
Blind Seer: A Scalable Private DBMS

Vasilis Pappas∗, Fernando Krell∗, Binh Vo∗,
Vladimir Kolesnikov†, Tal Malkin∗, Seung Geol Choi‡, Wesley George§, Angelos Keromytis∗, Steven Bellovin∗

∗ Columbia University, {vpappas,binh,fkrell,smb,angelos,tal}@cs.columbia.edu
†Bell Labs, kolesnikov@research.bell-labs.com

‡US Naval Academy, choi@usna.edu
§University of Toronto, wgeorge@cs.toronto.edu

Abstract—Query privacy in secure DBMS is an important
feature, although rarely formally considered outside the theoret-
ical community. Because of the high overheads of guaranteeing
privacy in complex queries, almost all previous works addressing
practical applications consider limited queries (e.g., just keyword
search), or provide a weak guarantee of privacy.

In this work, we address a major open problem in private
DB: efficient sublinear search for arbitrary Boolean queries. We
consider scalable DBMS with provable security for all parties,
including protection of the data from both server (who stores
encrypted data) and client (who searches it), as well as protection
of the query, and access control for the query.

We design, build, and evaluate the performance of a rich
DBMS system, suitable for real-world deployment on today
medium- to large-scale DBs. On a modern server, we are able to
query a formula over 10TB, 100M-record DB, with 70 searchable
index terms per DB row, in time comparable to (insecure)
MySQL (many practical queries can be privately executed with
work 1.2-3 times slower than MySQL, although some queries are
costlier).

We support a rich query set, including searching on arbitrary
boolean formulas on keywords and ranges, support for stemming,
and free keyword searches over text fields.

We identify and permit a reasonable and controlled amount of
leakage, proving that no further leakage is possible. In particular,
we allow leakage of some search pattern information, but protect
the query and data, provide a high level of privacy for individual
terms in the executed search formula, and hide the difference
between a query that returned no results and a query that
returned a very small result set. We also support private and
complex access policies, integrated in the search process so that
a query with empty result set and a query that fails the policy
are hard to tell apart.

I. INTRODUCTION

Motivation. Over the last two decades, the amount of data

generated, collected, and stored has been steadily increas-

ing. This growth is now reaching dramatic proportions and

touching every aspect of our life, including social, political,

commercial, scientific, medical, and legal contexts. With the

rise in size, potential applications and utility of these data,

privacy concerns become more acute. For example, the recent

revelation of the U.S. Government’s data collection programs

reignited the privacy debate.

We address the issue of privacy for database management

systems (DBMS), where the privacy of both the data and
the query must be protected. As an example, consider the

scenario where a law enforcement agency needs to search

airline manifests for specific persons or patterns. Because of

the classified nature of the query (and even of the existence of

a matching record), the query cannot be revealed to the DB.

With the absence of truly reliable and trusted third parties,

today’s solution, supported by legislation, is to simply require

the manifests and any other permitted data to be furnished

to the agency. However, a solution that allows the agency to

ask for and receive only the data it is interested in (without

revealing its interest), would serve two important goals:

• allay the negative popular sentiment associated with large

personal data collection and management which is not

publicly accounted.

• enhance agencies’ ability to mine data, by obtaining

permission to query a richer data set that could not be

legally obtained in its entirety.

In particular, we implement external policy enforcement on

queries, thus preventing many forms of abuse. Our system

allows an independent oblivious controller to enforce that

metadata queries satisfy the specificity requirement.

Other motivating scenarios are abundant, including private

queries over census data, information sharing between law

enforcement agencies (especially across jurisdictional and na-

tional boundaries) and electronic discovery in lawsuits, where

parties have to turn over relevant documents, but don’t want to

share their entire corpus [33], [43]. Often in these scenarios

the (private) query should be answered only if it satisfies a

certain (secret) policy. A very recent motivating example [3]

involves the intended use of data from automated license plate

readers in order to solve crimes, and the concerns over its use

for compromising privacy for the innocent.

While achieving full privacy for these scenarios is possible

building on cryptographic tools such as SPIR [24], FHE [21],

ORAM [27] or multiparty computation (MPC), those solutions

either run in polynomial time, or have very expensive basic

steps in the sublinear algorithms. For example, when ORAM

is used to achieve sublinear secure computation between two

parties [29], its basic step involves oblivious PRF evaluation.

[29] reports that it takes about 1000 seconds to run a binary

search on 220 entries; subsequent works [22], [39] remain too

expensive for our setting. On the other hand, for data sets of

moderate or large sizes, even linear computation is prohibitive.

This motivates the following.

Design goals. Build a secure and usable DBMS system,

2014 IEEE Symposium on Security and Privacy

© 2014, Vasilis Pappas. Under license to IEEE.

DOI 10.1109/SP.2014.30

359

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

with rich functionality, and performance very close to existing

insecure implementations, so as to maintain the current modus
operandi of potential users such as government agencies and

commercial organizations. At the same time, we must provide

reasonable and provable privacy guarantees for the system.

These are the hard design requirements which we achieve

with Blind Seer (BLoom filter INDex SEarch of Encrypted

Results). Our work can be seen as an example of apply-

ing cryptographic rigor to design and analysis of a large

system. Privacy/efficiency trade-offs are inherent in many

large systems. We believe that the analysis approach we take

(identifying and permitting a controlled amount of leakage,

and proving that there is no additional leakage) will be useful

in future secure systems.

Significance. We solve a significant open problem in private

DB: efficient sublinear search for arbitrary Boolean queries.

While private keyword-search was achieved in some models,

this did not extend to general Boolean formulas. Natural break-

ing of a formula to terms and individual keyword-searching

of each leaks formula structure and encrypted results for each

keyword, significantly compromising privacy of both query

and data. Until our work, and the (very different) independent

and concurrent works [11], [31], it was not known how to

efficiently avoid this leakage. (See Section IX for extended

discussion on related work.)

A. Our Setting

Traditionally, DB querying is seen as a two-player engage-

ment: the client queries the server operated by the data owner,

although delegation of the server operation to a third player is

increasingly common.

Players. In our system, there are three main players: client C,

server S, and index server IS (there is another logical entity,

query checker QC, whose task of private query compliance

checking is technically secondary, albeit practically important.

For generality, we consider QC as a separate player, although

its role is normally played by either S or IS). We split off

IS from S mainly for performance reasons, as two-player

private DBMS querying has trivial linear in DB size lower

bounds1, while three non-colluding players allow for far better

privacy-performance trade-offs. We note also that our system

can be generalized to handle multiple clients in several ways

(presenting different trade-offs), but we focus our presentation

on the single client setting.

Allowed leakage. The best possible privacy for us would

guarantee that C learns only the result set, and IS and S
learn nothing at all. However, achieving this would be quite

costly, and almost certainly far too expensive as a replacement

for any existing DBMS. Indeed, practically efficient equality

checking of encrypted data would likely require the use deter-

ministic encryption, which allows to identify and accumulate

access patterns. Additionally, for certain conjunctive queries,

1This lower bound can be circumvented if we allow precomputation, as
done for example in the ORAM based schemes mentioned above. However,
the resulting solution is far too inefficient for practice, as even its online phase
is several orders of magnitude slower than our solution.

sublinear search algorithms are currently unknown, even for

insecure DBMS. Thus, unless we opt for a linear time for all

conjunctive queries, the running time already inevitably reveals

some information (see Section VI-B for more discussion).

As a result, we accept that certain minimal amount of

leakage is unavoidable. In particular, we allow players C and IS
to learn certain search pattern information, such as the pattern

of returned results, and the traversal pattern of the encrypted

search tree. We stress that we still formally prove security of

the resulting system – our simulators of players’ views are

given the advice corresponding to the allowed leakage. We

specify the allowed leakage in more detail in Section VI.

We note that this work was performed under the IARPA

SPAR program [1]. Many of the privacy and functionality re-

quirements we address are suggested by IARPA. In Section X

we provide further motivation, examples and discussion of our

setting and choices.

B. Our Contributions

We design, prove secure, implement and evaluate the first scal-

able privacy-preserving DBMS which simultaneously satisfies

all the following features (see the following sections for a more

complete description and comparison to previous works):

• Rich functionality: we support a rich set of queries

including arbitrary Boolean formulas, ranges, stemming,

and negations, while hiding search column names and

including free keyword searches over text fields in the

database. We note that there is no standard way in

MySQL to obtain the latter.

• Practical scalability. Our performance (similarly to

MySQL) is proportional to the number of terms in the

query and to the result set size for the CNF term with

the smallest number of results.

For a DB of size 10TB containing 100M records with 70

searchable index terms per DB row, our system executes

many types of queries that return few results in well under

a second, which is comparable to MySQL.

• Provable security. We guarantee the privacy of the data

from both IS and C, as well as the privacy of C’s query

from S and IS. We prove security with respect to well

defined, reasonable, and controlled leakage. In particular,

while certain information about search patterns and the

size of the result set is leaked, we do provide some

privacy of the result set size, suited for the case when

identifying that there is one result as opposed to zero

results is undesirable (Section V-B).

• Natural integration of private policy enforcement. We

represent policies as Boolean circuits over the query, and

can support any policy that depends only on the query,

with performance that depends on the policy circuit size.

• Support for DB updates, deletions and insertions.

To our knowledge the combination of performance, features

and provable security of our system has never been achieved,

even without implementation, and represents a breakthrough

in private data management. Indeed, previous solutions either

require at least linear work, address a more limited type of

360

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

��������	
�	

���	
�������	

��	
�	

������

������	
��������
�

���
��

�	�
�

��������������	������

����� �	��������

!��
��

�	

��

��
�	�

��
	�

�

"��#��� ��������

Figure 1. High-level overview of Blind Seer. There are three different
operations depicted: preprocessing (step 0), database searching (step 1-4) and
data modifications (step 5).

queries (e.g., just keyword search), or provide weaker privacy

guarantees. The independent and concurrent work of [11], [31]

(also performed under IARPA SPAR program) is the only

system comparable to ours, in the sense that it too features a

similar combination of rich functionality, practical scalability,

provable security, and policy enforcement. However, the trade

offs that they achieve among these requirements and their

technical approach are quite different than ours.

Our scale captures moderate-to-large data, which encom-

passes datasets in the motivating scenarios above (such as the

census data, on which we ran our evaluation), and represents

a major step towards privacy for truly “big data”. Our work

achieves several orders of magnitude performance improve-

ment as compared to the fully secure cryptographic solution,

and much greater functionality and privacy as compared to

practical single keyword search and heuristic solutions.

II. SYSTEM DESIGN OVERVIEW

Participants. Recall, our system consists of four participants:

server S, client C, index server IS, and query checker QC.

The server owns a database DB, and provides its encrypted

searchable copy to IS, who obliviously services C’s queries.

QC, a logical player who can be co-located with and may

often be an agent of S, privately enforces a policy over the

query. This is needed to ensure control over hidden queries

from C. Player interaction is depicted in Figure 1.

Our approach. We present a high-level overview of our

approach and refer the reader to Section IV for technical de-

tails. We adhere to the following general approach of building

large secure systems, in which full security is prohibitively

costly: in a large problem, we identify small privacy-critical

subproblems, and solve those securely (their outputs must be

of low privacy consequence, and are handled in plaintext).

Then we use the outputs of the subtasks (often only a small

portion of them will need to be evaluated) to complete the

overall task efficiently.

We solve the large problem (encrypted search on large

DB) by traversing an encrypted search tree. This allows the

subtasks of privately computing whether a tree node has a child

matching the (arbitrarily complex) query to be designated as

security-critical. Further, unlike the protected input and the

internals of this subtask, its output, obtained in plaintext by

IS, reveals little private information, but is critical in pruning

the search tree and achieving efficient sublinear (logarithmic

for some queries) search complexity. Putting it together, our

search is performed by traversing the search tree, where

each node decision is made via very efficient secure function

evaluation (SFE).

We use Bloom filters (BF) to store collections of keywords

in each tree node. Bloom filters serve this role well because

they support small storage, constant time access, and invari-

ance of access patterns with respect to different queries and

match outputs. For SFE, we use state-of-the-art Yao’s garbled

circuits.

Because of SFE’s privacy guarantee in each tree node, the

overall leakage (i.e. additional information learned by the

players) essentially amounts to the traversal pattern in the

encrypted search tree.

We discuss technical details of these and other aspects of

the system, such as encrypted search tree construction, data

representation, policy checking, etc., in Section IV. We stress

that many of these details are technically involved.

III. PRELIMINARIES

We assume that readers are familiar with pseudorandom

generators (PRG), pseudorandom functions (PRF), and semi-

homomorphic encryption schemes with semantic security [28],

e.g., ElGamal encryption [19].

Notations. Let [n] = {1, . . . , n}. For �-bit strings a and

b, let a ∨ b (resp., a ∧ b and a⊕b) denote the bitwise-

OR (resp. bitwise-AND and bitwise-XOR) of a and b. Let

S = (i1, i2, . . . , iη) be a sequence of integers. We define a

projection of a ∈ {0, 1}� on S as a ↓S= ai1ai2 · · · aiη ; for

example, with S = (2, 4), we have 0101 ↓S= 11. We also

define a filtering of a = a1a2 . . . a� by S as a‡S = b1b2 . . . b�
where bj = aj if j ∈ S, or bj = 0 otherwise; for example, with

S = (2, 4), we have 1110‡S = 0100. We define a shrinking

function ζm : Nη→N
η as ζm(i1, i2, . . . , iη) = (j1, j2, . . . , jη),

where jk = (ik − 1) mod (m + 1); for example, we have

ζ3(1, 3, 4) = (1, 3, 1).

Bloom filter (BF). A Bloom filter [8] is a well-known data

structure that facilitates efficient search. The filter B is a string

initialized with 0� and associated with a set of η different

hash functions H = {hi : {0, 1}∗→[�]}ηi=1. For a keyword

α ∈ {0, 1}∗, let H(α) the sequence of the hash results of α,

i.e.,

H(α) = (h1(α), h2(α), . . . , hη(α)).

To add a keyword α to the filter, the hash result H(α) is added

to it, that is, B := B ∨ (1�‡H(α)). To see if a keyword β is

361

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

in the filter, one needs to check if B contains H(β), that is,

B↓H(β)
?
= 1η . Bloom filters guarantee no false negatives, and

allow the false positive rate to be tuned:

FPbf =
(
1− (

1− 1

�

)ηt)η ≈
(
1− e− ηt

�

)η
,

where t is the number of keywords in the Bloom filter. In

our system, we choose η = 20 and � = 28.86t to achieve

FPbf ≈ 10−6.

A. Secure Computation Based on Yao’s GC

Yao’s garbled circuit (GC). Yao’s garbled circuits allow

circuits to be evaluated obliviously by one party on hidden

inputs provided by another party. Let C be a Boolean circuit

with n input wires, m gates, and one output wire; let (1, . . . , n)
be the indices to the input wires and q = n + m + 1 be

the index to the output wire. To generate a garbled circuit

C̃, a pair of random keys w0
i , w

1
i are associated with each

wire i in the circuit; key w0
i corresponds to the value ‘0’ on

wire i, while w1
i corresponds to the value ‘1’. Then, for each

gate g in the circuit, with its input wires i, j and its output

wire k, a garbled gate g̃ (consisting of four ciphertexts) is

constructed so that it will enable one to recover w
g(bi,bj)
k from

wbii and w
bj
j (refer to [14], [36], [40], [48] for more detail.)

The garbled circuit C̃ is simply the collection of all the garbled

gates. By recursively evaluating the garbled gates, one can

compute the garbled key wbq given the keys (wa11 , . . . , w
an
n),

where b = C(a1, . . . , an). We will sometimes call wire keys

corresponding to input/output garbled input/output, and denote

them by ã and b̃, i.e., ã = (wa11 , . . . , w
an
n), b̃ = wbq . We will

also use the notation of garbled evaluation b̃ = C̃(ã).

Oblivious transfer. An oblivious transfer (OT) [20], [46]

is a two-party protocol supporting a sender that holds values

(x0, x1) and a receiver that holds an index r ∈ {0, 1}. The

receiver learns xr, but neither the sender nor the receiver learns

anything else, i.e., the receiver learns nothing about any other

values held by the sender, and the sender learns nothing about

the receiver’s index. We use the Naor-Pinkas protocol [42] as

a basis and optimize the performance using OT extension [30]

and OT preprocessing [5].

Secure computation. It is known that Yao’s garbled circuit,

in combination with any oblivious-transfer protocol yields a

constant-round protocol for secure two-party computation with

semi-honest security [38], [52], [53]. In fact, due to the privacy

guaranteed by Yao’s GC [7], even if the circuit C is a private

input from Alice along with xA, Yao’s GC can also hide

the circuit C from Bob, revealing only the topology of C.

We use GCs not only for search tree traversal but also for

policy enforcement. Yao’s GC is one of the most efficient

algorithms known for secure computation of functions. For

example, a recent work [51] demonstrated secure evaluation

of AES (a circuit with 33880 gates) in 0.2 seconds. We use

the standard techniques of Free-XOR [14], [36] and point-and-

permute [40], [48] in constructing garbled circuits.

BF1,N

BF1,N/10 BF1,N/10

BF1

BF1,10

...

BF2 BF10...

...

BF...

BF...

BF... BF...... BFN-9

BFN-9,N

BFN-8 BFN...

... ...

...

R1 R2 R10 R... R... R... RN-9 RN-8 RN

BF tree

Records

...

...

Let (Ri, . . . , Rn) be the overall database records. The Bloom filter

BFa,b contains all the keywords of records Ra, Ra+1, . . . , Rb.

Figure 2. Index structure: Bloom-filter-based search tree.

IV. BASIC SYSTEM DESIGN

In this section, we will begin by describing the basic system

design supporting only simple private query. In the next

section, we will augment this basic design with more features.

A. BF Search Tree

Our key data structure enabling sublinear search is a BF search

tree for the database records. We stress that there is only one

global search tree for the entire database. Let n be the number

of database records and T be a balanced b-ary tree of height

logb n (we assume n = bz from some positive integer z for

simplicity). In our system, b is set to 10. In the search tree,

each leaf is associated with each database record, and each

node v is associated with a Bloom filter Bv . The filter Bv
contains all the keywords from the (leaf) records that the node

v have (as itself or as its descendants). For example, if a node

contains a record that has Jeff in the fname field, a keyword

α = ‘fname:Jeff’ is inserted to Bv . The length �v of Bv
is determined by the upper bound of the number of possible

keywords, derived from DB schema, so that two nodes of the

same level in the search tree have equal-length Bloom filters.

The insertion of keywords is performed by shrinking the output

of the hash functions ζ�v (H(α)) to fit in the corresponding BF

length �v . Here, H is the set of hash functions associated with

the root node BF. See Figure 2.

Search using a BF search tree. Consider a simple recursive

algorithm Search below. Let α and β be keywords and r the

root of the search tree. Note that Search(α∧β, r) will output

all the leaves (i.e., record locations) containing both keywords

α and β; any ancestor of a leaf has all the keywords that the

leaf has, and therefore there should be a search path from

the root to each leaf containing α and β. This algorithm can

be easily extended to searching for any monotone Boolean

formula of keywords.

Search(α∧β, v):
If the BF Bv contains α and β, then

If v is a leaf, then output {v}.
Otherwise, output

⋃
c: children of v Search(α∧β, c).

Otherwise, output ∅.

362

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

B. Preprocessing

Roughly speaking, in this phase, S gives an encrypted DB to

IS. To be more specific, by executing the following protocols,

the two parties encrypt and permute the records, create a search

tree for the permuted records, and prepare record decryption

keys.

Encrypting database index/records. In this step, the server

first permutes its DB to hide information of the order of

records in the DB and then creates BF-search tree on this

permuted DB; these DB and search tree are encrypted and

sent to the index server.

1) (Shuffle and encrypt the records.) The server gen-

erates a key pair (pk , sk) for a public-key semi-

homomorphic (e.g., additively homomorphic) encryp-

tion scheme (Gen,Enc,Dec). Given a database of n
records, the server S randomly shuffles the records. Let

(R1, . . . , Rn) be the shuffled records. S then chooses

a random string si, and computes s̃i←Encpk (si) and

R̃i = G(si)⊕Ri, where G is a PRG.

2) (Encrypt the BF search tree.) S constructs a BF search

tree T for the permuted records (R1, . . . , Rn). It then

chooses a key k at random for a PRF F . The Bloom

filter Bv in each node v is encrypted as follows:

B̃v = Bv ⊕ Fk(v). (This encryption can be efficiently

decrypted inside SFE evaluation by GC.)

3) (Share) Finally, the S sends the (permuted) encrypted

records (pk , (s̃1, R̃1), . . . , (s̃n, R̃n)) and the encrypted

search tree {B̃v : v ∈ T} to the index server. The client

will receive the PRF key k, and the hash functions H =
{hi}ηi=1 used in the Bloom filter generation.

Preparing record decryption keys. To save the decryption

time in the on-line phase, the index server and the server

precompute record decryption keys as follows:

(Blind the decryption keys) The index server IS chooses

a random permutation ψ : [n]→[n]. For each i ∈ [n], it

chooses ri randomly and computes s̃′ψ(i)← s̃i·Encpk (ri).
Then, it sends (s̃′1, . . . , s̃

′
n) to S. Then, the server de-

crypts each s̃′i to obtain the blinded key s′i. Note that it

holds s′ψ(i) = siri.

C. Search

Our system supports any SQL query that can be represented as

a monotone Boolean formula where each variable corresponds

to one of the following search conditions: keyword match,

range, and negation. So, without loss of generality, we support

non-monotone formulas as well, modulo possible performance

overhead (see how we support negations below). See Figure 3

as an example.

Traversing the search tree privately. The search procedure

starts with the client transforming the query into the corre-

sponding Boolean circuit. Then, starting from the root of the

search tree, the client and the index server will compute this

circuit Q via secure computation. If the circuit Q outputs true,

the parties visit all the children of the node, and again evaluate

Query: SELECT * FROM main WHERE

∧
∧∨

Logic Circuit:

(fname = JEFF OR fname = JOHN) AND zip = 34301 AND income ≤ 200

T1:fname = JEFF T3:zip = 34301

T4:income≤200

Circuit:

=⇒

T2:fname = JOHN

∧
∧∨

T1
T1 T2 T3 T4

T2 T3 T4

Figure 3. High level circuit representation of a query.

this circuit Q on those nodes recursively, until they reach leaf

nodes; otherwise, the traversal at the node terminates. Note

that evaluation of Q outputs a single bit denoting the search

result at that node. It is fully secure, and reveals no information

about individual keywords.

In order to use secure computation, we need to specify the

query circuit and the inputs of the two parties to it. However,

since the main technicalities lie in constructing circuits for the

variables corresponding to search conditions, we will describe

how to construct those sub-circuits only; the circuit for the

Boolean formula on top of the variables is constructed in a

standard manner.

Keyword match condition. We first consider a case where

a variable corresponds to a keyword match condition. For

example, in Figure 3 the variable T1 indicates whether the

Bloom filter Bv in a given node v contains the keyword α =

‘fname:JEFF’. Consider the Bloom filter hash values for the

keyword α, and let Z denote the positions to be checked, i.e.,

Z := ζ�v (H(α)). If the Bloom filter Bv contains the keyword

α, the projected bits w.r.t. Z should be all set, that is, we need

to check

Bv↓Z ?
= 1η. (1)

Recall that the index server has an encrypted Bloom filter

B̃v = Bv ⊕Fk(v), and the client the PRF key k and the hash

functions H = {hi}ηi=1. Therefore, the circuit to be computed

should first decrypt and then check the equation (1). That is,

the keyword match circuit looks as follows:

KM((b1, . . . bη), (r1, . . . , rη)) =

η∧
i=1

(bi⊕ri).

Here, (b1, . . . , bη) is from the encrypted BF and (r1, . . . , rη)
from the pseudorandom mask. That is, to this circuit KM, the

index server will feed B̃v ↓Z as the first part (b1, . . . , bη) of

the input, and the client will feed Fk(v) ↓Z as the second

(r1, . . . , rη). In order that the two parties may execute secure

computation, it is necessary that the client compute Z and

send it (in plaintext) to the index server.

Range/negation condition. Consider the variable T4 in Fig-

ure 3 for example. Using the technique from [47], we augment

the BF to support inserting a number x ∈ Z2n , say with

n = 32, and checking if the BF contains a number in a given

range.

363

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

To insert an integer a in a BF, all the canonical ranges

containing a are added in the filter. A canonical range with

level i is [x2i, (x+1)2i) for some integer x, so for each level,

there is only one canonical range containing the number a.

In particular, for each i ∈ Zn, compute xi such that a ∈
[xi2

i, (xi + 1)2i) and insert ‘r:income:i:xi’ to the Bloom

filter.

Given a range query [a, b), we check whether a canonical

range inside the given query belongs to the BF. In particular,

for each i ∈ Zn, find, if any, the minimum yi such that

[yi2
i, (yi + 1)2i) ∈ [a, b) and the maximum zi such that

[zi2
i, (zi + 1)2i) ∈ [a, b); then check if the BF contains a

keyword ‘r:income:i:yi’ or ‘r:income:i:zi’. If any of

the checks succeeds for some i, then output yes; otherwise

output no. Therefore, a circuit for a range query is essentially

ORs of keyword match circuits.

For example, consider a range query with Z24 . When insert-

ing a number 9, the following canonical ranges are inserted:

[9, 10), [8, 10), [8, 12), [8, 16). Given a range query [7, 11),
the following canonical ranges are checked: [7, 8), [10, 11),
[8, 10). We have a match [8, 10).

Negation conditions can be easily changed to range con-

ditions; for example, a condition ‘NOT work hrs = 40’ is

equivalent to ‘work hrs ≤ 39 OR work hrs ≥ 41’.

Overall procedure in a node. In summary, we describe the

protocol that the client and the index server execute in a node

of the search tree.

1) The client constructs a query circuit corresponding to

the given SQL query. Then, it garbles the circuit and

sends the garbled circuit, Yao keys for its input, and the

necessary BF indices.

2) The client and the index server execute OT so that IS
obtains Yao keys for its input (i.e., encrypted BF). Then,

the index server evaluates the garbled circuit and sends

the resulting output Yao key to the client.

3) The client decides whether to proceed based on the

result.

Record Retrieval. When the client and the index server

reach some of the leaf nodes in the tree, the client retrieves

the associated records. In particular, if computing the query

circuit on the ith leaf outputs success, the index server sends

(ψ(i), ri, R̃i) to the client. Then, the client sends ψ(i) to S,

and gets back s′ψ(i). Note that it holds s′ψ(i) := siri. The client

C decrypts R̃i using si and obtains the output record.

V. ADVANCED FEATURES

In this section, we discuss how our system supports advanced

features such as query policies, and one-case indistinguisha-

bility. We also overview insert/delete/update operations from

the server.

A. Policy Enforcement

The policy enforcement is performed through a three-party

protocol among the query checker QC (holding the policy),

the client C (holding the query), and the index server IS. A

policy is represented as a circuit that takes a query as input

and outputs accept or reject. In our system, QC garbles this

policy circuit, and IS evaluates the garbled policy circuit on

the client’s query. A key idea here is to have the client and
the query checker share the information of input/output wire
key pairs in this garbled policy circuit; then, the client can

later construct a garbled query circuit (used in the search tree

traversal) to be dependent on the output of the policy circuit.

Assuming semi-honest security, this sharing of information can

be easily achieved by having the client choose those key pairs

(instead of QC) and send them to QC. The detailed procedure

follows.

Before the tree search procedure described in the previous

section begins, the client C, the query checker QC, and the

index server IS execute the following protocol.

1) Let q = (q1, . . . , qm) ∈ {0, 1}m be a string that

encodes a query (we will discuss our encoding method

in Appendix A). The client generates Yao key pairs

Wq = ((w0
1, w

1
1), . . . , (w

0
m, w

1
m)) for the input wires

of the policy circuit, and a key pair Wx = (t0, t1) for

the output wire. The client sends the key pairs Wq and

Wx to query checker QC. It also sends the index server

the garbled input q̃ = (wq11 , w
q2
2 , . . . , w

qm
m).

2) Let P be the policy circuit. QC generates a garbled

circuit P̃ using Wq as input key pairs, and Wx as the

output key pair (QC chooses the other key pairs of P̃ at

random). Then, QC sends P̃ to the index server.

3) The index server evaluates the circuit P̃ on q̃ obtaining

the output wire key x̃ = P̃ (q̃). Note that x̃ ∈Wx.

After the execution of this protocol, the original search tree

procedure starts as described before. However, the procedure

is slightly changed when evaluating a leaf node as follows:

1) Let Q′(b, r, x) = Q(b, r) ∧ x be an augmented circuit,

where Q is the query circuit, b and r are the inputs

from IS and C respectively, and x is a bit representing

the output from the policy circuit. The client C generates

a garbled query circuit Q̃′ using wire key pair Wx for the

bit x. Then, it sends (Q̃′, r̃) to the index server, where

r̃ is the garbled input of r.

2) After obtaining the input keys b̃ for b from OT with

C, the index server IS evaluates Q̃′(b̃, r̃, x̃) and sends

the resulting output key to the client. Recall that it has

already evaluated the garbled policy circuit P̃ (q̃) and

obtained x̃.

3) The client checks the received key and decides to accept

or reject.

Regarding privacy, the client learns nothing about the policy,

since it never sees the garbled policy circuit. The index server

obtains the topology of the policy circuit (from the garbled

policy circuit).

Note that the garbled policy circuit is evaluated only once,

before the search tree execution starts. Therefore, the policy

checking mechanism introduces only a small overhead. It is

also worth observing that, so far, we have not assumed any

restriction on the policy to be evaluated. Since Yao-based

364

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

computation can compute any function represented as a circuit,

in principle, we could enforce any policy computable in a

reasonable time (as long as it depends only on the query). We

describe our own implemented policy circuit in more detail in

Appendix A.

B. One-case Indistinguishability

So far, in our system the index server learns how many

records the client retrieved from the query. In many use cases,

this leakage should be insignificant to the index server, in

particular, when the number of returned results is expected to

be, say, more than a hundred. However, there do exist some use

cases in which this leakage is critical. For example, suppose

that a government agent queries the passenger database of

an airline company looking for persons of interest (POI). We

assume that the probability that there is indeed a POI is small,

and the airline or the index server discovering that a query

resulted in a match may cause panic. Motivated from the above

scenario, we consider a security notion which we call one-case
indistinguishability.

Motivation. Consider a triple (q,D0, r) where q is a query,

and D0 is a database with the query q resulting in no record,

but r satisfies q. Let D1 be a database that is the same as

D0 except that a record is randomly chosen and replaced with

r. Let VIEW0 (resp. VIEW1) denote the view of IS when the

client runs a query q with the database D0 (resp., D1).

A natural start would be to require that for any such

(q,D0, r), the difference between the two distributions VIEW0

and VIEW1 should be small ε (in the computational sense),

which we call ε zero-one indistinguishability. However, it does

not seem possible to achieve negligible difference ε without

suffering significant performance degradation (in fact, our

system satisfies this notion for a tunable small constant ε).
Unfortunately, this definition does not provide a good security

guarantee when the difference ε is non-negligible, in particular,

for the scenario of finding POIs. For example, let Π be a

database system with perfect privacy and Π′ be the same as

Π except that when it is 1-case (i.e., a query with one result

record), the client sends the index server the message “the 1-

case occurred” with non-negligible probability. It is easy to

see that Π′ satisfies the definition with some non-negligible ε,
but it is clearly a bad and dangerous system.

One-case indistinguishability. Observe that in the use case of

finding POIs, we don’t particularly worry about “the 0-case”,

that is, it is acceptable if the airline company sometimes knows

that a query definitely resulted in no returned record. Mo-

tivated by this observation, this definition intuitively requires

that if the a-priori probability of a 1-case is δ, then a-posteriori

probability of a 1-case is at most (1+ε)δ. For example, for

ε = 1, the probability could grow from δ to 2δ, but never

more than that, no matter what random choices were made.

Moreover, if the a-priori probability was tiny, the a-posteriori

probability remains tiny even if unlucky random choices were

made. In particular, consider (q,D0, r) and D1 as before. Now

consider a distribution E that outputs (b, v) where b ∈ {0, 1}

chosen with Pr[b = 1] = δ, and v is the view of the index

server when the query q is run on Db. The system satisfies ε
one-case indistinguishability if for any (q,D0, r), δ and v, it

holds

Pr
E
[b = 1|v] ≤ (1 + ε)δ.

Augmenting the design. To achieve these indistinguishability

notions, we change the design such that the client chooses a

small random number of paths leading to randomly selected

leaves. In particular, let D be the probability distribution on

the number of random paths defined as follows:

Distribution D: For 1 ≤ x ≤ α− 1, PrD[x] = 1/α.

For x ≥ α, PrD[x] = (1/α) · 1/2x−α+1.

Here, α is a tunable parameter. The client chooses x←D,

and then it also chooses x random indices (j1, . . . , jx)← [n]x.

When handling the query, the client superimposes the basic

search procedure above with these random paths. Our system

is 1/α zero-one indistinguishable and ε one-case indistinguish-

able with ε = 1. Intuitively, the leakage to the index server is

the tree traversal pattern, and these additional random paths

make the 0-case look like 1-case with a reasonably good

probability. We give more detail in Appendix B.

If we slightly relax the definition and ignore views tak-

ing place with a tiny probability, say 2−20, we can even

achieve both 1-case and 0-case indistinguishability at the same

time; the probability of the number x of fake paths is now

1/2|x−α|+2 with a parametrized center α, say α = 20 (except

when x = 0, i.e., Pr[x = 0] = 1/2α+1).

Against the server. One-case indistinguishability against the

server is easily achieved by generating a sufficient number of

dummy record decryption keys in the preprocessing phase; the

index server will let the client know the (permuted) positions

of the dummy keys. When zero records are returned from a

query, the client asks for a dummy decryption key from the

server. For brevity, we omit the details here, and exclude this

feature in the security analysis.

C. Delete, Insert, and Update from the Server

Our system supports a basic form of dynamic deletion,

insertion, and update of a record which is only available

to the server. If it would like to delete a record Ri, then

the server sends i to the index server, which will mark

the encrypted correspondent as deleted. For newly inserted

(encrypted) records, the index server keeps a separate list for

them with no permutation involved. In addition, it also keeps

a temporary list of their Bloom filters. During search, the

temporary list is also scanned linearly, after the tree. When

the length of the temporary Bloom filter list reaches a certain

threshold, all the current data is re-indexed and a new Bloom

filter tree is constructed. The frequency of rebuilding the tree

is of course related to the frequency of the modifications and

also the threshold we choose for the temporary list’s size. Our

tree building takes one hour/100M records. Finally, update is

simply handled by atomically issuing a delete and an insert

command.

365

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

Functionality Fdb

Parameter: Leakage profile.

Init: Given input (D,P) from S, do the following:

1) Store the database records D and the policy P . Let
n be the number records in D. Shuffle D and let
(R1, . . . , Rn) be the shuffled records. Choose a random
permutation π : [n]→[n]. Construct a BF-search tree for
(R1, . . . , Rn) using the hash functions H.

2) To handle the client’s queries, it chooses hash functions
H = {hi : {0, 1}∗→[�]}ηi=1 for Bloom filters with
parameters (η, �) to maintain false positive rate of 10−6.

3) Finally, return a DONEinit and the leakage to all parties.

Query: Given input q from C, do the following:

1) Check if q is allowed by P . If the check fails, then
disallow the query by setting y = ∅. Otherwise, for each

i ∈ [n], let Bi ∈ {0, 1}�′ be the Bloom filter associated
with the ith leaf in the BF tree. For i = 1, . . . , n, check
if the query passes according to the filter Bi (refer to
Section II); if so, add (i, Ri) to the result set Y .

2) Return Y to C and return a DONEquery message and
leakage to all parties.

Figure 4. The Ideal Functionality Fdb

We note that updates is not our core contribution; we

implement and report it here, but don’t focus on its design

and performance. A more scalable update system would use

a BF tree rather than a list; its implementation is a simple

modification to our system.

VI. SECURITY ANALYSIS

In this section, we present an overview of the security of our

system. A full analysis with formal definitions and extensive

proofs is completed and written separately.

We consider static security against a semi-honest adversary

that controls at most one participant. We first describe an

ideal functionality Fdb parameterized with a leakage profile

in Figure 4, and then show that our system securely realizes

the functionality where the leakage is essentially the search

tree traversal pattern and the pattern of accessed BF indices.

For the sake of simplicity, we only consider security where

there are no insert/delete/update operations,2and unify the

server and the query checker into one entity. We also assume

that all the records have the same length.

We use the DDH assumption (for ElGamal encryption and

Naor-Pinkas OT), and our protocols are in the random oracle

model (for Naor-Pinkas OT and OT extension). We also use

PRGs and PRFs, and those primitives are implemented with

AES.

2 As access patterns are revealed, additional information for in-
serted/deleted/updated records is leaked. For example, C or IS may learn
whether a returned record was recently inserted; they also may get advantage
in estimating whether the query matched a recently deleted record. We stress
that this additional leakage can be removed by re-running the setup of the
search structure.

A. Security of Our System

With empty leakage profile, the ideal functionality Fdb in

Figure 4 captures the privacy requirement of a database

management system in which each query is handled deter-

ministically. The client obtains only the query results, but

nothing more. The index server and the server learn nothing.

Realizing such a functionality incurs a performance hit. Our

system realizes the functionality Fdb with the leakage profile

described below. The security of our system can be proved

from the security of the secure computation component, and

is deferred to the full version.

Leakage in Init. Since the server has all the input, the leakage

to S is none. The leakage to C is n, that is, the total number

of records. The leakage to IS is n and |R1|.
Leakage to S in each query. We first consider the leakage

to the server. The server is involved only when the record is

retrieved. Let ((i1, Ri1), . . . , (ij , Rij)) be the query results.

Then, the leakage to the server is (π(i1), π(i2), . . . , π(ij)).

Leakage to C in each query. The leakage to the client is

the BF-search tree traversal paths, that is, all the nodes v in

which the query passes according to the filter Bv .

Leakage to IS in each query. The leakage to the index

server is a little more than that to the client. In particular,

the nodes in the faked paths that the client generates due

to one-case indistinguishability are added to the tree search

pattern. Also, the topology of the query circuit and of the

policy circuit is leaked to IS as well. Finally, the BF indices are

also revealed to IS (although not the BF content), but assuming

that the hash functions are random, those indices reveal little

information about the query. However, based on this, after

observing multiple queries, IS can infer some correlations a

C’s queries’ keywords.

B. Discussion

Leakage to the server. We could wholly remove the leakage

to the server by modifying the protocol as follows:

Remove the decryption key preparation (and blinded

keys) in the preprocessing; instead, the client re-

ceives the secret key sk from the server. The client

(as the receiver) and the index server (as the sender)

execute oblivious transfer at each leaf of the search

tree. The choice bit of the client is whether the

output of the query circuit is success. The two

messages of the index server is the encrypted record

and a string of zeros.

However, we believe that it is important for the server to be

able to upper-bound the number of retrieved records. Without

such control, misconfiguration on the query checker side may

allow overly general queries to be executed, causing too many

rows to be returned to the client; in contrast, in our approach,

S releases record decryption keys at the end, and therefore

it is easy to enforce the sanity check of the total number of

returned records. Moreover, if S has a commercial DB, it may

366

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

be convenient to implement payment mechanism in association

with key release by S.

OR queries. For OR queries passing the policy, our system

leaks extremely small information. In particular, the leakage

to the client is minimal, as the tree traversal pattern can be

reconstructed from the returned records. As a consequence, if

the client retrieves only document ids, the client learns nothing

about the results for individual terms in his query. The leakage

to the index server is similar. We believe that the topology

of the SQL formula and the policy circuit reveals small

information about the query and the policy. If desired, we can

even hide those information using universal circuits [37] with

a circuit size blow-up of a logarithmic multiplicative factor.

AND queries. For AND queries, the tree traversal pattern

consists of two kinds of paths. The first are, of course, the

paths reaching the leaves (query results). The second stop

at some internal nodes due to our BF approach3; although

the leakage from this pattern reveals more information about

which node don’t contain a given keyword, we still believe

this leakage is acceptable in many use cases.
We stress that the second leakage is related to the fact that

a large linear running time seems to be inherent for some

AND queries, irrespective of privacy, but depending only on

the underlying database (see Section VIII-C for more detail).

Therefore, if we aim at running most AND queries in sublinear

time, the running time will inherently leak information on the

underlying DB.

VII. IMPLEMENTATION

We built a prototype of the proposed system to evaluate

its practicality in terms of performance. The prototype was

developed from scratch in C++ (a more than a year effort,

almost two years including designing) and consists of about

10KLOC. In this section, we describe several interesting parts

of the implementation that are mostly related to the scalability

of the system.

Crypto building blocks. We developed custom implemen-

tations for all the cryptographic building blocks that were

previously described in Section II. More specifically, we

used the GNU Multiple Precision (GMP) library to im-

plement oblivious transfers, garbled circuits and the semi-

homomorphic key management protocol. The choice of GMP

was mostly based on thread-safety. As for AES-based PRF, we

used the OpenSSL implementation because it takes advantage

of the AES-NI hardware instructions, thus delivering better

performance.

Parallelization. The current implementation of Blind Seer

supports parallel preprocessing and per-query threading when

searching. For all the multi-threading features we used Intel’s

Threading Building Blocks (TBB) library. To enable multi-

threaded execution of the preprocessing phase we created

3 For example, consider a query q that looks for two keywords, say, q =
α∧β. Let v be some node and c1, . . . , cb be the children of v in the search
tree. If c1 contains only α, and c2 contains only β, then v will contain both
α and β, and so the node v will pass the query; however, neither c1 nor c2
would.

a 3-stage pipeline. The first stage is single-threaded and it

is responsible for reading the input data. The second stage

handles record preprocessing. This stage is executed in parallel

by a pool of threads. Finally, the last stage is again single-

threaded and is responsible for handling the encrypted records.

Concurrently supporting multiple queries was straightforward

as all the data structures are read-only. To avoid accessing the

Bloom filter tree while it is being updated by a modification

command, we added a global writer lock (which does not

block reads). Since we only currently support paralleliza-

tion on a one-thread-per-query basis, it only benefits query

throughput, not latency. However, long-running queries involve

a large amount of interaction between querier and server

that is independent and thus amenable to parallelization. The

improvement we see in throughput is a good indicator for how

much we could improve latency of slow queries by applying

parallelization to these interactions.

Bloom filter tree. This is the main index structure of

our system which grows by the number of records and the

supported features (e.g., range). For this reason, the space

efficiency of the Bloom filter tree is directly related to the

scalability of the system. In the current version of our system

we have implemented two space optimizations: one on the

representation of the tree and another on the size of Bloom

filter in each tree node.
Firstly, we avoided storing pointers for the tree represen-

tation, which would result in wasting almost 1G of memory

for 100M records. This is achieved by using a flat array with

fixed size allocations per record.
Secondly, we observed that naively calculating the number

of items stored in the inner nodes by summing the items of

their children is inefficient. For example, consider the case

of storing the ‘Sex’ field in the database, which has only

two possible values. Each Bloom filter in the bottom layer

of the tree (leaves) will store either the value sex:male or

sex:female. However, their parent nodes will keep space for

10 items, although the Sex field can have only two possible

values. Thus, we estimate the number of items that need to be

stored in a given level as the minimum between the cardinality

of the field and the number of leaf-nodes of the current subtree.

This optimization alone reduced the total space of the tree by

more than 50% for the database we used in our evaluation.

Keyword search and stemming. Although we focus on

supporting database search on structured data, our underlying

system works with collections of keywords. Thus, it can

trivially handle other forms of data, like keyword search

over text documents, or even keyword search on text fields

of a database. We actually do support the latter – in our

system we provide this functionality using the special oper-

ator CONTAINED_IN(column, keyword). Also, we support

stemming over keyword search by using the Porter stemming

algorithm [2].

VIII. EVALUATION

In this section, we evaluate our system. We first evaluate our

system as a comparison with MySQL as a baseline, to establish

367

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

int−id
single

int−star
single

str−id
single

str−star
single

int−id
2−10

int−star
2−10

str−id
2−10

str−star
2−10

T
ot

al
 q

ue
ry

 ti
m

e
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MySQL

BlindSeer

Figure 5. Comparison with MySQL for single-term queries that have a single
result (first four bar groups) and 2 to 10 results (last four bar groups). The
search terms are either strings (str) or integers (int) and the returned result is
either the id or the whole record (star).

what the performance cost of providing private search is. We

then generalize the performance expectations of our system by

performing a theoretical analysis based on the type of queries.

Dataset. The dataset we use in all of our tests for the first

part of the evaluation is a generated dataset using learned

probability distributions from the US census data and text

excerpts from “The Call of the Wild”, by Jack London. Each

record in our generated database contains personal information

generated with similar distributions to the census. It also

contains a globally unique ID, four fields of random text

excerpts ranging from 10− 2000 bytes from “The Call of the

Wild”, and a “fingerprint” payload of random data ranging

from 50000 to 90000 bytes. The payload is neither searchable

nor compressible, and is included to emulate reasonable data

transfer costs for real-world database applications. The census

data fields are used to enable various types of single-term

queries such as term matching and range queries, and the text

excerpts for keyword search queries.

Testbed. Our tests were run on a four-computer testbed

that Lincoln Labs set up and programmed for the purpose

of testing our system and comparing it to MySQL. Each

server was configured with two Intel Xeon 2.66 Ghz X5650

processors, 96GB RAM (12x8 GB, 1066 MHz, Dual Ranked

LV RDIMMs), and an embedded Broadcom 1GB Ethernet

NICS with TOE. Two servers were equipped with a 50TB

RAID5 array, and one with a 20TB array. These were used

to run the owner and index server. MySQL was configured

to build separate indices for each field. DB queries were not

known in advance for MySQL or for our system.

A. Querying Performance

Single term queries with a small result set. Figure 5

shows a comparison of single term queries against MySQL.

We expect the run time for both our system and MySQL to

depend primarily on the number of results returned. The first

four pairs show average and standard deviation for query time

on queries with exactly one result in the entire database, and

the latter four for queries with a few (2-10) results. Queries

Number of results
0 1000 2000 3000 4000 5000

T
ot

al
 q

ue
ry

 ti
m

e
(s

ec
s)

0

50

100

150

200

250

300

MySQL

BlindSeer

Figure 6. Comparison of the scaling factor with respect to the result set
size, using single-term queries. Both MySQL and Blind Seer scale linearly,
however, Blind Seer’s constant factor is 15× worse (mostly due to increased
network communication).

are further grouped into those which are run on integer fields

(int) and string fields (str), and those which return only record

ids (id) and those which return full record content (star). For

each group, we executed 200 different queries to avoid caching

effects in MySQL.

As we can see, for single result set queries, our system

is very consistent. Unlike with MySQL, the type of query

has no effect on performance, since all types are stored

and queried the same way in the underlying Bloom filter

representation. Also, the average time is dominated by the

average number of results, which is slightly larger for integer

terms. Unexpectedly, there is also no performance difference

for returning record ids versus full records. This is likely

because for a single record, the performance is dominated

by other factors like circuit evaluation, tree traversal and key

handling, rather than record transfer time. Overall, aside from

some bad-case scenarios, we are generally less than 2× slower.

Variation in performance of our system is much larger when

returning a few results. This is because the amount of tree

traversal that occurs depends on how much branching must

occur. This differs from single result set queries, where each

tree traversal is a single path. With the larger result sets, we

can also begin to see increased query time for full records as

opposed to record ids, although it remains a small portion of

the overall run time.

Scaling with result set size. Figure 6 expands on both

systems’ performance scaling with the number of results

returned. This experiment is also run with single term queries,

but on a larger range of return result set sizes. As one would

expect, the growth is fairly linear for both systems, although

our constant factor is almost 15× worse. This indicates that for

queries with a small result set, the run time is dominated by

additive constant factors like connection setup for which we

are not much slower than MySQL. However, the multiplicative

constant factors involved in our interactive protocol are much

larger, and grow to dominate run time for longer running

queries. This overhead is mostly due to increased network

communication because of the interactiveness of the search

368

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

and�1�1 and�1�100 and�1�10K dnf�mon dnf�neg

T
ot

al
 q

ue
ry

 ti
m

e
(s

ec
)

0

1

10

100

1000

MySQL

BlindSeer

Figure 7. Boolean queries having a few results (< 10). The first three are
two-term AND queries where one of the terms has a single result and the
other varies from 1 to 10K results. The fourth group includes monotonic DNF
queries with 4-9 terms, the last includes 5-term DNF queries with negations.

protocol. Although this is inherent, we believe that there is

room for implementation optimizations that could lower this

constant factor.

Boolean queries. Figure 7 shows our performance on various

Boolean queries. The first three groups show average query

time for 2-term AND queries. In each case, one term occurs

only once in the database, resulting in the overall Boolean

AND having only one match in the database. However, the

second term increases up to 10000 results in the database.

As we can see, our query performance does not suffer; as

long as at least one term in a Boolean is infrequent we will

perform well. The next two groups are more complex Boolean

queries issued in disjunctive normal form, the latter including

negations. The first one includes queries with 4-9 terms, and

the second one, with 5 terms. These incur a larger cost, as

the number of a results is larger and possibly a bigger part

of the tree is explored. As we can see, MySQL incurs a

proportionally similar cost.

We note that the relatively large variation shown in the graph

is due to the different queries used in our test. Variation is

much smaller when we run the same query multiple times.

Parallelization. We have implemented a basic form of

parallelization in our system, which enables it to execute

multiple queries concurrently. As there are no critical sections

or concurrent modifications of shared data structures during

querying, we saw the expected linear speedup when issuing

many queries up to a point where the CPU might not be

the bottleneck anymore. In our 16-core system, we achieved

approximately factor 6x improvement due to this crude paral-

lelization.

Discussion. We note several observations on our system,

performance, bottlenecks, etc.

Firstly, we note that our experiments are run on a fast local

network. A natural question is how this would be translated

into the higher-latency lower bandwidth setting. Firstly, there

will be performance degradation proportional to bandwidth

reduction, with the following exception. We could use the

slightly more computationally-expensive, but much less com-

munication intensive GESS protocol of [34] or its recent

extension sliced-GESS [35], instead of Yao’s GC. In reduced-

bandwidth settings, where bandwidth is the bottleneck, sliced-

GESS is about 3x more efficient than most efficient Yao’s

GC. Further, we can easily scale up parallelization factor to

mitigate latency increases. Looking at this in a contrapositive

manner, improving network bandwidth and latency would

make CPU the bottleneck.

All search structures in our system are RAM-resident. Only

the record payloads are stored on disk. Thus, disk should not

be a bottleneck in natural scenarios.

B. Other Operations

Although querying is the main operation of our system, we

also include some results of other operations. First, we start

with the performance of the setup phase (preprocessing). Blind

Seer took roughly two days to index and encrypt the 10TB

data. As mentioned before, this phase is executed in parallel

and is computationally efficient enough to be IO-bounded in

our testbed. We note that the corresponding setup of MySQL

took even longer.

Policy enforcement was another feature for which we

wanted to measure overhead. However, in our current imple-

mentation, it cannot be disabled (instead, we use a dummy

policy). We experimentally measured the overhead of enforc-

ing the dummy policy versus more complex ones, but there

was no noticeable difference. We plan to add the functionality

to totally disable policy enforcement – because it is an optional

feature – and measure its true performance overhead. Our

expectation is that it will be minimal.

Finally, we performed several measurements for the sup-

ported modification commands: insert, update and delete. All

of them execute in constant time in the order of a few hundred

microseconds. The more expensive part though is the periodic

re-indexing of the data that merges the temporary Bloom filter

list in the tree (see Section V-C). In our current prototype,

we estimated this procedure to take around 17 minutes, while

avoiding re-reading the entire database. This can be achieved

by letting the server store some intermediate indexing data

during the initial setup and reusing it later when constructing

the Bloom filter tree.

C. Theoretical Performance Analysis

In this section, we discuss the system performance for various

queries by analyzing the number of visited nodes in the search

tree. Let α1, . . . , αk be k single term queries, and for each

i ∈ [k], let ri be the number of returned records for the query

αi, and n be the total number of records.

OR queries. Our system shows great performance with OR

queries. In particular, consider a query α1 ∨ · · · ∨ αk. The

number of visited nodes in the search tree is at most r log10 n,

where r = r1 + . . . + rk is the number of returned records.

Therefore, performance scales with the size of the result set,

just like single term queries.

AND queries. The performance depends on the best con-

stituent term. For the AND query α1∧ · · · ∧αk, the number of

369

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

visited nodes in the search tree is at most min(r1, . . . , rk) ·
log10 n. Note that the actual number of returned records may

be much smaller than ris. In the worst case, it may even be

0; consider a database where a half of the records contain α
(but not β) and the other half β (but not α). The running

time for the query α∧β in this case will probably be linear

in n. However, we stress that this seems to be inherent, even

without any security. Indeed, without setting up an index, every

algorithm currently known runs in linear time to process this

query.

This can be partially addressed by setting up an index, in

our case by using a BF. For example, for AND queries on

two columns, for each record with value a for column A,

and value b for column B, the following keywords are added:

A:a, B:b, AB:a.b. With this approach, the indexed AND

queries become equivalent to single term queries. However,

this cannot be fully generalized, as space grows exponentially

in the number of search columns.

Complex queries. The performance of CNF queries can be

analyzed by viewing them as AND queries where each disjunct

(i.e, OR query) is treated as a single term query. In general, any

other complex Boolean query can be converted to CNF and

then analyzed in a similar manner. In other words, performance

scales with the number of results returned by the best disjunct

when the query is represented in CNF. Note that we do not
actually need to convert our queries to this form

(nor know anything about the data, in particular, which

are high- or low-entropy terms) in order to achieve this

performance (this aspect is even better than MySQL).

Computation and Communication. Both computational

and communication resources required for our protocol are

proportional to the query complexities described above.

False Positives. As our system is built on Bloom filters, false

positives are possible. In our experiments, we set each BF

false positive rate to 10−6. Assuming the worst-case scenario

for us, where the DB is such that many of the search paths do

reach and query the BFs at the leaves, this gives 10−6 false

positive probability for each term of the query. Of course, the

false positive is a tunable parameter of our system.

IX. RELATED WORK

The problem of private DBMS can be solved by general pur-

pose secure computation schemes [26], [38], [52], [53]. These

solutions, however, involve at least linear (often much more)

work in the database size, hence cannot be used for practical

applications with large data. Oblivious RAM (ORAM) [27]

can be used to completely hide the client’s query pattern,

and can also be used as a tool to achieve sublinear amortized

time for secure computation if we allow to leak the program

running time [29], [39]. Nonetheless, computational costs are

still prohibitively high, rendering these solutions impractical

for the scale we are interested in.

Private Information Retrieval protocols (PIR) [16] consider

a scenario where the client wishes to retrieve the ith record of

the server’s data, keeping the server oblivious of the index i.

Symmetric PIR protocols [24] additionally require that client

should not learn anything more than the requested record.

While most PIR and SPIR protocols support record retrieval

by index selection, Chor et al. [15] considered PIR by key-

word. Although these protocols have sublinear communication

complexity, their computation is polynomial in the number of

records, and inefficient for practical uses.

Another approach would be to use fully homomorphic

encryption (FHE). In 2009, Gentry [21] showed that FHE is

theoretically possible. Despite this breakthrough and many fol-

low up works, current constructions are too slow for practical

use. For example, it is possible to homomorphically compute

720 AES blocks in two and a half days [23].

Little work has appeared on practical, private search on

a large data. In order to achieve efficiency, weaker security

(some small amount leakage) has been considered. The work

of [44], [47] supports single keyword search and conjunctions.

However, the solution does not scale well to databases with

a large number of records (say millions); its running time is

linear in the number of DB records. One of the interesting

features of this work is the way they address range queries.

Our system also uses their idea to achieve range queries,

and extends it to support negations (since we use a sublinear

underlying OR query, our range queries are also sublinear, in

contrast to them). A more efficient solution towards this end

was proposed in [18]. However, they only considered single

keyword search.

Any single keyword search solution can be used to solve

(insecurely) arbitrarily Boolean formulas; solve each keyword

in the formula separately and then combine (insecurely).

Obviously, however, this leaks much more information to the

parties (and also has work proportional to the sum of the work

for each term). Our system, in contrast, provides privacy of

the overall query (and work proportional to just the smallest

term).

There has been a long line of research on searchable

symmetric encryption (SSE) [11]–[13], [17], [25], [41], [50].

Note that, although many of the techniques used in SSE

schemes can be used in our scenario, the SSE setting focuses

on data outsourcing rather than data sharing. That is, in SSE

the data owner is the client, and so no privacy against the

client is required. Additionally, SSE solutions often offer either

a linear time search over the number of database records

[12], [41], [50], or a restricted type of client’s queries [17],

[32], namely single keyword search or conjunctions. One

exception is the recent SSE scheme of [11], which extended

the approach of [17] to allow for any Boolean formula of the

form k0∧φ(k1, ..., km−1), where φ(·) is an arbitrarily Boolean

formula. Their search time complexity is O(m×D(k0)), where

D(k0) is the number of records containing keyword k0. Note

that an arbitrary formula could be represented this way, as

k0 can always be set to true, but then the complexity will

be linear in the number of records. On the other hand, if the

client can format the query so that k0 is a term with very

few matches, the complexity will go down accordingly. In

contrast, our solution addresses arbitrary Boolean formulas,

370

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

with complexity proportional to the best term in the CNF

representation of the formula. Searchable encryption has also

been studied in the public key setting [4], [6], [9], [10], [49].

Here, many users can use the server public key to encrypt their

own data and send it to the server.

The CryptDB system [45] addresses the problem of DB

encryption from a completely different angle, and as such is

largely incomparable to our work. CryptDB does not aim to

address the issue of the privacy of the query (but it does

achieve query privacy similar to the single-keyword search

solution described above). Their threat scenario focuses on

DB data confidentiality against the curious DB administrator,

and they achieve this by using a non-private DBMS over what

they call SQL-aware encrypted data. That is, the SQL query is

pre-processed by a fully trusted proxy that encrypts the search

terms of the query. The query is then executed by standard

SQL, which combines the results of individual-term encrypted

searches. Additionally, for free-text search, CryptDB uses the

linear solution of [50].

The closest to our setting/work is a a very recent ex-

tension [31] of the SSE solution [11], which additionally

(to the SSE requirements) addresses data privacy against the

client (and hence, as we do, addresses private DB). We note

that the work of [11], [31] is performed independently and

concurrently to ours. [31] support the same class of functions

as [11] (discussed above). In the worst case, such as when the

client has little a priori information about the DB and chooses

a sub-optimal term to appear first in the query term, the

complexity of the [31] solution can be linear in the DB size.

In contrast, our solution for general formulas does not depend

on the client’s knowledge of data distribution or representation

choice (beyond the size of the formula). However, we note that

for typical practical applications this is not a serious issue,

as the client can represent his query as a conjunction, and

moreover, can make a good guess for which term will have

low frequency in the data and is a good choice as the first

term. Thus, a large majority of practically useful queries can

be evaluated by [31] with asymptotic complexity similar to

ours. In terms of security, our guarantees vary: [31] achieves

security against malicious client, which is much stronger than

our semi-honest setting, and of particular importance for the

policy enforcement. Our leakages vary and are incomparable.

We and [31] leak different access pattern structures (search

tree for us and index lookups for [31]). Because we use a

more expensive basic step of SFE, our protection of query-

related data, at least in some cases, is somewhat better. For

example, depending on the DB data, we may hide everything

about the individual terms of the query, while [31] leak to

the client and (their counterpart of the) IS the support sizes

for individual terms of the disjunctive queries (individual term

supports are revealed to the client, but this is only an issue if

the query does not ask for all the columns of the records).

At the same time, the concrete query performance of [31] is

somewhat better than ours, due to their elegant non-interactive

approach. The very expensive step of DB setup is faster for

us, and the CPU load is lower, as we use mainly symmetric-

key primitives. We also note that our interactive approach

allows significant flexibility. For example, the 0-1 security

(cf. Section V-B), is naturally and cheaply achievable in

our system; it appears harder/more expensive to achieve in

a non-interactive system, and in fact is not considered in

[10]. The use of GC as the basic block similarly provides

significant flexibility and opportunities for feature expansion.

A strong point of [31] is easy scalability due to storing search

structures on disk. This is achieved at the cost of significant

additional system complexity and setup time. Finally, [31]

naturally support multiple clients, while our natural extensions

to multiple clients require that all clients share a secret key

not known to IS.

Because of the different trade offs presented by our work

and that of [31], each system is better suited for different

applications/use cases. It is interesting to note that these two

works, the first ones to address the major open problem of

truly practical, provably secure, and very rich (including any

formula) query DBMS, are based on very different technical

approaches. We believe that this adds to the value and strength

of each of these systems.4

X. DISCUSSION AND MOTIVATION OF OUR SETTING

Semi-honest model. Semi-honest model is often reasonable

in practice, especially in the Government use scenarios. For

example, C, S and index server may be Government agencies,

whose systems are verified and trusted to execute the pre-

scribed code. Further, regular audits will help enforce semi-

honest behavior.

Security against malicious adversaries can be added by stan-

dard techniques, but this results in impractical performance.

In follow up work we show how to amend our protocols to

protect against one malicious player (C or IS) at a very small

cost (ca. 10% increase). This is possible mainly because the

underlying GC protocols are already secure against malicious

evaluator.

Impact of the allowed leakage. Formally pinning down

exact privacy loss is beyond the reach of state-of-the-art

cryptography, even with no leakage beyond the output and

amount of work (the field of differential privacy is working

on this problem, with very moderate success). Therefore,

understanding our leakage and its impact for specific appli-

cations is crucial to ascertain whether it’s acceptable. We

informally investigated the impact of leakage in several natural

applications, such as population DBs and call-record DBs

and query patterns (see example below); we believe that our

protection is insufficient in some scenarios, while in many

others it provides strong guarantees.

Rough leakage estimation for call-records DB. Consider

a call-records DB, including columns (Phone number,
Callee phone number, time of call). The client C
is allowed to only ask queries of the form select * where

4We note that in an earlier stage there were two other performers on
the IARPA SPAR program. However, we do not know the details of their
approaches, and are not aware of published work presenting their solutions.

371

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

phone number = xxx AND callee phone number
= yyy AND time of call ∈ {interval}.

For typical call patterns (e.g.,0-10 calls/person/day), the

query leakage will almost always constitute a tree with

branches either going to the leafs (returned records) or trun-

cated one or two levels from the root. We believe that for many

purposes this is acceptable leakage. Again, we stress that this

is not a formal or detailed analysis (which is beyond the reach

of today’s state-of-the-art); it is included here to support our

belief that our system gives good privacy protection in many

reasonable scenarios.

Reliance on the third party. While a two-party solution is

of course preferable, these state-of-the-art solutions are orders

of magnitude slower than what is required for scalable DB

access. Probably the most reasonable approach would be to

use ORAM, which is set up either by a trusted party or as

a (very expensive) 2-PC between data owner and the querier.

Then the querier can query the ORAM held by the data owner.

Due to privacy requirements, each ORAM step must be done

over encrypted data, which triggers performance that is clearly

unacceptable for the scale required in our application (cf. [29]).

Further, in Government use cases, employing third party is

often seen as reasonable. For example, such a player can be

run by a neutral agency. We emphasize that the third party is

not trusted with the data or queries, but is trusted not to share

information with the other parties.

XI. CONCLUSION

Guaranteeing complete search privacy for both the client and

the server is expensive with today’s state of the art. However,

a weaker level of privacy is often acceptable in practice,

especially as a trade-off for much greater efficiency. We

designed, proved secure, built and evaluated a private DBMS,

named Blind Seer, capable of scaling to tens of TB’s of data.

This breakthrough performance is achieved at the expense

of leaking search tree traversal information to the players.

Our performance evaluation results clearly demonstrate the

practicality of our system, especially on queries that return

a few results where the performance overhead over plaintext

MySQL was from just 1.2× to 3× slowdown.

We note that the range from complete privacy to best

performance is wide and our work only targets a specific point

within it. We see it as a step towards exploring several other

trade-offs in this space. Our goal for future work is to develop

a highly tunable system which will be able to be configured

and match many practical scenarios with different privacy and

performance requirements.

Acknowledgments. This work was supported in part by the

Intelligence Advanced Research Project Activity (IARPA) via

Department of Interior National Business Center (DoI/NBC)

contract Number D11PC20194. The U.S. Government is au-

thorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions contained herein are

those of the authors and should not be interpreted as nec-

essarily representing the official policies or endorsements,

either expressed or implied, of IARPA, DoI/NBC, or the U.S.

Government.

Fernando Krell was supported by BECAS CHILE, CONI-

CYT, Gobierno de Chile.

This material is based upon work supported by (while author

Keromytis was serving at) the National Science Foundation.

Any opinion, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science

Foundation.

We thank MIT Lincoln Labs researchers for supporting

this program from the beginning to the end and facilitating

extensive testing of our code.

Finally, we thank our colleagues from other IARPA SPAR

teams for great collaboration and exchange of ideas.

REFERENCES

[1] IARPA Security and Privacy Assurance Research (SPAR) program. http:
//www.iarpa.gov/Programs/sso/SPAR/spar.html.

[2] The porter stemming algorithm. http://tartarus.org/martin/
PorterStemmer/.

[3] Privacy groups file lawsuit over license plate scanners. http://www.
therepublic.com/view/story/210d27e7585543a3941f5e577cf7f627/
CA--License-Plate-Suit.

[4] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange,
J. Malone-Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryp-
tion revisited: Consistency properties, relation to anonymous IBE, and
extensions. J. Cryptol., 21(3):350–391, 2008.

[5] D. Beaver. Precomputing oblivious transfer. In D. Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 97–109. Springer, Aug. 1995.

[6] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently
searchable encryption. In Proceedings of CRYPTO’07, 2007.

[7] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled
circuits. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS
12, pages 784–796. ACM Press, Oct. 2012.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[9] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In Proceedings of EUROCRYPT’04,
pages 506–522, 2004.

[10] D. Boneh and B. Waters. Conjunctive, subset, and range queries on
encrypted data. In S. P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 535–554. Springer, Feb. 2007.

[11] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner. Highly-scalable searchable symmetric encryption with
support for boolean queries. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 353–373. Springer,
Aug. 2013.

[12] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In ACNS, volume 3531, 2005.

[13] M. Chase and S. Kamara. Structured encryption and controlled dis-
closure. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 577–594. Springer, Dec. 2010.

[14] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou. On the security
of the “free-XOR” technique. In R. Cramer, editor, TCC 2012, volume
7194 of LNCS, pages 39–53. Springer, Mar. 2012.

[15] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by
keywords. Technical Report TR-CS0917, Dept. of Computer Science,
Technion, 1997.

[16] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. J. ACM, 45(6):965–981, 1998.

[17] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions.
In ACM CCS 06, pages 79–88, 2006.

[18] E. De Cristofaro, Y. Lu, and G. Tsudik. Efficient techniques for privacy-
preserving sharing of sensitive information. In TRUST’11, pages 239–
253, 2011.

372

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

[19] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–
472, 1985.

[20] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for
signing contracts. In D. Chaum, R. L. Rivest, and A. T. Sherman,
editors, CRYPTO’82, pages 205–210. Plenum Press, New York, USA,
1982.

[21] C. Gentry. Fully homomorphic encryption using ideal lattices. In
M. Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press,
May / June 2009.

[22] C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova, and
D. Wichs. Optimizing oram and using it efficiently for secure com-
putation. In Privacy Enhancing Technologies, pages 1–18. Springer,
2013.

[23] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the
AES circuit. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 850–867. Springer, Aug. 2012.

[24] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data
privacy in private information retrieval schemes. Journal of Computer
and System Sciences, 60(3):592–629, 2000.

[25] E.-J. Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216,
2003.

[26] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority.
In A. Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

[27] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious rams. J. ACM, 43:431–473, 1996.

[28] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[29] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova,
and Y. Vahlis. Secure two-party computation in sublinear (amortized)
time. In ACM CCS 12, pages 513–524, 2012.

[30] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious
transfers efficiently. In D. Boneh, editor, CRYPTO 2003, volume 2729
of LNCS, pages 145–161. Springer, Aug. 2003.

[31] S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner.
Outsourced symmetric private information retrieval. In A.-R. Sadeghi,
V. D. Gligor, and M. Yung, editors, ACM CCS 13, pages 875–888. ACM
Press, Nov. 2013.

[32] S. Kamara and C. Papamanthou. Searching Dynamic Encrypted Data
in Parallel. In FC 2013, 2013.

[33] D. M. Kays. Reasons to “friend” electronic discovery law. Franchise
Law Journal, 32(1), 2012.

[34] V. Kolesnikov. Gate evaluation secret sharing and secure one-round
two-party computation. In B. K. Roy, editor, ASIACRYPT 2005, volume
3788 of LNCS, pages 136–155. Springer, Dec. 2005.

[35] V. Kolesnikov and R. Kumaresan. Improved secure two-party com-
putation via information-theoretic garbled circuits. In I. Visconti and
R. D. Prisco, editors, SCN 12, volume 7485 of LNCS, pages 205–221.
Springer, Sept. 2012.

[36] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR
gates and applications. In L. Aceto, I. Damgård, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008,
Part II, volume 5126 of LNCS, pages 486–498. Springer, July 2008.

[37] V. Kolesnikov and T. Schneider. A practical universal circuit construc-
tion and secure evaluation of private functions. In G. Tsudik, editor, FC
2008, volume 5143 of LNCS, pages 83–97. Springer, Jan. 2008.

[38] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-
party computation. Journal of Cryptology, 22(2):161–188, Apr. 2009.

[39] S. Lu and R. Ostrovsky. Distributed oblivious ram for secure two-party
computation. In TCC, pages 377–396, 2013.

[40] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party
computation system. In USENIX Security Symposium, pages 287–302,
2004.

[41] T. Moataz and A. Shikfa. Boolean symmetric searchable encryption.
In ASIACCS 2013: 8th ACM Symposium on Information, Computer and
Communications Security, 2013.

[42] M. Naor and B. Pinkas. Computationally secure oblivious transfer.
Journal of Cryptology, 18(1):1–35, Jan. 2005.

[43] J. E. Pace III. Testing the security blanket: An analysis of recent
challenges to stipulated blanket protective orders. Antitrust Magazine,
19(3), 2005.

[44] V. Pappas, M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin. Private
search in the real world. In ACSAC ’11, pages 83–92, 2011.

[45] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In
SOSP ’11, pages 85–100. ACM, 2011.

[46] M. O. Rabin. How to exchange secrets by oblivious transfer. In Technical
Report TR-81. Aiken Computation Laboratory, Harvard University,
1981.

[47] M. Raykova, B. Vo, S. Bellovin, and T. Malkin. Secure anonymous
database search. In CCSW 2009., 2009.

[48] P. Rogaway. The round complexity of secure protocols. PhD thesis,
Massachusetts Institute of Technology, 1991.

[49] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-
dimensional range query over encrypted data. In 2007 IEEE Symposium
on Security and Privacy, pages 350–364. IEEE Computer Society Press,
May 2007.

[50] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy, SP ’00, pages 44–, Washington, DC, USA, 2000.
IEEE Computer Society.

[51] J. K. Yan Huang, David Evans and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security Symposium.
USENIX Association, 2011.

[52] A. C.-C. Yao. Protocols for secure computations (extended abstract). In
23rd FOCS, pages 160–164. IEEE Computer Society Press, Nov. 1982.

[53] A. C.-C. Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, Oct. 1986.

APPENDIX A

REPRESENTING QUERY & POLICY

Encoding a query. In our system, a query is represented

as a Bloom filter. This filter contains all the relevant columns

and operations, and search terms and conditions. For example,

consider the following query:

SELECT id WHERE fname = ALICE AND dob <= 1975-1-1

AND CONTAINED_IN(notes1, engineer)
(2)

The bloom filter will contain the following:
• fname, fname:=, fname:ALICE, fname:=:ALICE
• dob, dob:<=, dob:1975-1-1, dob:<=:1975-1-1
• notes1, notes1:contained_in,
notes1:engineer,
notes1:contained_in:engineer

Policy circuit. The current implementation provides a parser

for any policy that can be represented as a monotone DNF

where each variable indicates whether some policy condition

(BF keyword) belongs to the input BF representing a query as

described above; if the formula output is true, then the client’s

query is disallowed. For example, a policy may disallow a

query if it contains an equality check on fname with value

ALICE and a range in dob. In this case, the policy circuit is

a simple formula V1 AND V2, where the variable V1 is true

if the input BF contains fname:=:ALICE, and V2 is true if

the filter contains dob:<=. Indeed, query (2) above will be

disallowed.

We believe that this provides a wide coverage of policies.

For example, our parser also supports a policy that allows only

range operation on fname, indirectly. One technical issue is

that we do not want to allow any false approval of a query

that fails the policy (though a tunable small probability of

false rejection of a good query is acceptable), but the Bloom

filters allow no false negatives. We can fix this issue by adding

keywords representing absence column, or column operators

373

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

to the BF. In the example above the system adds the following

keywords:

• NOT:fname:range, NOT:dob:=,

NOT:notes1:stem,

NOT:lname, NOT:zip, NOT:marital_status

Now, the aforementioned policy is equivalent to one that

disallows queries if the corresponding the BF contains fname

and NOT:fname:range. If the check succeeds, then the query

is disallowed. Likewise, a policy allowing only equality oper-

ation on dob will check if the filter has dob and NOT:dob:=.

In addition, the policy can now disallow queries that do not

contain an equality on dob column or that do not contain

lname. More importantly, the policy can now enforce that

the query must have lname value if fname was present.

APPENDIX B

ONE-CASE INDISTINGUISHABILITY

Here, we give a formal definition of one-case indistinguisha-

bility. Since our system realizes the ideal functionality Fdb, the

definitions concern only input/output behavior and the leakage

profile L.

The distribution E discussed in Section V-B with δ is

defined as follows:

Let (D0, q, r) be a database, a query and a record

as specified in Section V-B. Choose a record in D0

uniformly at random and replace it with r. Let D1

be the modified database. Choose a bit b ∈ {0, 1}
according to the following distribution:

Pr[b = 1] = δ, Pr[b = 0] = 1− δ.
Run Fdb, calling Init with (D0, P), and Query with

q. Let v be the leakage to the index server. Output

(b, v).

We show that our system satisfies one-case indistinguisha-

bility. Note that the initial leakage is none, and therefore,

we only need to consider the query leakage which is the

query pattern and the tree search pattern. This implies that

we only need to consider the tree search pattern since the

same query is considered in the experiment. Observe that the

newly introduced record r is equivalent to adding a random

paths in terms of the tree search pattern. Therefore, it suffices

to focus on the number of added random paths. In particular,

let D+ be defined as follows:

x←D; output (x+ 1).

Now, consider a following game X:

Choose a bit b ∈ {0, 1} such that Pr[b = 1] = δ and

Pr[b = 0] = 1 − δ. If b = 0, let x←D; otherwise

let x←D+. Output (b, x).

Now, we show that for any x, it holds that

Pr
X
[b = 1| x] ≤ 2δ.

We show this by using case analysis:

• When x ≤ 1, it never comes from D+, so the inequality

trivially holds.

• When 2 ≤ x ≤ α− 1, it holds that

Pr[b = 1| x] = Pr[X = (1, x)]

Pr[x]
=

δ/α

δ/α+ (1− δ)/α = δ.

• When x ≥ α, it holds that

Pr[b = 1| x] = Pr[X = (1, x)]

Pr[x]

=
δ · (1/α) · 1/2x−α

δ · (1/α) · 1/2x−α + (1− δ) · (1/α) · 1/2x−α+1

=
δ

δ + (1− δ)/2 =
2δ

1 + δ
≤ 2δ.

374

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 02:13:23 UTC from IEEE Xplore. Restrictions apply.

