
SoK: Introspections on Trust and the Semantic Gap

Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter, and Radu Sion

Stony Brook University
{bpjain, mbaig, dozhang, porter, sion}@cs.stonybrook.edu

Abstract—An essential goal of Virtual Machine Introspection
(VMI) is assuring security policy enforcement and overall
functionality in the presence of an untrustworthy OS. A
fundamental obstacle to this goal is the difficulty in accurately
extracting semantic meaning from the hypervisor’s hardware-
level view of a guest OS, called the semantic gap. Over the
twelve years since the semantic gap was identified, immense
progress has been made in developing powerful VMI tools.

Unfortunately, much of this progress has been made at
the cost of reintroducing trust into the guest OS, often in
direct contradiction to the underlying threat model motivating
the introspection. Although this choice is reasonable in some
contexts and has facilitated progress, the ultimate goal of
reducing the trusted computing base of software systems is
best served by a fresh look at the VMI design space.

This paper organizes previous work based on the essential
design considerations when building a VMI system, and then
explains how these design choices dictate the trust model
and security properties of the overall system. The paper then
observes portions of the VMI design space which have been
under-explored, as well as potential adaptations of existing
techniques to bridge the semantic gap without trusting the
guest OS.

Overall, this paper aims to create an essential checkpoint
in the broader quest for meaningful trust in virtualized
environments through VM introspection.

Keywords-VM Introspection, semantic gap, trust.

I. INTRODUCTION

Virtualization has the potential to greatly improve system

security by introducing a sensible layering—separating the

policy enforcement mechanism from the component being

secured.

Most legacy OSes are both monolithic and burdened

with a very wide attack surface. A legacy OS, such as

Linux, executes all security modules in the same address

space and with the same privilege level as the rest of the

kernel [91]. When this is coupled with a porous attack

surface, malicious software can often load code into the

OS kernel which disables security measures, such as virus

scanners and intrusion detection. As a result, users have

generally lost confidence in the ability of the OS to enforce

meaningful security properties. In cloud computing, for

instance, customers’ computations are isolated using virtual

machines rather than OS processes.

In contrast, hypervisors generally have a much narrower

interface. Moreover, bare metal, or Type I [76], hypervisors

generally have orders of magnitude fewer lines of code

than a legacy OS. Table I summarizes the relative size of a

representative legacy OS (Linux 3.13.5), and a representative

bare-metal hypervisor (Xen 4.4), as well as comparing the

number of reported exploits in both systems over the last 8

years. Perhaps unsurprisingly, the size of the code base and

API complexity are strongly correlated with the number of

reported vulnerabilities [85]. Thus, hypervisors are a much

more appealing foundation for the trusted computing base

of modern software systems.

This paper focuses on systems that aim to assure the func-

tionality required by applications using a legacy software

stack, secured through techniques such as virtual machine
introspection (VMI) [46]. A number of valuable research

projects observe that a sensitive application component, such

as a random number generator or authentication module,

requires little functionality, if any, from the OS, yet are

vulnerable to failures of the OS [68, 69]. These projects are

beyond the scope of this paper, which instead focuses on

systems that leverage virtualization to ensure security prop-

erties for applications that require legacy OS functionality.

VMI has become a relatively mature research topic, with

numerous projects. This paper distills key design points

from previous work on VMI—providing readers and system

designers with a framework for evaluating design choices.

Moreover, we observe an unfortunate trend in the lit-

erature: many papers do not explicate their assumptions

about the system, trusted computing base, or threat models.

Although an attentive reader can often discern these facts,

this trend can create confusion within the field. Thus, this

survey carefully explicates the connection between certain

design choices and the fundamental trust assumptions un-

derlying these designs. One particularly salient observation

is that all current solutions to the semantic gap problem [34]

implicitly assume the guest OS is benign. Although this is

a reasonable assumption in many contexts, it can become a

stumbling block to the larger goal of reducing the size of

the trusted computing base.

Finally, after identifying key design facets in previous

work, this paper identifies promising under-explored regions

of the design space. The paper discusses initial work in these

areas, as well as the applicability of existing techniques and

more challenging threat models.

The contributions and insights of this work are as follows:

• A thorough survey of research on VMI, and a distillation

of the principal VMI design choices.

• An analysis of the relationship between design choices

2014 IEEE Symposium on Security and Privacy

© 2014, Bhushan Jain. Under license to IEEE.

DOI 10.1109/SP.2014.45

605

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

Codebase Lines of code
Xen hypervisor 4.4 0.50 Million
Linux kernel 3.13.5 12.01 Million

Codebase No. of CVE
Xen hypervisor 24
Linux kernel 903

Table I
SIZE AND DOCUMENTED VULNERABILITIES OF A REPRESENTATIVE

BARE-METAL HYPERVISOR (XEN) AND LEGACY OS (LINUX). CODE

SIZES WERE CALCULATED BASED ON XEN 4.4 AND LINUX 3.13.5.
CVES WERE COLLECTED FOR ALL VERSIONS OF THESE CODE BASES

OVER THE PERIOD FROM 01/01/2006 TO 03/03/2014.

and implicit assumptions and trust. We observe that ex-

isting solutions to the semantic gap problem inherently

trust the guest OS, often in direct contradiction to the

underlying motivation for using VM introspection.

• The observation that the semantic gap problem has

evolved into two separate issues: an engineering challenge

and a security challenge. Existing solutions address the

engineering challenge.

• Identifying a connection between techniques that protect

memory and prevent attacks.

• Exploring the applicability of current techniques to new

problems, such as removing the guest OS from the trusted

computing base without removing OS functionality.

• Identifying additional points in the design space that

are under-explored, such as hardware-support for mutual

distrust among system layers and dynamic learning from

an untrusted OS.

II. BACKGROUND

The specific goals of VM introspection systems vary, but

commonly include identifying if a malicious loadable kernel

module, or rootkit, has compromised the integrity of the

guest OS [75]; identifying malicious applications running

on the system [65]; or ensuring the integrity or secrecy of

sensitive files [51]. In these systems, a monitor tracks the

behavior of each guest OS and either detects or prevents

policy violations. Such a monitor may be placed in the

hypervisor, a sibling VM, in the guest itself, or in the

hardware, as illustrated in Figure 1. This process of looking

into a VM is Virtual Machine Introspection (VMI).

A fundamental challenge to using VMI for security pol-

icy enforcement is that many desirable security policies

are expressed in high-level, OS abstractions, such as files

and processes, yet the hypervisor only has direct visibility

into hardware-level abstractions, such as physical memory

contents and hardware device operations. This disparity in

abstractions is known as the semantic gap.

As an example of how the semantic gap creates chal-

lenges for introspection, consider how a hypervisor might

go about listing the processes running in a guest OS. The

hypervisor can access only hardware-level abstractions, such

as the CPU registers and contents of guest memory pages.

The hypervisor must identify specific regions of guest OS

Sibling
VM

 Hardware

 Hypervisor

App

Guest OS

App App
VM

Figure 1. Monitor placement options in VMI: in a sibling VM, the
hypervisor, in the guest OS itself, or in hardware. In-guest and hardware
solutions require some assistance from the hypervisor.

memory that include process descriptors, and interpret the

raw bytes to reconstruct semantic information, such as the

command line, user id, and scheduling priorities.

As a result of the semantic gap, much of the VMI devel-

opment effort goes into reconstructing high-level semantic

information from low-level sources. VMI tools attempt to

reconstruct a range of information, including the set of run-

ning processes, sensitive file contents, and network sockets.

For brevity, we limit this paper to memory introspection,

where the hypervisor draws inferences about guest behavior

from the contents of memory and CPU registers. A range

of work has also introspected disk contents [54, 87, 93] and

network traffic [48, 56]; at this boundary, we limit discussion

to in-memory data structures, such as those representing file

metadata (inode) or a socket (sk_buff).

As we discuss in the next section, many of these semantic

reconstruction techniques rely on fragile assumptions or are

best-effort. Unfortunately, errors in reconstructing seman-

tic information can be exploited by malware to trick an

introspection-based security monitor.

Continuing our example of listing processes in a guest

OS, a typical introspection strategy would be to identify the

definition of a process descriptor (e.g., a task_struct
on Linux) from the source code, and then walk the list

of runnable processes by following the global root of the

process list init_task, overlaying this structure definition

over the relevant memory addresses. This strategy faces a

number of challenges. First, one must either assume all

process descriptors are in this list—even in a compromised

or malicious OS—or one must detect hidden processes,

using techniques such as scanning all of guest memory

looking for potential process descriptors or detecting incon-

sistencies between the currently loaded page tables and the

purported process descriptor [55]. Hidden process detection

faces additional challenges, such as false positives from

scanning memory during a critical section which temporarily

606

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

violates some internal invariant the introspection tool is

checking. In order to prevent the guest OS from using a

hidden process descriptor, the introspection must identify

all context switching code in the kernel, possibly including

dynamically loaded code which manually context switches

a hidden process. Finally, a rootkit might hide itself in a

subtle and unexpected manner, such as loading itself as a

thread in the address space of a benign system process, or

placing its code in the memory image of a common library

and scheduling itself by changing the address of a signal

handling function.

These subtleties make robustly bridging the semantic

gap quite a challenge. The next section organizes current

strategies to solve this problem.

III. BRIDGES ACROSS THE SEMANTIC GAP

Modern OSes are complex systems consisting of thou-

sands of data structure types, and many instances of each

type. A typical running instance of the Linux kernel was

found to have a core set of 29,488 data structure instances

belonging to 231 different types that enable scheduling,

memory management, and I/O [77]. Each of these structures

consists of many fields. For instance, a task struct in Linux

3.10 contains more than 50 fields [14], many of which are

pointers to other structures. A key ingredient to any solution

to the semantic gap problem is reconstruction of kernel data

structures from memory contents.

This section begins with explaining techniques to recon-

struct kernel data structures (III-A), followed by additional

introspection techniques that do not directly reconstruct data

structures (§III-B–III-C), and then techniques that assure

the integrity of the kernel binary (§III-D). As the section

explains each technique, it highlights the underlying trust

assumption(s)—most commonly that the guest OS is benign.

We will revisit these trust assumptions as we explain VMI

attacks and defenses (§V). as well as discussing how one

might adapt VMI to a stronger threat model where these

assumptions do not hold (§VI).

A. Learning and Reconstruction

Data structure reconstruction generally relies on a learn

and search methodology. A learning phase is used to extract

information relevant to data structures, generally a data

structure signature. A signature can be used to identify and

reconstruct data structure instances within kernel memory

contents. Signatures are created using techniques such as

expert knowledge, source analysis, or dynamic analysis—

each described in this subsection (§III-A1–III-A3).

A second search phase identifies instances of the data

structure. The two most common search strategies are to

either linearly scan kernel memory or to traverse data struc-

ture pointers, starting with public symbols. Depending on the

OS, public symbols may include debugging symbols or the

dynamic linking tables exposed to loadable kernel modules.

It is arguable which approach is more efficient, since many

kernel data structures can have cyclic or invalid pointers, but

may require traversing less total memory. However, the lin-

ear scan of kernel memory has the advantage that it is robust

to “disconnected” structures or other attempts to obfuscate

pointers. Both techniques can observe transient states when

searching concurrently with OS operation, discussed further

in §IV-A.

Several linear scanning techniques limit the search space

by introspecting on the kernel memory allocators—either

by interpreting allocator data structures [51] or by placing

debugging breakpoints on the allocator [77]. OS kernels

commonly use a different slab or memory pool for each

object type; this information can be used to further infer data

structure types. An advantage of leveraging heap-internal

information for search is more easily identifying transient

data structures which have been freed but may be pointed

to—a challenge for other search approaches. An inherent

risk of this approach is missing data structures allocated in

an unorthodox manner.

Searching overheads: In practice, searching for data

structures in a kernel memory snapshot can take from tens of

milliseconds [51] up to to several minutes [31]. Thus, most

systems reduce overheads by searching periodically and

asynchronously (§IV-A). Periodic searches fundamentally

limit these approaches to detecting compromises after the

fact, rather than preventing policy violations. Moreover,

these approaches can only reliably detect compromises that

make persistent changes to a data structure. Transient mal-

ware can slip through the cracks between two searches of

kernel memory.

The rest of this subsection describes the three major

approaches to learning data structure signatures.

1) Hand-crafted data structure signatures: Introspection

and forensic analysis tools initially used hand-crafted signa-

tures, based on expert knowledge of the internal workings

of an OS. For instance, such a tool might generate the

list of running processes, similar to ps, by walking a

global task list in Linux. Examples of this approach include

Memparser [11], KNTLIST [9], GREPEXEC [4] and many

others [1, 2, 3, 5, 10, 12, 13, 16, 17, 81, 82].

The most sophisticated frameworks for hand-crafted re-

construction use a wide range of subtle invariants and allow

users to develop customized extensions. FACE/Ramparser

[37] is a scanner that leverages invariants on values within

a data structure, such as enumerated values and pointers

that cannot be null. Ramparser can identify running pro-

cesses (task struct), open network sockets (struct sock),

in-kernel socket buffers (sk buff), loaded kernel modules

(struct module), and memory-mapped and open files for any

given process (vm area struct). Similarly, Volatility [15]

is a framework for developing forensics tools that analyze

memory snapshots, with a focus on helping end-users to

write extensions. Currently, Volatility includes tools that

607

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

extract a list of running processes, open network sockets

and network connections, DLLs loaded for each process,

OS kernel modules, system call tables, and the contents of

a given process’s memory.

Hand-crafting signatures and data structure reconstruction

tools creates an inherent limitation: each change to an OS

kernel requires an expert to update the tools. For instance,

a new version of the Linux kernel is released every 2–

3 months; bugfix updates to a range of older kernels are

released as frequently as every few weeks. Each of these

releases may change a data structure layout or invariant.

Similarly, different compilers or versions of the same com-

piler can change the layout of a data structure in memory,

frustrating hand-written tools. Hand-written tools cannot

keep pace with this release schedule and variety of OS

kernels and compilers; thus, most introspection research has

instead moved toward automated techniques.

2) Source code analysis: Automated reconstruction tools

may rely on source code analysis or debugging information

to extract data structures definitions, as well as leverage

sophisticated static analysis and source invariants to reduce

false positives during the search phase. Examples of source

code analysis tools include SigGraph [64], KOP [31], and

MAS [38].

One basic approach to source analysis is to identify

all kernel object types, and leverage points-to analysis to

identify the graph of kernel object types. Kernel Object

Pinpointer (KOP) [31] extended a fast aliasing analysis

developed for non-security purposes [49], with several ad-

ditional features, including: field-sensitivity, allowing KOP

to differentiate accesses made to different fields within the

same struct; context-sensitivity, differentiating different uses

of union types and void pointers based on type infor-

mation in code at the call sites; as well as inter-procedural

and flow-insensitive analysis, rendering the analysis robust

to conditional control flow, e.g., if statements. In applying

the static analysis to a memory snapshot, KOP begins with

global symbols and traverses all pointers in the identified

data structures to generate a graph of kernel data structures.

A key challenge in creating this graph of data structures

is that not all of the pointers in a data structure point to valid

data. As a simple example, the Linux dcache uses deferred

memory reclamation of a directory entry structure, called a

dentry, in order to avoid synchronization with readers.

When a dentry is on a to-be-freed list, it may point to

memory that has already been freed and reallocated for

another purpose; an implicit invariant is that these pointers

will no longer be followed once the dentry is on this list.

Unfortunately, these implicit invariants can thwart simple

pointer traversal. MAS [38] addresses the issue of invalid

pointers by extending the static analysis to incorporate value

and memory alias checks.

Systems like MAS [38], KOP [31] and LiveDM [77] also

improve the accuracy of type discovery by leveraging the

fact that most OSes create object pools or slabs for each

object type. Thus, if one knows which pages are assigned

to each memory pool, one can reliably infer the type of any

dynamically allocated object. We hasten to note that this

assumption can be easily violated by a rootkit or malicious

OS, either by the rootkit creating a custom allocator, or

allocating objects of greater or equal size from a different

pool and repurposing the memory. Thus, additional effort is

required to detect unexpected memory allocation strategies.

SigGraph [64] contributed the idea that the graph structure

of the pointers in a set of data structures can be used as a

signature. As a simple example, the relationships of pointers

among task_struct structures in Linux is fundamentally

different than among inode structures. SigGraph represents

graph signatures in a grammar where each symbol represents

a pointer to a sub-structure. This signature grammar can be

extended to encode arbitrary pointer graphs or encode sub-

structures of interest. SigGraph is designed to work with a

linear scan of memory, rather than relying on reachability

from kernel symbols.

3) Dynamic Learning: Rather than identifying code in-

variants from kernel source code, VMI based on dynamic

analysis learns data structure invariants based on observing

an OS instance [24, 41, 64].

By analogy to supervised machine learning, the VMI

tool trains on a trusted OS instance, and then classifies

the data structures of potentially untrusted OS instances.

During the training phase, these systems often control the

stimuli, by running programs that will manipulate a data

structure of interest, or incorporating debugging symbols to

more quickly discern which memory regions might include

a structure of interest. Tools such as Daikon [43] are used

to generate constraints based on observed values in fields of

a given data structure.

Several dynamic systems have created robust signatures,

which are immune to malicious changes to live data structure

instances [41]. More formally, a robust signature identifies

any memory location that could be used as a given structure

type without false negatives. A robust signature can have

false positives. Robust signatures are constructed through

fuzz testing during the training phase to identify invariants

which, if violated, will crash the kernel [41, 64]. For

instance, RSFKDS begins its training phase with a guest

in a clean state, and then attempts to change different data

structure fields. If the guest OS crashes, this value is used

to generate a new constraint on the potential values of that

field. The primary utility of robust signatures is detecting

when a rootkit attempts to hide persistent data by modifying

data structures in ways that the kernel doesn’t expect. The

key insight is that these attempts are only fruitful inasmuch

as they do not crash the OS kernel. Thus, robust signatures

leverage invariants an attacker cannot safely violate.

608

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

B. Code Implanting

A simpler approach to bridging the semantic gap is to

simply inject code into the guest OS that reports semantic

information back to the hypervisor. For example, Process

implanting [47] implants and executes a monitoring process

within a randomly-selected process already present in the

VM. Any malicious agent inside the VM is unable to

predict which guest process has been replaced and thus the

injected code can run without detection. Rather than implant

a complete process, SYRINGE [30] implants functions into

the kernel, which can be called from the VM.

A challenge to implanting code is ensuring that the

implanted code is not tampered with, actually executes,

and that the guest OS components it uses report correct

information. SIM [84] uses page table protections to isolate

an implanted process’s address space from the guest OS

kernel. Section III-D discusses techniques to ensure the in-

tegrity of the OS kernel. Most of these implanting techniques

ultimately rely on the guest kernel to faithfully represent

information such as its own process tree to the injected code.

C. Process Outgrafting

In order to overcome the challenges with running a trusted

process inside of an untrusted VM, process outgrafting [86]

relocates a monitoring process from the monitored VM to

a second, trusted VM. The trusted VM has some visibility

into the kernel memory of the monitored VM, allowing a

VMI tools to access any kernel data structure without any

direct interference from an adversary in the monitored VM.

Virtuoso [40] automatically generates introspection pro-

grams based on dynamic learning from a trusted VM,

and then runs these tools in an outgrafted VM. Similarly,

OSck [51] generates introspection tools from Linux source

which execute in a monitoring VM with a read-only view

of a monitored guest.

VMST [44] generalizes this approach by eliminating the

need for dynamic analysis or customized tools; rather, a

trusted, clean copy of the OS runs with a roughly copy-on-

write view of the monitored guest. Monitoring applications,

such as ps, simply execute in a complete OS environment on

the monitoring VM; each system call executed actually reads

state from the monitored VM. VMST has been extended

with an out-of-VM shell with both execute and write capa-

bilities [45], as well as accelerated by using memoization,

trading some accuracy for performance [80]. This approach

bridges the semantic gap by repurposing existing OS code.

The out-grafting approach has several open problems.

First, if the monitoring VM treats kernel data as copy-

on-write, the monitoring VM must be able to reconcile

divergences in the kernel views. For example, each time the

kernel accesses a file, the kernel may update the inode’s

atime. These atime updates will copy the kernel data,

which must be discarded for future introspection or view

of the file system will diverge. VMST does not address

this problem, although it might be addressed by an expert

identifying portions of the kernel which may safely diverge,

or resetting the VM after an unsafe divergence. Similar to

the limitations of hand-crafted introspection tools, each new

OS variant may require hand-updates to divergent state; thus,

automating divergence analysis is a useful topic for future

work. Finally, this approach cannot handle policies that

require visibility into data on disk—either files or swapped

memory pages.

D. Kernel executable integrity

The introspection approaches described above assume

that the executable kernel code does not change between

creation of the introspection tools and monitoring the guest

OS. Table II lists additional assumptions made by these

techniques.

In order to uphold the assumption that the kernel has not

changed, most hypervisor-based security systems must also

prevent or limit the ability of the guest OS to modify its

own executable code, e.g., by overwriting executable pages

or loading modules. This subsection summarizes the major

approaches to ensuring kernel binary integrity.

1) The (Write ⊕ Execute) principle: The W ⊕ X prin-

ciple prevents attacks that write the text segment by en-

forcing a property where all the pages are either writable

or executable, but not both at the same time. For instance,

SecVisor [83] and NICKLE [79] are hypervisors that enforce

the W ⊕ X principle by setting page table permissions on

kernel memory. SecVisor will only set executable permission

on kernel code and loadable modules that are approved by

an administrator, and prevent modification of this code.

Although non-executable (NX) page table bits are ubiq-

uitous on modern x86 systems, lack of NX support compli-

cated the designs of early systems that enforced the W ⊕ X

principle. Similarly, compilers can mix code and data within

the same page, although security-conscious developers can

also restrict this with linker directives.

2) Whitelisting code: As discussed above, SecVisor and

NICKLE policies require a notion of approved code, which

is represented by a whitelist of code hashes created by the

administrator.

Patagonix [65] extends this property to application bina-

ries, without the need to understand the structure of pro-

cesses and memory maps. Patagonix leverages no-execute

page table support to receive a trap the first time data

from a page of memory is loaded into the CPU instruction

cache. These pages are then compared against a database of

whitelisted application binary pages.

Although whitelisting code can prevent loading unknown

modules which are the most likely to be malicious, the

approach is limited by the administrator’s ability to judge

whether a driver or OS kernel is malicious a priori.
3) Object code hooks: A practical limitation of the W ⊕

X principle is that many kernels place function pointers in

609

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

Technique Assumptions Monitor Placement Systems

Hand-crafted data structure signatures
(Expert knowledge)

• Expert knowledge of OS internals for known kernel version
• Guest OS is not actively malicious Sibling VM,

hypervisor, or
hardware

[1, 2, 3, 4, 5,
9, 10, 11, 12,
13, 16, 17,
81, 82]

Automated learning and reconstruction
(Source analysis or offline training)

• Benign copy of OS for training
• OS will behave similarly during learning phase and moni-

toring
• Security-sensitive invariants can be automatically learned
• Attacks will persist long enough for periodic scans

Sibling VM,
hypervisor, or
hardware

[24, 31, 38,
41, 64, 77]

Code implanting
(VMM protects monitoring agent inside
guest OS)

• Malicious guest schedules monitoring tool and reports
information accurately Guest with hypervisor

protection
[30, 47, 84]

Process outgrafting
(Reuse monitoring tools from sibling VM
with shared kernel memory)

• Live, benign copy of OS behaves identically to monitored
OS Sibling VM [40, 44, 45,

86]

Kernel executable integrity
(Protect executable pages and other code
hooks)

• Initial benign version of monitored OS
• Administrator can white-list safe modules Hypervisor [65, 73, 79,

83, 89]

Table II
VMI TECHNIQUES, MONITOR PLACEMENT (AS ILLUSTRATED IN FIGURE 1, AND THEIR UNDERLYING TRUST ASSUMPTIONS.

data objects that must be writable. These function pointers

are used to implement a crude form of object orientation.

For instance, the Linux VFS allows a low-level file system

to extend generic routines for operations such as reading a

file or following a symbolic link.

Lares [73] implemented a simple page-protection mech-

anism on kernel object hooks, but incurred substantial per-

formance penalties because these executable pointers are in

the same page as fields which the guest kernel must be

able to write, such as the file size and modification time.

HookSafe [89] addresses this problem by modifying OS

kernel code to relocate all hooks to a read-only, shadow

memory space. All code that calls a hook must also check

that the requested hook is in the shadow memory space, and

some policy must also be applied to approve which code

can be added to the hook section. The hook redirection

and checking code is in the kernel’s binary text, and is

read-only. HookSafe identifies locations where hooks are

called through dynamic learning (§III-A); this could likely

be extended with static analysis for more complete coverage.

Ultimately, these techniques are approximating the larger

property of ensuring control flow integrity (CFI) of the

kernel [18]. Ensuring CFI is a broad problem with a range of

techniques. For instance, Program Shepherding [59] protects

the integrity of implanted functions [30] (§III-B), using a

machine code interpreter to monitor all control transfers

and guarantee that each transfer satisfies a given security

policy. Discovering efficient CFI mechanisms is a relevant,

but complimentary problem to VMI.

IV. PREVENTION VS. DETECTION

Some introspection tools prevent certain security policy

violations, such as execution of unauthorized code, whereas

others only detect a compromise after the fact. Clearly,

prevention is a more desirable goal, but many designs accept

detection to lower performance overheads. This section

discusses how certain design choices fundamentally dictate

whether a system can provide detection or prevention.

Prevention requires a mechanism to identify and inter-

pose on a low-level operation within a VM which violates

a system security policy. Certain goals map naturally onto

hardware mechanisms, such as page protections on kernel

code or hooks [73, 79, 83, 89]. Other goals, such as

upholding data structure invariants the kernel code relies

upon, are open questions.

As a result, violations of more challenging properties are

currently only detected after the fact by VMI tools [24,

39, 40, 44, 51, 64, 65, 74, 75, 77, 80, 84]. In general,

there is a strong connection between approaches that peri-

odically search memory and detection. Periodic searching

is a good fit for malware that persistently modifies data

structures, but can miss transient modifications. To convert

these approaches to prevention techniques would require

interposing on every store, which is prohibitively expensive.

Moreover, because some invariants span multiple writes,

even this strawman approach would likely yield false nega-

tives without even deeper analysis of the code behavior.

Current detection systems usually just power off a com-

promised VM and alert an administrator. Several research

projects identify how systems can recover from an intrusion

or other security violation [32, 42, 57, 58] In general,

610

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

general-purpose solutions either incur relatively high over-

heads to track update dependencies (35% for the most recent

general-purpose, single-machine recovery system [58]), or

leverage application-specific properties. Improving perfor-

mance and generality of recovery systems is an important

direction for future work.

A. Asynchronous Vs Synchronous Mechanisms

Synchronous mechanisms mediate guest operations inline

to prevent security policy violations, or receive very low

latency notification of changes. All prevention systems we

surveyed [73, 79, 83, 84, 89] use synchronous mechanisms,

such as page protection or code implanting. Several low-

latency detection systems use customized hardware, dis-

cussed further in §IV-B. A few systems also use syn-

chronous mechanisms on commodity hardware for detec-

tion [60, 65, 77], but could likely lower their overheads with

an asynchronous mechanism.

Asynchronous mechanisms execute concurrently with a

running guest and inspect its memory. These systems gener-

ally introspect into a snapshot of memory [24, 39, 64, 74] or

a read-only or copy-on-write view of guest memory [40, 44,

51, 53, 75, 80]. All surveyed asynchronous systems detect

rootkits after infection through passive monitoring.

On one hand, the synchronous systems gain a vantage

point over their counterparts against transient attacks but

increase the overhead for the guest OS being protected.

On the other hand, asynchronous systems introduce lower

monitoring overhead but miss cleverly built transient attacks;

they are also limited due to the inherent race condition

between the attacker and the detection cycle.

Synchronous and asynchronous mechanisms make fun-

damental trade-offs across the performance, frequency of

policy-relevant events, risk, and assumptions about the be-

havior of the system. Synchronous mechanisms tend to

be more expensive, and are generally only effective when

the monitored events are infrequent, such as a change in

the access pattern to a given virtual page. The cost of an

asynchronous search of memory can also be quite high

(ranging from milliseconds [51] to minutes [31]), but the

frequency can be adjusted to an acceptable rate—trading

risk for performance. Both synchronous and asynchronous

systems make potentially fragile assumptions about the

system to improve performance, such as knowing all hook

locations or assuming all objects of a given type are allocated

from the same slab. These risks could be reduced in future

work by identifying low-frequency events that indicate a

policy violation, are monitorable without making fragile

assumptions about the system, and introduce little-to-no

overheads in the common case.

A final issue with executing introspection concurrently

with the execution of an OS is false positives arising because

of transient states. In general, an OS may violate its own

invariants temporarily while executing inside of a critical

section. A correct OS will, of course, restore the invari-

ants before exiting the critical section. If an introspection

agent searches memory during a kernel critical section, it

may observe benign violations of these invariants, which

will resolve quickly. Current approaches to this problem

include simply looking for repeated violations of an invariant

(leaving the system vulnerable to race conditions with an

attacker), or only taking memory snapshots when the OS

cannot be in any critical sections (e.g., by preempting each

CPU while out of the guest kernel).

Current VMI systems face fundamental trade-offs between

performance and risk, often making fragile assumptions

about the guest OS.

B. Hardware-Assisted Introspection

Several research prototypes have employed customized

hardware for introspection [60, 67, 71], or applied existing

hardware in novel ways [22, 74, 88]. The primary divi-

sion within the current design space of hardware-assisted

introspection is whether the introspection tool uses memory

snapshots or snoops on a bus. Snooping can monitor memory

regions at finer granularity than page protections, reducing

overheads.

1) Snapshotting: One strategy for hardware-assisted in-

trospection is using a PCI device to take RAM snapshots,

which are sent to a second machine for introspection (mon-

itored and monitor, respectively). For instance, Copilot [74]

adds an Intel StrongARM EBSA-285 Evaluation Board

on the monitored machine’s PCI bus. The PCI device on

the monitored machine uses DMA requests to retrieve a

snapshot of host RAM, which is sent to the monitor machine

upon request over an independent communication link. The

monitor periodically requests snapshots and primarily checks

that the hash of the kernel binary text and certain code

pointers, such as the system call table, have not changed

from known-good values.

Unfortunately, a memory snapshot alone isn’t sufficient to

robustly reconstruct and interpret a snapshot. Of particular

importance is the value of the cr3 register, which gives the

physical address of the root of the page tables. Without this

CPU register value, one cannot reliably reconstruct the vir-

tual memory mapping. Similarly, a system can block access

to regions of physical memory using an IOMMU [20, 27].

HyperCheck [88] augments physical memory snapshots

with the contents of the cr3 register, using the CPU System

Management Mode (SMM) [6]. SMM is an x86 CPU

mode designed primarily for firmware, power management,

and other system functions. SMM has the advantage of

protecting the introspection code from the running system

as well as giving access to the CPU registers, but must also

preempt the system while running (i.e., this is a synchronous

mechanism). The processor enters SMM when the SMM

interrupt pin (SMI) is raised, generally by the Advanced

611

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

Programmable Interrupt Controller (APIC). The hypervisor

is required to create SMI interrupts to switch the CPU to

SMM mode. Upon entering SMM, the processor will launch

a program stored in system management RAM (SMRAM).

SMRAM is either a locked region of system DRAM, or a

separate chip, and ranges in size from 32 KB to 4 GB [6]

Outside of SMM, SMRAM may not be read or written.

Within SMM, the integrity checking agent has unfettered

access to all RAM and devices, and is not limited by a

IOMMU or other attacks discussed previously. Unfortu-

nately, SMM mode also has the limitation that Windows

and Linux will hang if any software spends too much time

in SMM, bounding the time introspection code can take.

HyperSentry [22] further refines this model by triggering

an SMI handler from an Intelligent Platform Management

Interface (IPMI) device. IPMI devices generally execute

system management code, such as powering the system on

or off over the network, on a device hidden from the system

software.

A limitation of any SMM-based solution, including the

ones above, is that a malicious hypervisor could block SMI

interrupts on every CPU in the APIC, effectively starving the

introspection tool. For VMI, trusting the hypervisor is not a

problem, but the hardware isolation from the hypervisor is

incomplete.

Each of these systems focus on measuring the integrity

of system software—e.g., checking that the executable pages

have a known-good hash value. At least in SMM mode, more

computationally expensive introspection may be impractical.

Because all of these operations operate on periodic snap-

shots, which may visibly perturb memory access timings, a

concern is that an adversary could predict the snapshotting

interval and race with the introspection agent. In order to

ensure that transient attacks cannot race with the snapshot

creation, more recent systems have turned to snooping,

which can continuously monitor memory changes.

2) Snooping: A number of recent projects have developed

prototype security hardware that snoops on the memory

bus [60, 67, 71]. These systems have the useful function of

efficiently monitoring writes to sensitive code regions; unlike

page protections, snooping systems can monitor writes at

the finer granularity of cache lines, reducing the number

of needless checks triggered by memory accesses adjacent

to the structure being monitored. These systems can also

detect updates to memory from a malicious device or driver

by DMA, which page-level protections cannot detect.

Although most prototypes have focused on detecting mod-

ifications to the kernel binary itself, KI-Mon also watches

for updates to object hooks [60], and there is likely no

fundamental reason other solutions could not implement this.

Because these snooping devices aim to be very

lightweight, they cannot then check data structure invariants

or code integrity, but instead signal a companion snap-

shotting device (as discussed above) to do these checks.

However, a specific memory event triggering asynchronous

checks is a clear improvement over periodic snapshots,

in both efficiency and risk of races with the attacker. A

small complication with snooping-triggered introspection

is that invariants often span multiple cache lines, such

as next.prev == next in a doubly-linked list. If an

invariant check is triggered on the first write in a critical

section, the system will see many false positives. KI-Mon

addresses this by waiting until the system quiesces.

We note that these systems do not use commodity hard-

ware, but are implemented in simulators or FPGAs. Sec-

tion VI-B argues that this is a promising area of research

that deserves more attention, but more work has to be done

to demonstrate the utility of the approach before it will

be widely available. Similarly, these systems have initially

focused on attack detection, but it would be interesting to

extend these systems to recovering from a detected attack.

Snooping is useful for finer-grained memory monitoring.

C. Memory Protection: A necessary property for prevention

We end this section by observing that all prevention

systems employ some form of memory protection to syn-

chronously interpose on sensitive data writes. For example,

HookSafe [89] and Lares [73] use memory protection to

guard against unexpected updates to function pointers. In

contrast, it isn’t clear how to convert an asynchronous

memory search from a detection into a prevention tool. The

most likely candidate is with selective, fine-grained hardware

memory bus snooping, described above. Thus, if attack

prevention is a more desirable goal than detection after-the-

fact, the community should focus more effort on discovering

lightweight, synchronous monitoring mechanisms.

All current prevention systems rely on synchronous mem-

ory protection.

V. ATTACKS, DEFENSE, AND TRUST

This section explains the three major classes of attacks

against VMI, known defenses against those attacks, and

explains how these attacks relate to an underlying trust

placed in the guest OS. These issues are summarized in

Table III.

A. Kernel Object Hooking

A Kernel Object Hooking (KOH) attack [8] attempts to

modify function pointers (hooks) located in the kernel text or

data sections. An attacker overwrites a function pointer with

the address of a function provided by the attacker, which

will then allow the attacker to interpose on a desired set of

kernel operations. In some sense, Linux Security Modules

provide similar hooks for security enhancements [91]; the

primary difference is that KOH repurposes other hooks used

for purposes such as implementing an extensible virtual file

612

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

system (VFS) model. The defenses against KOH attacks

generally depend on whether the hook is located in the text

or data segment.

1) Text section hooks: The primary text section hooks

are the system call table and interrupt descriptor table.

For instance, an attacker could interpose on all file open
calls simply by replacing the pointer to the sys_open()
function in the system call table.

In older OSes, these hooks were in the data segment

despite not being dynamically changed by most OSes. In

order to prevent malware from overwriting these hooks, most

kernels now place these hooks in the read-only text segment.

As discussed in §III-D1, a sufficient defense is hypervisor-

imposed, page-level Write ⊕ Execute permissions.

2) Data section hooks: Kernel data section hooks are

more difficult to protect than text section hooks. Data

section hooks place function pointers in objects, facilitating

extensibility. For instance, Linux implements a range of dif-

ferent socket types behind a generic API; each instantiation

overrides certain hooks in the file descriptor for a given

socket handle.

The fundamental challenge is that, although these hooks

generally do not change during the lifetime of the object,

they are often placed in the same page or even cache

line with fields that do change. Because most kernels mix

hooks which should be immutable with changing data, most

hardware-based protection mechanisms are thwarted.

In practice, these hooks are very useful for rootkits to

hide themselves from anti-malware tools inside the VM. For

instance, the Adore-ng [36] rootkit overrides the lookup()
and readdir() functions on the /proc file system di-

rectory. Process listing utilities work by reading the sub-

directories for each running process under /proc; a rootkit

that overrides these functions can filter itself from the

readdir() system call issued by ps.

In order to defend against such attacks, the function point-

ers need to be protected from modification once initialized.

Because of the high-cost of moderating all writes to these

data structures, most defenses either move the hooks to

different locations which can be write-protected [89], or

augment hooks in the kernel with checks against a whitelist

of trusted functions [75].

Trust: Protecting the kernel code from unexpected

modifications at runtime is clearly sensible. Underlying these

defenses is the assumption that the kernel is initially trusted,

but may be compromised later. The more subtle point,

however, is that all of the VMI tools discussed in §III assume

that the kernel text will not change. Thus, preventing text

section modification is effectively a prerequisite for current

VMI techniques.

Defenses against KOH on data hooks generally posit

trust in the ability of an administrator to correctly identify

trustworthy and untrustworthy kernel modules. As explained

in Section III-D, KOH defenses assume that kernel modules

are benign in order to provide some meaningful protections

without solving the significantly harder problem of kernel

control flow integrity in the presence of untrusted modules.

KOH defenses generally assume benign kernel modules.

Finally, we note that some published solutions to the

KOH data section problem are based on best-effort dynamic

analysis, which can miss hooks that are not exercised. There

is no fundamental reason this analysis should be dynamic,

other than the unavailability of source code. In fact, some

systems do use static analysis to identify code hooks [51],

which can identify all possible data section hooks.

B. Dynamic Kernel Object Manipulation

Manipulating the kernel text and code hooks are the

easiest attack vector against VMI; once KOH defenses

were developed, attackers turned their attention to attacks

on the kernel heap. Dynamic Kernel Object Manipulation

(DKOM) [28] attacks modify the kernel heap through a

loaded module or an application accessing /dev/mem or

/proc/kcore on Linux. DKOM attacks only modify data

values, and thus are distinct from modifying the control flow

through function hooks (KOH).

A DKOM attack works by invalidating latent assumptions

in unmodified kernel code. A classic example of a DKOM

attack is hiding a malicious process from a process listing

tools, such as ps. The Linux kernel tracks processes in two

separate data structures: a linked list for process listing and

a tree for scheduling. A rootkit can hide malicious processes

by taking the process out of the linked list, but leaving

the malicious process in the scheduler tree. The interesting

property is that loading a module can be sufficient to alter

the behavior of unrelated, unmodified kernel code.

DKOM attacks are hard to prevent because they are

a metaphorical needle in a haystack of expected kernel

heap writes. As a result, most practical defenses attempt

to identify data structure invariants, either by hand, static,

or dynamic analysis, and then detect data structure invariant

violations asynchronously. Because an attacker can create

objects from any memory, not just the kernel heap allocator,

data structure detection is also a salient issue for detect-

ing DKOM attacks (§III-A). Thus, a robust, asynchronous

DKOM detector must search all guest memory, increasing

overheads, and tolerate attempts to obfuscate a structure.

Trust: DKOM defenses introduce additional trust in the

guest beyond a KOH defense, and make several assumptions

which an attacker can could be violated by an attacker.

Most DKOM defenses work by identifying security-related

data structure invariants. Because it is difficult for the

defender to ever have confidence that all security-relevant

invariants have been identified, this approach will generally

be best-effort and reactive in nature. Deeper source analysis

tools could yield more comprehensive invariant results, but

more research is needed on this topic. Many papers on the

613

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

topic focus on a few troublesome data structures, such as

the task_struct, yet Linux has several hundred data

structure types. It is unclear whether any automated analysis

will scale to the number of hiding places afforded to rootkits

by monolithic kernels, or whether detection tools will always

be one step behind attackers. That said, even a best-effort

defense has value in making rootkits harder to write.

Another problematic assumption is that all security-

sensitive fields of kernel data structures have invariants that

can be easily checked in a memory snapshot. For instance,

one might assume that any outgoing packets come from a

socket that appears in the output of a tool such as netstat

(or a VMI-based equivalent). Yet a malicious Linux kernel

module could copy packets from the heap of an application

to the outgoing IP queue—a point in the networking stack

which doesn’t maintain any information about the origi-

nating socket or process. Thus, memory snapshots alone

couldn’t easily identify an inconsistency between outgoing

packets and open sockets, especially if the packet could have

been sent by a different process, such as a process with

an open raw socket. Although the problem in this example

could be mitigated with continuous monitoring, such mon-

itoring would substantially increase runtime overheads; in

contrast, most DKOM defenses rely on infrequent scanning

to minimize overheads. In this example, the data structure

invariant spans a sequence of operations, which can’t be

captured with one snapshot.

A single snapshot cannot capture data structure invariants

that span multiple operations.

Third, DKOM defenses cement trust that the guest kernel
is benign. These defenses train data structure classifiers

on a clean kernel instance or derive the classifiers from

source code, which is assumed to only demonstrate desirable

behavior during the training phase. Although we hasten to

note that this assumption may be generally reasonable, it

is not beyond question that an OS vendor might include

a backdoor that such a classifier would learn to treat as

expected behavior.

In order to ensure that the guest kernel is benign, DKOM

defenses generally posit a KOH defense. Learning code

invariants is of little use when an attacker can effectively

replace the code. The interesting contrast between KOH and

DKOM defenses is that DKOM defenses can detect invalid

data modifications even in the presence of an untrustworthy
module, whereas common KOH defenses rely on module

whitelisting. Thus, if a DKOM defense intends to tolerate

untrusted modules, it must build on a KOH defense that

is robust to untrusted modules as well, which may require

substantially stronger control flow integrity protection.

KOH defenses are a building block for DKOM defenses,

but often make different trust assumptions about modules.

Finally, these detection systems explicitly assume mal-

ware will leave persistent, detectable modifications and im-

plicitly assume malware cannot win races with the detector.

DKOM detectors rely on invariant violations being present

in the view of memory they analyze—either a snapshot or

a concurrent search using a read-only view of memory. Be-

cause DKOM detectors run in increments of seconds, short-

lived malware can easily evade detection. Even for persistent

rootkits, a reasonably strong adversary may also have access

to similar data structure classifiers and aggressively search

for invariants missed by the classifier.

If a rootkit can reliably predict when a DKOM detector

will view kernel memory, the rootkit has the opportunity to

temporarily repair data structure invariants—racing with the

detector. Reading a substantial portion of guest memory can

be is highly disruptive to cache timings—stalling subsequent

writes on coherence misses. Similarly, solutions based on

preempting the guest OS will leave telltale “lost ticks” on

the system clock. Even proposed hardware solutions can

be probed by making benign writes to potentially sensitive

addresses and then observing disruptions to unrelated I/O

timings. Given the long history of TOCTTOU and other

concurrency-based attacks [29, 92], combined with a likely

timing channel induced by the search mechanism and recent

successes exploiting VM-level side channels [94], the risk of

an attacker successfully racing with a detector is concerning.

DKOM defenses are potentially vulnerable to race condi-

tions within their threat model.

C. Direct Kernel Structure Manipulation

Direct Kernel Structure Manipulation (DKSM) attacks

[23] change the interpretation of a data structure between

training a VMI tool and its application to classify memory

regions into data structures. Simple examples of a DKSM

attack include swapping two fields within a data structure

or padding the structure with garbage fields so that relative

offsets differ from the expectation of the VMI tool.

Because most VMI tools assume a benign kernel, a

successful DKSM attack hinges on changing kernel con-

trol flow. The two previously proposed mechanisms are

KOH attacks and return-oriented programming [66]. As

discussed above, a number of successful countermeasures

for KOH attacks have been developed, as have effective

countermeasures to return-oriented programming, including

G-Free [72], “Return-Less” kernels [62], and STIR [90].

Trust: DKSM is somewhat of an oddity in the literature

because it is effectively precluded by a generous threat

model. However, a realistic threat model might allow an

adversarial OS to demonstrate different behavior during the

data structure training and classification phases—analogous

to “split-personality” malware that behaves differently when

it detects that it is under analysis.

DKSM is a reasonable concern obviated by generous

threat models.

614

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

Attack Defense Trust Assumption

Write text
Segment

Hypervisor-enforced W
⊕ X.

Initial text segment benign.

KOH
(code and
hooks)

Memory protect hooks
from text section modifi-
cation, or whitelist load-
able modules.

Pristine initial OS copy
and administrator’s ability
to discern trustworthy ker-
nel modules.

DKOM
(heap)

Identify data structure
invariants, detect viola-
tions by scanning mem-
ory snapshots.

• Guest kernel exhibits
only desirable behavior
during training, or
source is trustworthy.

• All security-relevant
data structure invariants
can be identified a
priori.

• All malware will leave
persistent modifications
that violate an invariant.

• All invariants can be
checked in a single
search.

• Attackers cannot win
races with the monitor.

DKSM
Prevent Bootstrapping
through KOH or ROP.

OS is benign; behaves iden-
tically during training and
classification.

Table III
VMI ATTACKS, DEFENSES, AND UNDERLYING TRUST ASSUMPTIONS.

D. The semantic gap is really two problems

Under a stronger threat model, the DKSM attack effec-

tively leverages the semantic gap to thwart security mea-

sures. Under DKSM, a malicious OS actively misleads VMI

tools in order to violate a security policy.

In the literature on VM introspection, the semantic gap

problem evolved to refer to two distinct issues: (1) the

engineering challenges of generating introspection tools,

possibly without source code [40, 44, 80], and (2) the

ability of a malicious or compromised OS to exploit fragile

assumptions underlying many introspection designs in order

to evade a security measure [51, 64, 77, 83, 89]. These

assumptions include:

• Trusting that the guest OS is benign during the training

phase, and will not behave differently under monitoring.

• All security-sensitive invariants and hooks can be auto-

matically learned.

• Attacks will persist long enough to be detected by periodic

searches.

• Administrators can whitelist trustworthy kernel modules.

Most papers on introspection focus on the first problem,

which has arguably been solved [40, 44, 80], yet interesting

attacks leverage the second issue, which is still an open

problem, as is reliable introspection under stronger threat

models.

Unfortunately, the literature has not clearly distinguished

these problem variations, and only a close reading will indi-

cate which one a given paper is addressing. This confusion

is only exacerbated when one attempts to place these papers

next to each other in the context of attacks and defenses.

That said, we do believe that the overall path of starting

with a weak attacker and iteratively strengthening the threat

model is a pragmatic approach to research in this area; the

issue is ambiguous nomenclature.

We therefore suggest a clearer nomenclature for the two

sub-problems: the weak and strong semantic gap problems.

The weak semantic gap is the largely solved engineering

challenge of generating VMI tools, and the strong semantic

gap refers to the challenge of defending against an adver-

sarial, untrusted guest OS. A solution to the open strong

semantic gap problem would not make any assumptions

about the guest OS being benign during a training phase or

accept inferences from guest source code as reliable without

runtime validation. The strong semantic gap problem is, to

our knowledge, unsolved, and the ability to review future

work in this space relies on clearer delineation of the level

of trust placed in the guest OS. A solution to the strong

semantic gap problem would also prevent or detect DKSM

attacks.

The weak semantic gap is a solved engineering problem.

The strong semantic gap is an open security problem.

VI. TOWARD AN UNTRUSTED OS

Any solution to the strong semantic gap problem may

need to remove assumptions that the guest OS can be

trusted to help train an introspection tool. As illustrated

in Section III, most existing introspection tools rely on the

assumption that the guest OS begins in a benign state and its

source code or initial state can be trusted. Over time, several

designs have reduced the degree to which they rely on the

guest OS. It is not clear, however, that continued iterative

refinement will converge on techniques that eliminate trust

in the guest.

Table IV illustrates the space of reasonable trust models

in virtualization-based security. Although a lot of effort in

VMI has gone into the first row (the weak semantic gap), the

community should focus on new directions likely to bridge

the strong semantic gap (second row), as well as adopt useful

techniques from research into the other rows.

This section identifies promising approaches to the strong

semantic gap, based on insights from the literature.

A. Paraverification

Many VMI systems have the implicit design goal of

working with an unmodified OS, or limiting modifications to

the module loader and hooks. The goal of introspecting on an

unmodified guest OS often induces trust in the guest OS to

simplify this difficult problem. Specifically, most VMI tools

assume the guest OS is not actively malicious and adheres

to the behavior exhibited during the learning phase.

This subsection observes that, rather than relax the threat

model for VMI, relaxing the requirement of an unmodified

615

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

App Guest OS Hypervisor Challenge Solutions
√ √

Weak Semantic Gap Layered Security, VMI. Incrementally reduce trust in the guest OS.
√

Strong Semantic Gap Difficult to solve. Need techniques that can learn from untrusted
sources and detect inconsistencies during VMI.

√ √
Untrusted guest OS Paraverification. Application trust bridges the semantic gap.

√ √
Untrusted cloud hypervisor Support from trusted hardware like SGX [7, 70].

√
Untrusted guest OS and hypervisor Fine grained support from trusted hardware needed.

Table IV
TRUST MODELS. (

√
INDICATES THE LAYERS THAT ARE TRUSTED.)

OS may be a more useful stepping stone toward an untrusted

OS. By analogy, although initial hypervisors went through

heroic efforts to virtualize unmodified legacy OSes on an

ISA very unsuitable for virtualization [26], most modern

OSes now implement paravirtualization support [25]. Es-

sentially, paravirtualization makes small modifications to

the guest OS that eliminate the most onerous features to

emulate. For instance, Xen allowed the guest OS to observe

that there were inaccessible physical pages, substantially

reducing the overheads of virtualizing physical memory.

The reason paravirtualization was a success is that it was

easy to adopt, introduced little or no overheads when the

system executes on bare metal, and dramatically improved

performance in a VM.

Thus, we expect that light modifications to a guest OS

to aid in introspection could be a promising direction.

Specifically, we observe that the recent InkTag [52] system

introduced the idea of paraverification, in which the guest

OS provides the hypervisor with evidence that it is servicing

an application’s request correctly. The evidence offered by

the guest OS is easily checked by the hypervisor without

trusting the guest OS. For instance, a trusted application

may request a memory mapping of a file, and, in addition

to issuing an mmap system call, also reports the request

to the hypervisor. When the OS modifies the application’s

page tables to implement the mmap system call, the OS also

notifies the hypervisor that this modification is in response

to a particular application request. The hypervisor can then

do an end-to-end check that (1) the page table changes are

applied to an appropriate region of the application’s virtual

memory, (2) that the CPU register values used to return

to the application are sensible, and (3) that the contents of

these pages match the expected values read from disk, using

additional metadata storing hashes of file contents.

We hasten to note that the goals of InkTag are different

from VMI—ensuring a trusted application can safely use

functionality from a malicious OS. This problem has also

been explored in a number of other papers [35, 63]. More-

over, InkTag leverages the trusted application to bridge the

semantic gap—a strategy that would not be suitable for the

types of problems VMI aims to solve. Nonetheless, forcing

an untrusted OS to aid in its own introspection could be

fruitful if the techniques were simple enough to adopt.

Rather than relaxing the threat model for VMI, relax strict

limits on guest modifications.

B. Hardware support for security

As we observe in §IV-C, Memory protection or other

synchronous notification mechanisms appear to be a require-

ment to move from detection to prevention. Unfortunately,

the coarseness of mechanisms in commodity hardware intro-

duce substantial overheads. §IV-B summarizes recent work

on memory monitoring at cache line granularity—a valuable

approach meriting further research.

An interesting direction recently taken by Intel is develop-

ing a mutual distrust model for hardware memory protection,

called Software Guard Extensions (SGX) [21, 50, 70]. SGX

allows an OS or hypervisor to manage virtual-to-physical OS

mappings for an application, but the lower-level software

cannot access memory contents. SGX provides memory

isolation of a trusted application from an untrustworthy soft-

ware stack. Similar memory isolation has been provided by

several software-only systems [35, 52], but at a substantial

performance cost attributable to frequent traps to a trusted

hypervisor. Finally, we note that in order for an application

to safely use system calls on an untrusted OS, a number of

other problems must be addressed [33, 52].

In the context of introspection or the strong semantic

gap, hardware like SGX can also be useful for creating a

finer-grained protection domain for code implanted in the

guest OS III-B. More fine-grained memory protection and

monitoring tools are needed from hardware manufacturers.

Fine-grained memory protection and monitoring hardware

can reduce overheads and trust.

C. Reconstruction from untrusted sources

Current tools that automatically learn data structure sig-

natures assume the OS will behave similarly during training

and classification (§V-B). Among the assumptions made in

current VMI tools, this is one that potentially has the best

chance of being incrementally removed. For example, one

approach might train the VMI classifiers on the live OS, and

continue incrementally training as the guest OS runs.

Another approach would be to detect inconsistencies

between the training and classification stages of VMI. By

616

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

analogy, distributed fault tolerance systems are often built

around the abstraction of a proof of misbehavior, where

a faulty participant in the protocol generates signed mes-

sages to different participants that contradict one another

[19, 61]. Similarly, one approach to assuring learning-based

systems is to look for proof of misbehavior in the guest

OS. For instance, Lycosid detected inconsistencies between

the cr3 register and the purported process descriptor’s

cr3 value [55]. A proof of misbehavior may also include

inconsistencies in code paths or data access patterns between

the training and classification phases of introspection.

VMI should detect inconsistent behavior over the life of

an OS, not just between training and classification.

VII. UNDER-EXPLORED ISSUES

Based on our survey of the literature on VMI, we identify

a few issues that deserve more consideration in future work.

A. Scalability

Many VMI designs are fairly expensive, especially de-

signs that run a sibling VM on a dedicated core for analysis.

For example, one state-of-the-art system reports overheads

ranging from 9.3—500× [44]. There is a reasonable argu-

ment why high VMI overheads might be acceptable: the

average desktop has idle cores anyway, which could be

fruitfully employed to improve system security. However,

this argument does not hold in a cloud environment, where

all cores can be utilized to service additional clients. In a

cloud, customers will not be pleased with doubling their bill,

nor would a provider be pleased with halving revenue.

It is reasonable to expect that VMI would be particularly

useful on a cloud or other multi-VM system. Thus, future

work on VMI must focus not only on novel techniques

or threat models, but also on managing overheads and

scalability with increasing numbers of VMs.

VMI research must measure multi-tenant scalability.

Another strategy to mitigate the costs of asynchronous

scanning is to adjust the frequency of the scans—trading

risk for performance. For instance, a recent system measured

scanning time at 50ms, and could keep overheads at 1%

by only scanning every 5s [51]. Similarly, one may cache

and reuse introspection results to trade risk of stale data

for better scalability [80]. An interesting direction for future

work is identifying techniques that minimize both overheads

and risk.

B. Privacy

VMI has the potential to create new side-channels in cloud

systems. For instance, after reading application binaries,

Patagonix [65] queries the NSRL database with the binary

hash to determine the type of binary that is running on the

system. This effectively leaks information about the pro-

grams run within a VM to an outside observer, undermining

user privacy.

More generally, VMI has the potential for one guest

to observe different cache timings based on the behavior

of another guest. Consider a VMI tool that does periodic

memory scans of multiple VMs on a cloud system, one

after another. The memory scan or snapshot will disrupt

cache timings of the guest under observation by forcing

exclusive cache lines to transition back to a shared, read-

only mode §V-B. Based on its own cache timings, the VM

can observe the frequency of its periodic scans. Because the

length of a scan of another VM can also be a function of

what the VM is doing, changes in time between scans of

one VM can indicate what is happening in another VM on

the same system.

Although it is unclear whether this example side channel

is exploitable in practice, the example raises the larger issue

that VMI projects should be cognizant of potential side

channels in a multi-VM system. Richter et al. [78] present

initial work on privacy-preserving introspection, but more

work is needed. An ideal system would not force the user

to choose between integrity or privacy risks.

VMI designs should evaluate risks of new side channels.

VIII. CONCLUSION

Virtual machine introspection is a relatively mature re-

search topic that has made substantial advances over the last

twelve years since the semantic gap problem was posed.

However, efforts in this space should be refocused on

removing trust from the guest OS in service of the larger

goal of reducing the system’s TCB. Moreover, future VMI

solutions should balance innovative techniques and security

properties with scalability and privacy concerns. We expect

that the lessons from previous work will guide future efforts

to adapt existing techniques or develop new techniques to

bridge the strong semantic gap.

ACKNOWLEDGEMENTS

We thank our shepherd, Virgil Gligor, and the anonymous

reviewers for their insightful comments on earlier versions

of this paper. This research was supported in part by

NSF grants CNS-1149229, NSF CNS-1161541, NSF CNS-

1228839, NSF CNS-1318572, NSF CNS-1223239, NSF

CCF-0937833, by the US ARMY award W911NF-13-1-

0142, the Office of the Vice President for Research at Stony

Brook University, and by gifts from Northrop Grumman

Corporation, Parc/Xerox, Microsoft Research, and CA.

REFERENCES

[1] Draugr. Online at https://code.google.com/p/draugr/.

[2] FatKit. Online at http://4tphi.net/fatkit/.

[3] Foriana. Online at http://hysteria.sk/∼niekt0/foriana/.

617

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

[4] GREPEXEC: Grepping Executive Objects from Pool

Memory). Online at http://uninformed.org/?v=4&a=

2&t=pdf.

[5] idetect. Online at http://forensic.seccure.net/.

[6] Intel 64 and IA-32 Architectures Developer’s Manual:

Vol. 3B.

[7] Intel Software Guard Extensions (Intel SGX) Program-

ming Reference.

[8] Kernel object hooking rootkits (koh rootkits).

http://my.opera.com/330205811004483jash520/blog/

show.dml/314125.

[9] Kntlist. Online at http://www.dfrws.org/2005/

challenge/kntlist.shtml.

[10] lsproc. Online at http://windowsir.blogspot.com/2006/

04/lsproc-released.html.

[11] Memparser. Online at http://www.dfrws.org/2005/

challenge/memparser.shtml.

[12] PROCENUM. Online at http://forensic.seccure.net/.

[13] Red Hat Crash Utility. Online at http://people.redhat.

com/anderson/.

[14] The Linux Cross Reference. Online at http://lxr.linux.

no/.

[15] The Volatility framework. Online at https://code.

google.com/p/volatility/.

[16] Volatilitux. Online at https://code.google.com/p/

volatilitux/.

[17] Windows Memory Forensic Toolkit. Online at http:

//forensic.seccure.net/.

[18] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In CCS, pages 340–353, 2005.

[19] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-

P. Martin, and C. Porth. BAR Fault Tolerance for

Cooperative Services. In SOSP, pages 45–58, 2005.

[20] AMD. AMD I/O Virtualization Technology (IOMMU)

Specification Revision 1.26. White Paper, AMD:

http://support.amd.com/us/Processor TechDocs/

34434-IOMMU-Rev 1.26 2-11-09.pdf, Nov 2009.

[21] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.

Innovative technology for cpu based attestation and

sealing. HASP ’13, 2013.

[22] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,

and N. C. Skalsky. Hypersentry: enabling stealthy in-

context measurement of hypervisor integrity. In CCS,

pages 38–49, 2010.

[23] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li,

D. Srinivasan, J. Rhee, and D. Xu. Dksm: Subverting

virtual machine introspection for fun and profit. In

SRDS, pages 82–91, 2010.

[24] A. Baliga, V. Ganapathy, and L. Iftode. Automatic

inference and enforcement of kernel data structure

invariants. In ACSAC, pages 77–86, 2008.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen

and the art of virtualization. In SOSP, pages 164–177,

2003.

[26] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman,

and E. Y. Wang. Bringing virtualization to the x86 ar-

chitecture with the original vmware workstation. ACM
TOCS, 30(4):12:1–12:51, Nov. 2012.

[27] T. W. Burger. Intel Virtualization Technology for

Directed I/O (VT-d): Enhancing Intel platforms

for efficient virtualization of I/O devices. http:

//software.intel.com/en-us/articles/intel-virtualization-

technology-for-directed-io-vt-d-enhancing-intel-

platforms-for-efficient-virtualization-of-io-devices/,

February 2009.

[28] J. Butler and G. Hoglund. Vice - catch the hookers!

In Black Hat USA 2004, Las Vegas, USA, 2004.

[29] X. Cai, Y. Gui, and R. Johnson. Exploiting unix file-

system races via algorithmic complexity attacks. In

Oakland, pages 27–41, 2009.

[30] M. Carbone, M. Conover, B. Montague, and W. Lee.

Secure and robust monitoring of virtual machines

through guest-assisted introspection. In RAID, pages

22–41, 2012.

[31] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and

X. Jiang. Mapping kernel objects to enable systematic

integrity checking. In CCS, pages 555–565, 2009.

[32] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zel-

dovich. Intrusion recovery for database-backed web

applications. In SOSP, pages 101–114, 2011.

[33] S. Checkoway and H. Shacham. Iago attacks: Why

the system call api is a bad untrusted rpc interface. In

ASPLOS, 2013.

[34] P. M. Chen and B. D. Noble. When virtual is better

than real. In HotOS, pages 133–, 2001.

[35] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,

C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.

Ports. Overshadow: A virtualization-based approach to

retrofitting protection in commodity operating systems.

In ASPLOS, pages 2–13, 2008.

[36] J. Corbet. A new adore root kit. LWN, March 2004.

http://lwn.net/Articles/75990/.

[37] A. Cristina, L. Marziale, G. G. R. Iii, and V. Rous-

sev. Face: Automated digital evidence discovery and

correlation. In Digital Forensics, 2005.

[38] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking

rootkit footprints with a practical memory analysis

system. In USENIX Security, pages 42–42, 2012.

[39] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:

malware analysis via hardware virtualization exten-

sions. In CCS, pages 51–62, 2008.

[40] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and

W. Lee. Virtuoso: Narrowing the semantic gap in

virtual machine introspection. In Oakland, pages 297–

312, 2011.

[41] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Gif-

fin. Robust signatures for kernel data structures. In

618

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

CCS, pages 566–577, 2009.

[42] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and

P. M. Chen. Revirt: enabling intrusion analysis through

virtual-machine logging and replay. In OSDI, 2002.

[43] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,

C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon

system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, Dec. 2007.

[44] Y. Fu and Z. Lin. Space traveling across vm: Auto-

matically bridging the semantic gap in virtual machine

introspection via online kernel data redirection. In

Oakland, pages 586–600, 2012.

[45] Y. Fu and Z. Lin. Exterior: using a dual-vm based

external shell for guest-os introspection, configuration,

and recovery. In VEE, pages 97–110, 2013.

[46] T. Garfinkel and M. Rosenblum. A virtual machine

introspection based architecture for intrusion detection.

In NDSS, pages 191–206, 2003.

[47] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process

implanting: A new active introspection framework for

virtualization. In SRDS, pages 147–156, 2011.

[48] R. T. Hall and J. Taylor. A framework for network-

wide semantic event correlation, 2013.

[49] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis

using cla: a million lines of c code in a second. In

PLDI, pages 254–263, 2001.

[50] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and

J. Del Cuvillo. Using innovative instructions to create

trustworthy software solutions. In HASP, 2013.

[51] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and

E. Witchel. Ensuring operating system kernel integrity

with OSck. In ASPLOS, pages 279–290, 2011.

[52] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and

E. Witchel. Inktag: secure applications on an untrusted

operating system. In ASPLOS, pages 265–278, 2013.

[53] X. Jiang, X. Wang, and D. Xu. Stealthy malware de-

tection through vmm-based ”out-of-the-box” semantic

view reconstruction. In CCS, pages 128–138, 2007.

[54] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Geiger: Monitoring the buffer cache in a

virtual machine environment. In ASPLOS, ASPLOS

XII, pages 14–24, 2006.

[55] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. VMM-based Hidden Process Detection and

Identification Using Lycosid. In VEE, pages 91–100,

2008.

[56] D. Kienzle, N. Evans, and M. Elder. NICE: Network

Introspection by Collaborating Endpoints. In Commu-
nications and Network Security, pages 411–412, 2013.

[57] T. Kim, R. Chandra, and N. Zeldovich. Recovering

from intrusions in distributed systems with DARE. In

APSYS, pages 10:1–10:7, 2012.

[58] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek.

Intrusion recovery using selective re-execution. In

OSDI, pages 1–9, 2010.

[59] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.

Secure execution via program shepherding. In USENIX
Security, pages 191–206, 2002.

[60] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek,

and B. B. Kang. Ki-mon: a hardware-assisted event-

triggered monitoring platform for mutable kernel ob-

ject. In USENIX Security, pages 511–526, 2013.

[61] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure

untrusted data repository (SUNDR). In OSDI, pages

9–9, 2004.

[62] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.

Defeating return-oriented rootkits with ”return-less”

kernels. In EuroSys, pages 195–208, 2010.

[63] D. Lie, C. A. Thekkath, and M. Horowitz. Implement-

ing an untrusted operating system on trusted hardware.

In SOSP, pages 178–192, 2003.

[64] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang.

Siggraph: Brute force scanning of kernel data structure

instances using graph-based signatures. In NDSS, 2011.

[65] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor

support for identifying covertly executing binaries. In

SS, pages 243–258, 2008.

[66] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha. Launching

return-oriented programming attacks against random-

ized relocatable executables. In TRUSTCOM, pages

37–44, 2011.

[67] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi.

Cpu transparent protection of os kernel and hypervisor

integrity with programmable dram. In ISCA, pages

392–403, 2013.

[68] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,

V. Gligor, and A. Perrig. Trustvisor: Efficient tcb

reduction and attestation. In Oakland, pages 143–158,

2010.

[69] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,

and H. Isozaki. Flicker: An execution infrastructure for

tcb minimization. In EuroSys, pages 315–328, 2008.

[70] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.

Rozas, H. Shafi, V. Shanbhogue, and U. R. Sava-

gaonkar. Innovative instructions and software model

for isolated execution. In HASP, 2013.

[71] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B.

Kang. Vigilare: toward snoop-based kernel integrity

monitor. In CCS, pages 28–37, 2012.

[72] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and

E. Kirda. G-free: defeating return-oriented program-

ming through gadget-less binaries. In ACSAC, pages

49–58, 2010.

[73] B. D. Payne, M. Carbone, M. Sharif, and W. Lee.

Lares: An architecture for secure active monitoring

using virtualization. In Oakland, pages 233–247, 2008.

[74] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A.

Arbaugh. Copilot - a coprocessor-based kernel runtime

619

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

integrity monitor. In USENIX Security, pages 13–13,

2004.

[75] N. L. Petroni, Jr. and M. Hicks. Automated detection

of persistent kernel control-flow attacks. In CCS, pages

103–115, 2007.

[76] G. J. Popek and R. P. Goldberg. Formal requirements

for virtualizable third generation architectures. CACM,

17(7):412–421, July 1974.

[77] J. Rhee, R. Riley, D. Xu, and X. Jiang. Kernel

malware analysis with un-tampered and temporal views

of dynamic kernel memory. In RAID, pages 178–197,

2010.

[78] W. Richter, G. Ammons, J. Harkes, A. Goode, N. Bila,

E. De Lara, V. Bala, and M. Satyanarayanan. Privacy-

sensitive VM Retrospection. In HotCloud, pages 10–

10, 2011.

[79] R. Riley, X. Jiang, and D. Xu. Guest-transparent

prevention of kernel rootkits with VMM-based memory

shadowing. In RAID, pages 1–20, 2008.

[80] A. Saberi, Y. Fu, and Z. Lin. HYBRID-BRIDGE: Effi-

ciently Bridging the Semantic Gap in Virtual Machine

Introspection via Decoupled Execution and Training

Memoization. In NDSS, 2014.

[81] A. Schuster. Pool allocations as an information source

in Windows memory forensics. In IMF, pages 104–

115, 2006.

[82] A. Schuster. The impact of Microsoft Windows pool

allocation strategies on memory forensics. Digital
Investigation, 5:S58–S64, 2008.

[83] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A

tiny hypervisor to provide lifetime kernel code integrity

for commodity OSes. In SOSP, pages 335–350, 2007.

[84] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-

VM monitoring using hardware virtualization. In CCS,

pages 477–487, 2009.

[85] Y. Shin and L. Williams. An Empirical Model to Pre-

dict Security Vulnerabilities Using Code Complexity

Metrics. In ESEM, pages 315–317, 2008.

[86] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process

out-grafting: An efficient ”out-of-VM” approach for

fine-grained process execution monitoring. In CCS,

pages 363–374, 2011.

[87] V. Tarasov, D. Jain, D. Hildebrand, R. Tewari, G. Kuen-

ning, and E. Zadok. Improving I/O performance using

virtual disk introspection. In HotStorage, pages 11–11,

2013.

[88] J. Wang, A. Stavrou, and A. Ghosh. Hypercheck: A

hardware-assisted integrity monitor. In RAID, pages

158–177, 2010.

[89] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering

kernel rootkits with lightweight hook protection. In

CCS, pages 545–554, 2009.

[90] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.

Binary stirring: Self-randomizing instruction addresses
of legacy x86 binary code. In CCS, pages 157–168,

2012.

[91] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. K.

Hartman. Linux security modules: General security

support for the Linux kernel. In USENIX Security
Symposium, 2002.

[92] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan.

Concurrency attacks. In HotPar, pages 15–15, 2012.

[93] Y. Zhang, Y. Gu, H. Wang, and D. Wang. Virtual-

machine-based intrusion detection on file-aware block

level storage. In SBAC-PAD, pages 185–192, 2006.

[94] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.

Cross-VM side channels and their use to extract private

keys. In CCS, pages 305–316, 2012.

620

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 14:57:30 UTC from IEEE Xplore. Restrictions apply.

