdP. Temporarily, the LD

may navigate itself to a web page at IdP to allow for direct

user interaction with the IdP.

Now, in order to describe the login process, for the time

being we assume that the user uses a “fresh” browser, i.e.,

the user has not been logged in before. As mentioned, the

process starts by the user visiting a web site of some RP.

After the user has clicked on the login button in RP-Doc, the

LD is opened and the interactive login flow is started. We

can divide this login flow into seven phases: In Phase i ,

the LD is initialized and the user is prompted to provide

her email address. Then LD fetches the support document

(see Section IV-A) of IdP via LPO. In Phase ii , LD creates

the PIF from the provisioning URL provided in the support

document. As (by our assumption) the user is not logged in

yet, the PIF notifies LD that the user is not authenticated

to IdP yet. In Phase iii , LD navigates itself away to the

authentication URL which is also provided in the support

document and links to IdP. Usually, this document will

show a login form in which the user enters her password to

authenticate to the IdP. After the user has been authenticated

to IdP (which typically implies that IdP sets a session cookie

in the browser), the window is navigated to LPO again. (This

is done by JavaScript loaded from LPO that the IdP document

is supposed to include.)

Now, the login flow continues in Phase iv , which basically

repeats Phase i . However, the user is not prompted for

her email address (it has previously been saved in the

localStorage under the origin of LPO along with a nonce,

where the nonce is stored in the sessionStorage). In Phase v ,

which basically repeats Phase ii , the PIF detects that the

user is now authenticated to IdP and the provisioning phase

is started ( I in Figure 2): The user’s keys are created by

LD and stored in the localStorage under the origin of LPO.

The PIF forwards the certification request to IdP, which then

creates the UC and sends it back to the PIF. The PIF in turn

forwards it to the LD, which stores it in the localStorage

under the origin of LPO.

In Phases vi and vii , mainly the IA is generated by LD for

the origin of RP-Doc and sent (together with the UC) to RP-

Doc ( II in Figure 2). In the localStorage, LD stores that the

user’s email is logged in at RP. Moreover, the user’s email

is recorded at LPO (see the explanation on LPO Sessions

below). For this purpose, LD generates an IA for the origin

of LPO and sends the UC and IA to LPO.

LPO Session. LPO establishes a session with the browser

by setting a cookie browserid_state (in Step 5 in

Figure 3) on the client-side. LPO considers such a session

authenticated after having received a valid CAP (in Step 22

in Figure 3). In future runs, the user is presented a list of

her email addresses (which is fetched from LPO) in order

to choose one address. Then, she is asked if she trusts the

computer she is using and is given the option to be logged in

for one month or “for this session only” (ephemeral session).
In order to use any of the email addresses, the user is required

to authenticate to the IdP responsible for that address to get

an UC issued. If the localStorage (under the origin LPO)

already contains a valid UC, then, however, authentication

at the IdP is not necessary.

Automatic CAP Creation. In addition to the interactive

login presented above, BrowserID also contains an automatic,

non-interactive way for RPs to obtain a freshly generated

CAP: During initialization of the BrowserID code included

by RP-Doc, an invisible iframe called the communication
iframe (CIF) is created inside RP-Doc. The CIF’s JavaScript

is loaded from LPO and behaves similar to LD, but without

user interaction. The CIF automatically issues a fresh CAP

and sends it to RP-Doc under specific conditions: among

others, the email address must be marked as logged in at RP

in the localStorage. If necessary, a new key pair is created

and a corresponding new UC is requested at IdP.

Logout. We have to differentiate between three ways of

logging out: an RP logout, an LPO logout, and an IdP logout.

An RP logout is handled by the CIF after it has received

a logout postMessage from RP-Doc. The CIF then changes

the localStorage such that no email address is recorded to

be logged in at RP.

An LPO logout essentially requires to logout at the web

site of LPO. The LPO logout removes all key pairs and

certificates from the localStorage and invalidates the session

on the LPO server.

An IdP logout depends on the IdP implementation and

usually cancels the user’s session with IdP. This entails

that IdP will not issue new UCs for the user without re-

authentication.

C. Sideshow and BigTent

Since several email providers, such as gmail.com and

yahoo.com, already use OpenID [24], a widely employed

SSO system, Mozilla implemented IdPs called Sideshow

and BigTent which use an OpenID backend for user au-

thentication: Sideshow/BigTent are put between BrowserID

and an email provider running OpenID. That is, BrowserID

uses Sideshow/BigTent as an IdP. Sideshow/BigTent translate

requests from BrowserID to requests to the email provider’s

OpenID interface. Currently, Sideshow and BigTent are used

to provide BrowserID support for gmail.com and yahoo.com,

respectively. In what follows, we describe Sideshow in more

detail; BigTent is similar.
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All BrowserID protocol steps that would normally be

carried out by the IdP are now handled by Sideshow (i.e.,

the Sideshow server). For this purpose, Sideshow serves the

provisioning URL (for the PIF) and the authentication URL

used in iii . It maintains a session with the user’s browser.

This session is considered to be authenticated if the user

has successfully authenticated to Sideshow using OpenID.

In this case, Sideshow’s PIF document may send public keys

to Sideshow. Sideshow then creates a UC for the identity it

believes to be logged in. If the session at Sideshow is not

authenticated, the user will first be redirected to the Sideshow

authentication URL. Sideshow’s authentication document

will redirect the user further to the OpenID URL at Gmail.

This URL contains an authentication request encoding that

Sideshow requests an OpenID assertion that contains an

email address. In general, such an assertion is a list of

attribute name/value pairs (partially) MACed by Gmail with a

temporary symmetric key known only to Gmail; an additional

attribute, openid.signed, in such an assertion encodes

which attribute name/value pairs have actually been MACed

and in which order. The user now authenticates to Gmail.

Then, Gmail issues the requested OpenID assertion and

redirects the browser to Sideshow with the assertion in the

URL parameters. Sideshow then sends the OpenID assertion

to Gmail in order to check its validity. If the OpenID

assertion is valid, i.e. the MAC over the attributes listed in

openid.signed verifies, Sideshow considers its session

with the user’s browser to be authenticated for the email

address contained in the OpenID assertion.

D. Secondary Identity Provider

If an email provider (IdP) does not directly support

BrowserID, LPO can be used as a so-called secondary IdP
(sIdP), i.e., it replaces the IdP completely. For this, the user

has to register at LPO. That is, she creates an account at

LPO where she can register one or more email addresses

to be used as identities. She has to prove ownership of all

email addresses she registers. (LPO sends URLs to each

email address, which then have to be opened by the user.)

When the sIdP is used, the phases ii – vi are not needed

as now LPO replaces the IdP and the actions previously

performed by IdP and LPO are now carried out by LPO

alone. The user is prompted to enter her password directly

into LD. If the password is correct, LPO now considers the

session with the browser to be authenticated. LPO will then

issue UCs on behalf of the email provider. We note that, for

automatic CAP creation, the CIF (see Section IV-B) is still

used.

V. ANALYSIS OF BROWSERID

In this section, we present the analysis of the BrowserID

system. We first formulate fundamental security properties

for the BrowserID system. We then present attacks that show

that these properties are not satisfied and propose fixes. For

the case of BrowserID with sIdP and the fixes applied, we

then prove that the security properties are satisfied in our

web model. We note that we also incorporate the automated

CAP creation with the CIF in our model of BrowserID (see

Section IV-B). Our web model is expressive enough to also

formally model the BrowserID system with primary IdPs

(and Sideshow/BigTent) in a straightforward way. However,

we leave the detailed formulation of such a model and the

proof of the security of the fixed system with primary IdPs

to future work.

A. Security Properties for BrowserID

While the documentation of BrowserID does not contain

explicit security goals, we deduce two fundamental security

properties that can be informally described as follows (see

Section V-C for a formal description): (A) The attacker
should not be able to use a service of RP as an honest
user. In other words, the attacker should not get hold of (be

able to derive from his current knowledge) an RP service

token for an ID of an honest user (browser), even if the

browser was closed and then later used by a malicious user

(i.e., after a CLOSECORRUPT). (B) The attacker should not
be able to authenticate an honest browser to an RP with an
ID that is not owned by the browser.

B. Attacks on BrowserID

Our analysis of BrowserID w.r.t. the above security proper-

ties revealed several attacks (as sketched next). We confirmed

the attacks on the actual implementation and also reported

them to Mozilla. The first two fixes proposed below have

been adopted by Mozilla already and the others are currently

under discussion at Mozilla.

1) Identity Forgery: There are two problems in Sideshow

that lead to identity forgery attacks for Gmail addresses;

analogously in BigTent with Yahoo email addresses.5

a) It is not checked if all requested attributes in the OpenID

assertion are MACed, which allows for the following at-

tack: A (web) attacker may choose any Gmail address to

impersonate, say victim@gmail.com. He starts a BrowserID

login with this email address. When he is then redirected

to the OpenID URL at Gmail, he removes the email at-

tribute from Sideshow’s authentication request. The attacker

authenticates himself at Gmail with his own account (say,

attacker@gmail.com). Upon receipt of the OpenID assertion,

he appends the email attribute with value victim@gmail.com

and forwards it to Sideshow. The assertion is declared valid

by Gmail since the MAC is correct (the email attribute is

not listed in openid.signed). Since Sideshow does not

require the email attribute to be in openid.signed, it

accepts the OpenID assertion, considers the attacker’s session

to be authenticated for victim@gmail.com, and issues UCs

for this address to the attacker. This violates Condition (A).
5See https://bugzilla.mozilla.org/show_bug.cgi?id=920030 and https://

bugzilla.mozilla.org/show_bug.cgi?id=920301.
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b) Sideshow uses the first email address in the OpenID

assertion (based on the attribute type information), which

is not necessarily the MACed email address. This allows

for an attack similar to the above, except that the attacker

does not need to change Sideshow’s authentication request

but only prepends the victim’s email address to the OpenID

assertion in an additional attribute.

Proposed fix. Sideshow/BigTent must ensure to use the

correct and MACed attribute for the email address.

2) Login Injection Attack: During the login process,

the origin of the response postMessage ( 26 in Figure 3),

which contains the CAP, is not checked. An attacker (e.g.,

in a malicious advertisement iframe within RP-Doc), can

continuously send postMessages to the RP-Doc with his

own CAP in order to log the user into his own account. This

attack violates Condition (B).6

Proposed fix. To fix the problem, the sender’s origin of the

postMessage 26 must be checked to match LPO.

3) Key Cleanup Failure Attack: When LD creates a key

pair ( 15 in Figure 3), it stores the keys in the localStorage

(even in ephemeral sessions). When a user quits a session

(e.g, by clicking on RP’s logout button and closing the brow-

ser) the key pair (and the UC) remain in the localStorage,

unlike session cookies. Hence, users of shared terminals can

read the localStorage (in our model, a CLOSECORRUPT allows

an attacker to do this) and then, using the key pair and the

UC, create valid CAPs to log in at any RP under the identity

of the previous user, which violates Condition (A).7

Proposed fix. We propose to use the localStorage for this

data only in non-ephemeral sessions.

4) Cookie Cleanup Failure Attack (for the case of sec-
ondary IdP only): The LPO session cookie is not deleted

when the browser is closed, even in ephemeral sessions and

even if a user logged out at RP beforehand. (In our model,

if the attacker issues a CLOSECORRUPT, he can therefore still

access the LPO session cookie.) Hence, another user of the

same browser could request new UCs for any ID registered

at LPO for that user, and hence, log in at any RP under this

ID, which violates Condition (A).8

Proposed fix. In ephemeral sessions, LPO should limit the

cookie lifetime to the browser session.

C. Analysis of BrowserID with sIdP

We now present our formal model and analysis of

BrowserID with sIdP. We consider ephemeral sessions (the

default), which are supposed to last until the browser is

closed. We assume that users are already registered at LPO,

i.e., they have accounts at LPO with one or more email

addresses registered in each account.

6See https://bugzilla.mozilla.org/show_bug.cgi?id=868967
7See https://github.com/mozilla/browserid/issues/3770
8See https://github.com/mozilla/browserid/issues/3769

More specifically, we first model the BrowserID system

as a web system (in the sense of Section III), then pre-

cisely formalize the security properties already sketched

in Section V-A in this model, and finally prove, for the

BrowserID model with the fixes proposed in Section V-B

applied (otherwise the proof would not go through), that

these security properties are satisfied.

1) Our BrowserID Model: We call a web system BID =
(W , S , script, E0) a BrowserID web system if it is of the

form described in what follows.

The system W = Hon ∪ Web ∪ Net consists of the

(network) attacker process attacker, the web server for LPO,

a finite set B of web browsers, and a finite set RP of web

servers for the relying parties, with Hon := B∪RP∪{LPO},
Web := ∅, and Net := {attacker}. DNS servers are assumed

to be dishonest, and hence, are subsumed by attacker. More

details on the processes in W are provided below.

The set N of nonces is partitioned into three sets, an

infinite set NW , an infinite set Kprivate, and a finite set

Secrets. The set NW is further partitioned into infinite sets

of nonces, one set Np ⊆ NW for every p ∈ W .

The set IPs contains for LPO, attacker, every relying party

in RP, and every browser in B one address each. By addr
we denote the corresponding assignment from a process to

its address. The set Doms contains one domain for LPO, one

for every relying party in RP, and a finite set of domains

for attacker. Each domain is assigned a fresh private key

(a nonce). Additionally, LPO has a fresh signing key kLPO,
which it uses to create UCs.

Each browser b ∈ B owns a finite set of secrets (⊆ Secrets)
for LPO and each secret is assigned a finite set of email

addresses (IDs) of the form 〈name, d〉, with name ∈ S and

d ∈ Doms, such that browsers have disjoint sets of secrets

and secrets have disjoint sets of IDs. An ID i is owned by
a browser b if the secret associated with i belongs to b.

The set S contains four scripts, with their string repre-

sentations defined by script: the honest scripts running in

RP-Doc, CIF, and LD, respectively, and the malicious script

Ratt (see below for more details).

The set E0 contains only the trigger events specified in

Definition 6.

Before we specify the processes in W , we first note that

a UC uc for a user u with email address i and public

key (verification key) pub(ku), where ku is the private key

(signing key) of u, is modeled to be a message of the

form uc = sig(〈i, pub(ku)〉, kLPO), with kLPO as defined

above. An IA ia for an origin o (e.g., 〈example.com, S〉) is

a message of the form ia = sig(o, ku). Now, a CAP is of the

form 〈uc, ia〉. Note that the time stamps are omitted both

from the UC and the IA. This models that both certificates

are valid indefinitely. In reality, as explained in Section IV,

they are valid for a certain period of time, as indicated by the

time stamps. So our modeling is a safe overapproximation.
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We are now ready to define the processes in W as well

as the scripts in S in more detail. We note that in our full

version [14], we provide a detailed formal specification of

the processes and scripts in the style of Algorithm 1.

All processes in W contain in their initial states all public

keys and the private keys of their respective domains (if any).

We define Ip = {addr(p)} for all p ∈ Hon.

Attacker. The attacker process is a network attacker (see

Section III-A), who uses all addresses for sending and

listening. All parties use the attacker as a DNS server.

Browsers. Each b ∈ B is a web browser as defined in

Section III-D. The initial state contains all secrets owned

by b, stored under the origin 〈dom(LPO), S〉 of LPO; sts is

〈dom(LPO)〉.
LPO. The initial state of LPO contains its signing key

kLPO, all secrets in Secrets and the corresponding IDs. The

definition of RLPO closely follows the description of LPO in

Section IV-D. Sessions of LPO expire non-deterministically.

UCs are signed using kLPO.

Relying Parties. A relying party r ∈ RP is a web server. The

definition of Rr follows the description in Section IV and the

security considerations in [23].9 RP answers any GET request

with the script script_RP_index (see below). When receiv-

ing an HTTPS POST message, RP checks (among others) if

the message contains a valid CAP. If successful, RP responds

with an RP service token for ID i of the form 〈n, i〉, where

i ∈ ID is the ID for which the CAP was issued and n is a

freshly chosen nonce. The RP r keeps a list of such tokens

in its state. Intuitively, a client having such a token can use

the service of r for ID i.

BrowserID Scripts. The set S consists of the follow-

ing scripts: Ratt, script_RP_index , script_LPO_cif , and
script_LPO_ld , with their string representations being

att_script, script_RP_index, script_LPO_cif, and

script_LPO_ld. The latter two scripts (issued by LPO) are

defined in a straightforward way following the implemen-

tation outlined in Section IV. The script script_RP_index
(issued by RP) also includes the script that is (in reality)

loaded from LPO. In particular, this script creates the CIF

and the LD iframes/subwindows, whose contents (scripts)

are loaded from LPO.

2) Formal Security Properties: The security properties

for BrowserID, informally introduced in Section V-A, are

formally defined as follows. First note that every RP service

token 〈n, i〉 recorded in an RP was created by the RP as

the result of a unique HTTPS POST request m with a valid

CAP for ID i. We refer to m as the request corresponding
to 〈n, i〉.

9Mozilla recommends to (1) protect against Cross-site Request Forgery
(Rr checks the Origin header, which is always set in our model), (2) verify
CAPs on the server (rather than in the browser), (3) check if the CAP is
issued for the correct RP, and (4) verify SSL certificates.

Definition 7. Let BID be a BrowserID web system. We say
that BID is secure if for every run ρ of BID, every state
(Sj , Ej) in ρ, every r ∈ RP, every RP service token of the
form 〈n, i〉 recorded in r in the state Sj(r), the following
two conditions are satisfied:

(A) If 〈n, i〉 is derivable from the attackers knowledge in
Sj (i.e., 〈n, i〉 ∈ dNattacker(Sj(attacker))), then it follows that
the browser owning i is fully corrupted in Sj , i.e., the value
of isCorrupted is FULLCORRUPT.

(B) If the request corresponding to 〈n, i〉 was sent by some
b ∈ B which is honest in Sj , then b owns i.

3) Security of the Fixed System: We call a BrowserID

web system BID with the fixes proposed in Section V-B a

fixed BrowserID web system. We now obtain the following

theorem, which says that such a system satisfies the security

properties (A) and (B).

Theorem 1. Let BID be a fixed BrowserID web system.
Then, BID is secure.

The complete proof with all details is provided in the full

version of this paper [14]. Due to space limitations, here we

only provide a very rough sketch of how security property

(A) is proved: We assume that (A) is not satisfied and lead

this to a contradiction. To do so, we first prove a sequence

of (twelve) lemmas. To provide an example, in one lemma

we show that in every run of BID if a CAP c is created by

script_LPO_ld , then the origin for which c is issued is the

origin of the script that receives the postMessage containing c
( 26 in Figure 3). Using these lemmas, we distinguish between

two (main) cases to lead the assumption that (A) does not

hold to a contradiction: the attacker, in state Sj , knows (or

does not know) the key used to encrypt the service token

〈n, i〉 recorded in and issued by r.

VI. RELATED WORK

Early work in the direction of formal web security analysis

includes work by Kerschbaum [21], in which a Cross-Site

Request Forgery protection proposal is formally analyzed

using a simple model expressed using Alloy, a finite-state

model checker [19].

In seminal work, Akhawe et al. [2] initiated a more general

formal treatment of web security. Again the model was

provided in the Alloy modeling language. Inspired by this

work, Bansal et al. [5], [6] built the WebSpi model for

the web infrastructure, which is encoded in the modeling

language (a variant of the applied pi-calculus [1]) of ProVerif,

a specialized tool for cryptographic protocol analysis [8].

Both models have successfully been applied to find attacks

in standards and web applications.

We see our work as a complement to these models: On the

one hand, the above models support (fully) automated analy-

sis. On the other hand, our model is much more comprehen-

686

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:30:51 UTC from IEEE Xplore.  Restrictions apply. 



sive and accurate, but not directly suitable for automation.10

We think that, similarly to the area of cryptography, both

approaches, automated analysis and manual analysis, are very

valuable. Clearly, it is highly desirable to push automated

analysis as much as possible, given that manual proofs are

laborious and error-prone. Conversely, automated approaches

may miss important problems due to the less accurate models

they consider. Moreover, a “service” more comprehensive

and accurate models provide, even if they are manually

driven, is that they summarize and condense relevant aspects

in the various standards and specifications for the web. As

such, they are an important basis for the formal foundation

and discourse on web security and can serve as reference

models (for tool-supported analysis, web security researchers,

for developers of web technologies and standards, and maybe

for teaching basic web security concepts).

The BrowserID system has been analyzed before using

the AuthScan tool developed by Bai et al. [4]. Their work

focusses on the automated extraction of a model from a

protocol implementation. Their analysis of BrowserID is not

very detailed; only two rather trivial attacks are identified,

for example, CAPs that are sent unencrypted can be replayed

by the attacker to an RP. There is also work on the analysis

of other web-based single sign-on systems, such as SAML-

based single sign-on, OpenID, and OAuth (see, e.g., [3], [7],

[11], [15], [17], [22], [26]–[29]). However, none of these

works are based on a model of the web infrastructure.

In [16], [25], [26], [29], potentially problematic usage

of postMessages and the OpenID interface are discussed.

While very useful, these papers do not consider BrowserID or

formal models, and they do not formalize security properties

for web applications or establish formal security guarantees.

Bohannon and Pierce propose a formal model of a web

browser core [9]. The scope and goal of the model is different

to ours, but some mechanisms can be found in both models.

Börger et al. present an approach for the analysis of web

application frameworks, focussing on the server [10].

VII. CONCLUSION

We presented an expressive model of the web infrastruc-

ture and web applications, the most comprehensive model

for the web infrastructure to date. It contains many security-

relevant features and is designed to closely mimic standards

and specifications for the web. As such, it constitutes a solid

10The tool-based models are necessarily tailored to and limited by
constraints of the tools. For example, models for Alloy are necessarily
finite state. Terms (messages) need to be encoded in some way as they are
not directly supported. Due to the analysis method employed in ProVerif,
the WebSpi model is of a monotonic nature. For instance, cookies and
localStorage entries can only be added, but not deleted or modified. Also,
the number of cookies per request is limited. Several features (that have been
crucial for the analysis of BrowserID) are not supported by the tool-based
models, including the precise handling of windows, documents, and iframes
as well as cross-document messaging (postMessages), and the ability for
an attacker to take over a browser after it has been closed. Dealing with
such features in an automated tool is indeed challenging.

basis for the analysis of a broad range of web standards and

applications.

In our case study, we analyzed the BrowserID system,

found several very critical attacks, proposed fixes, and proved

the fixed system for the case of secondary IdP case secure

w.r.t. the security properties we specified. The analysis of

this system is out of the scope of other models for the web

infrastructure.

As for future work, it is straightforward to incorporate

further features, such as subdomains, cross-origin resource

sharing, and finer-grained settings for cookie paths and

domains, which we have left out mainly for brevity of

presentation for now. Our model could serve as a basis and

a reference for automated approaches, where one could try

to extend the existing automated approaches or develop new

ones (e.g., based on theorem provers, where higher accuracy

is typically paid by more interaction). Finally, BrowserID is

being used by more and more web sites and it will continue

to be an interesting object of study. An obvious next step is to

analyze BrowserID for the case of primary IdPs. The model

is already expressive enough to carry out such an analysis.

We also plan to apply our model to other web applications

and web standards.
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