
BoxingExperience: Measuring QoS and QoE of
Multimedia Streaming Using NS3, LXC and VLC

Javier Bustos-Jiménez
NIC Chile Research Labs
Email: jbustos@niclabs.cl

Rodrigo Alonso
Universidad de Chile - DCC
Email: ralonso@dcc.uchile.cl

Camila Faúndez
NIC Chile Research Labs
Email: camila@niclabs.cl

Hugo Méric
Inria Chile

Email: hugo.meric@inria.cl

Abstract—Quality of Experience (QoE) is defined as the
overall acceptability of an application or service, as perceived
subjectively by the end user including the complete end-to-end
system effects. That means QoE may be influenced by the user
expectations and context, adding a subjective component to mea-
surements. Nevertheless, it has been studied that some metrics of
Quality of Service (QoS), more related to the application and thus
closer to the user’ side, can be correlated with users evaluations
for multimedia transmissions.

In this article, we build a modular framework to study the
relation between QoS and QoE metrics for multimedia transmis-
sions following the same separation of concerns as the Internet
protocol suite. This framework, called BoxingExperience, relies
on open-source softwares (NS3 and VLC) and Linux containers.
We tested our framework in the context of video streaming
from a network camera to several clients. Our simulations show
that BoxingExperience can easily simulate, on a typical desktop
computer, a scenario where multiple clients are connected to one
streaming server.

I. INTRODUCTION

Quality of experience is defined by ITU-T as “the over-
all acceptability of an application or service, as perceived
subjectively by the end user” , which “includes the complete
end-to-end system effects” and “may be influenced by user
expectations and context” [1]. Nowadays, QoE has gained
notoriety in both, an academic research and an industry
perspective, given that as it is noted by the work of Schatz et
al., “QoE is supposed to enable a broader, more holistic under-
standing of the qualitative performance of networked commu-
nication systems and thus to complement the traditional, more
technology-centric Quality of Service (QoS) perspective” [2].
Then, QoS parameters such as packet loss, throughput, jitter,
delay, bitrate are considered more technology-centric objective
measurements of quality than those used for QoE which takes
into account the subjective user component.

Nevertheless, some of those parameters are more related
to the application itself (thus closer to the user) than the
network operation, so they are more correlated with the
users perception. For instance, former studies investigated the
correlation between user’s perception (via mean opinion score
survey) and burst packet loss (that could be considered as
a frame loss) [3], [4], jitter [4] and rebuffering [5]. Thus, a
separation of concerns (such as in the Internet protocol suite)
between network and QoE/QoS parameters is necessary for a
better understanding of how network perturbations could affect

Fig. 1. BoxingExperience separation of concerns with NS3 and LXC

the perceived QoE, as it was suggested for QoS by Vittorio
Ghini [6, Chapter 2].

In this paper, we introduce BoxingExperience: a modular
testbed implemented over NS3 and LinuX Containers (LXC)
to study multimedia QoS/QoE metrics for different network
parameters, maintaining the separation of concerns of the
Internet protocol suite. The structure of BoxingExperience is
illustrated in Fig. 1.

The article is organized as follows: Section II presents the
related work. We introduce BoxingExperience in Section III
followed by our use case: video streaming from network
cameras using VLC in Section IV. Finally, conclusions and
future work are presented in Section V.

II. RELATED WORK

Several works already performed research both at the
network/transport and application layers. In most cases, the
targeted application is multimedia transmission. The goal is
generally to obtain a video quality metric which depends on
the network state (bitrate, delay, etc).

The first complete framework for evaluating the quality
of video transmitted over network was EvalVid [7]. EvalVid

8th IEEE Workshop on Network Measurements WNM 2014, Edmonton, Canada

978-1-4799-3784-4/14/$31.00 ©2014 IEEE 658
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 09:17:40 UTC from IEEE Xplore. Restrictions apply.

supports several video codecs (MPEG-4, H.264, etc) and the
network part is either a real network or a simulated one. The
software implements the computation of delay, jitter and loss;
allowing to link the video quality in terms of Peak Signal-to-
Noise Ratio (PSNR) to the QoS.

Several works combined the framework EvalVid with the
network simulator NS2 [8], [9]. The first implementation
combining both tools was proposed in [8]. The objective was
to replace the simple network loss model used in EvalVid by
a more realistic network. Indeed, the NS2 simulator enables
simulations over many network scenarios: large topology,
wireless network, etc. To interface EvalVid with NS2, the
principle is to rely on trace files that enable both tools to
communicate with each other. The previous work has been
extended to enable simulations of rate adaptive video [9]. Rate
adaptation consists in adjusting the encoding bit rate to the
network situation in order to achieve better video quality and
reduce congestion. Varying the quantization parameter is an
efficient way to obtain rate adaptive video. The implementation
proposed in [9] also relies on trace files.

More recent works propose to evaluate multimedia transmis-
sions over network with NS3. For instance, an implementation
of EvalVid combined with NS3 is available [10]. It offers to
NS3 the same functionalities provided to NS2 by [8]. Also,
a new QoE evaluation tool has been introduced in [11]. This
software is directly implemented in NS3 and it does not use
EvalVid for the video part. However, it enables the same
kind of multimedia analysis as in previous studies, e.g., the
computation of frame-by-frame PSNR in the received video.

Another tool that brings together a multimedia module and
a network simulator is the Open Evaluation Framework for
Multimedia Over Networks (OEFMON) [12]. The multimedia
module is implemented using DirectShow, while the network
simulator is implemented in QualNet. OEFMON is a promis-
ing tool that provides many features: various codecs, on the
fly encoding adaptation to network information, no-reference
video quality measurements, etc.

In all the previous works, the considered scenario involves
one video server communicating with one video client through
a network. However, each framework manages the competing
flows in the network in a different way. For instance, the
competing flows in [8] are entirely managed by the network
simulator, while [9] enables some nodes to transmit rate
adaptive video. An important feature of BoxingExperience is
that it enables to run simulations with multiple servers and
clients, allowing more realistic scenarios.

Finally, some works already proposed to integrate Linux
containers. Connecting NS3 with LXCs for simulating several
applications running in mobile environments has been pre-
sented in the work of Zhang and Qin called TapRouter [13],
and in the work of Skjegstad et al. [14]. Moreover, connecting
several network simulators (NS3) that are running inside Linux
containers is presented in the work of Calarco and Casoni
called NetBoxIT [15]. However, the authors did not investigate
the application of NetBoxIT for multimedia transmissions.

Fig. 2. Connecting NS3 with LXC via virtual ethernet (veth) and tap devices

III. BOXINGEXPERIENCE: CONNECTING VLC WITHIN
LXCS WITH NS3

In this section, we present the main components of Boxing-
Experience and show how they are interconnected.

NS3. NS3 is an open-source discrete-event network simula-
tor for Internet systems [16]. NS3 has a modular architecture
and it relies on a set of libraries distributed from [17]. An API
is also available. Libraries belong to different packages:

• CORE: generic functionality, such as callbacks, debug-
ging objects, etc;

• SIMULATOR: schedules, events, etc;
• COMMON: independent objects as packets;
• INTERNET: models and protocols related to Internet such

as TCP/UDP;
• NODE: consist of abstract classes.

NS3 provides realistic network models with the simulated
physical/link layers that mimic the behavior of real equipments
very strictly, this is why it is widely used in academic research.
Also, it natively supports different emulation interfaces, tap
devices, and real-time simulations where data are treated by
the emulator with the same timing they would have when
traversing a true network.

LXC. Linux container is a user space interface for the Linux
kernel containment features [18]. It enables to run multiple
isolated Linux systems on a single machine. LXCs rely on
several kernel features to contain processes: kernel names-
paces (ipc, uts, mount, pid, network and user), AppArmor
and SELinux profiles, seccomp policies (a secure computing

659
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 09:17:40 UTC from IEEE Xplore. Restrictions apply.

mode), chroots (using pivot root in order to change the root
file system), kernel capabilities and control groups (cgroups).
Among several virtualization techniques (VMware, VirtualBox
and LXC), the authors in [15] noticed that LXCs achieve the
best performance (best throughput and negligible computing
overhead) .

As depicted in Fig. 2, the typical infrastructure used to
connect NS3 with a set of Linux containers is via NS3 native
support of tap devices bridged with container’s virtual ethernet
interface [13], [14]. This is the basis of BoxingExperience.

BoxingExperience. BoxingExperience relies on LXCs con-
nected through NS3. Moreover, as we are interested to study
the relation between QoS and QoE for multimedia transmis-
sions, each LXC will run the VLC media player. The VLC
media player is a free and open-source software that can be
used as a server (VLS) and as a client (VLC) to stream and
receive/display multimedia streams [19].

Even if VLC may be directly linked to NS3, the usage
of LXCs has two main advantages. First, we can easily
change the application running inside the containers. Thus
our proposal will also work with applications that cannot
be connected directly to NS3. Secondly, LXCs enable to
monitor the resource usage (for instance CPU or memory)
independently for each container.

Our current application consists in multiple clients con-
nected to a network camera as depicted in Fig. 3. More details
concerning the streaming process are given in the next section.
In our framework, there is exactly one LXC for each client
and one for the network camera. The containers are connected
via NS3. The clients run VLC, while the camera runs VLS.
For BoxingExperience, we propose to modify the client (VLC)
and server (VLS) sides in order to add QoS/QoE metrics and
feedback, locating each component of the VLC framework
inside a Linux container.

Buffer pool Client threadsCamera thread

rc=0

rc=0

rc=2

Network camera − VLS
LXC

LXC

Client n − VLC

Client 1 − VLC

LXC

Fig. 3. BoxingExperience in the context of video streaming from a network
camera to multiple clients. The arrows between the LXCs represent the
connections via NS3.

IV. USE CASE: VIDEO STREAMING FROM A NETWORK
CAMERA

This section first gives some details about the distribution
of video frames from a single network camera. Then, we show
a first evaluation of such a system using BoxingExperience.
This work is in an early stage and still in progress; we expect
to present more results in the near future.

A. Use case presentation

We study the distribution of video frames from a network
camera to multiple clients. To deliver the frames, the solution
considered here relies on a pool of buffers implemented at the
server side (the camera) [20]. As shown in Fig. 3, the server
involves two parts: a camera thread reads the frames from
the hardware and writes them into the pool of buffers, while
a client thread picks a new frame from the pool and sends
it to the corresponding client. There is one client thread per
connected client and the number of buffers is generally much
smaller than the number of customers (due to limited hardware
resources at the camera). Also, the camera thread can only
write a frame in a buffer that is not currently being read by a
client, otherwise it will produce an uncompleted and invalid
frame at the client side. Thus, the camera and client threads
require to be synchronized to avoid simultaneous access.

The main issue is to offer to the clients with a fast
connection a high frame rate when many clients with a slow
connection are connected to the camera. Indeed, while slow
connection clients read the buffers, the camera cannot write
new frames in these buffers and the performance of the fast
connection clients decreases. In [20], several algorithms have
been introduced in order to manage the buffer pool and offer
good performance (in terms of frame rate) to fast connection
clients even if the server is under heavy load.

The algorithms proposed in [20] were then implemented
into the client and server sides of the VLC Media Player.
The performance evaluation is presented in [21]. However,
the previous work did not simulate a real network and the
relation between QoS and QoE is not available. By using
BoxingExperience, we tackle these two limitations.

B. Preliminary results

Simulations setup. All the simulations have been per-
formed on a Dell OptiPlex 990 Quad-Core i5-2400 with a
3.10 GHz clock, 16 GB RAM running Ubuntu 12.04 LTS (32-
bit) as operating system, ns-3.19, lxc 0.7.5, and vlc
2.1.0-git Rincewind.

Before starting simulations, preliminary steps include:
• By now X11 must be installed in LXC in order to be able

to watch the video as a normal user;
• Each instance of LXC is managed as a virtual machine

running in user space, thus each instance of VLC must be
manually started in all LXCs and we suggest to automate
connection management with a customized script;

• NS3 is not able to perform real-time simulation when it
runs out of resources.

The configuration of BoxingExperience is as follows: there
is one LXC for the VLC server streaming the Big Buck Bunny
movie. Each transmitted frame has an average size of 400 Kb.
The simulations involve n + 2 VLC clients with one LXC
associated to each client. All the clients are connected via a
simulated network with a 1 Gbps full duplex link. The client
with the fastest connection has a speed of 13, 600 Kbps that
allows a reception of 34 frames-per-second (FPS). The client

660
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 09:17:40 UTC from IEEE Xplore. Restrictions apply.

with the second fastest connection has a speed of 9, 600 Kbps,
ensuring a reception of 24 FPS. The i-th slow connection client
(1 6 i 6 n) has a speed of (3.5+2.0× (i−1)/n)×400 Kbps
allowing a reception of (3.5 + 2.0× (i− 1)/n) FPS.

Finally, we added some useful QoS/QoE metrics to VLC
client and server, such as framerate and jitter.

Results. Fig. 4 illustrates the interface of BoxingExperience
with 9 clients connected to one server. The terminal in the
upper right corner corresponds to NS3, the terminal in the
lower right corner to the server and all other terminals are the
clients connected to the camera. For each client, the video is
played inside the terminal.

Fig. 4. BoxingExperience interface: 9 clients connected to one server

Concerning the performance (in terms of FPS) of the fastest
connection client, the behavior of our simulations was similar
to the one obtained in previous works [20], [21].

Finally, we investigate the maximal number of slow connec-
tion clients that a simulation can support. We use NS3 with a
real-time scheduler in order to lock the simulation clock with
the hardware clock. However, NS3 may not keep up with re-
altime. In that case, two synchronization modes are available:
BestEffort or HardLimit. We choose the HardLimit mode that
enables a more realistic behaviour. In that mode, the simulation
will abort if the simulation time consumes more time than
the wall clock time with a certain tolerance threshold. This
tolerance threshold corresponds to the HardLimit attribute in
NS3 [22]. The maximal number of slow connection clients
depends on that parameter as it is presented in Table I. In
conclusion, the more realistic is the simulation (i.e., a small
value of the HardLimit attribute), the less clients are involved.

TABLE I
BOXINGEXPERIENCE: NS3 SIMULATION LIMIT IN A DESKTOP COMPUTER

NS3 HardLimit attribute Number of slow connection clients (n)

100 ms (default value) 42
80 ms 39
60 ms 29
40 ms 19
20 ms 8

V. CONCLUSIONS AND FUTURE WORK

In this article, we introduced a modular framework to
study the relation between QoS and QoE metrics for multi-
media transmissions called BoxingExperience. Based on the
same separation of concerns as the Internet protocol suite,
BoxingExperience relies on Linux containers and open-source
softwares: NS3 for network simulation and VLC (inside Linux
containers) for streaming/displaying multimedia content. We
tested our framework by evaluating the performance of a
particular streaming system with BoxingExperience. We con-
cluded that the behavior was similar to the one presented in
previous works [20], [21].

As future work, we plan to extend the API of VLC in
order to increase and improve QoS/QoE metrics and statistics.
Also, we plan to investigate how BoxingExperience behaves
in other simulated or emulated environments. For instance,
if a massive content distribution is to be tested, it could be
useful to measure QoS/QoE when the distribution is made
through different networks (broadband, mobile, etc). Then,
all simulations could be executed in a multicore high-level
computer using NetBoxIT [15] (see Fig. 5(a)), or they can be
distributed in a local network environment through network
routers (see Fig. 5(b)). Finally, we would like to study if our
framework could be executed in mobile devices, in order to test
in a controlled environment the impact of network’s variations
in the perceived mobile QoE.

(a) Connected with NetBoxIT in a
multicore environment

(b) Connected in a local network en-
vironment

Fig. 5. Several ways to connect BoxingExperience

REFERENCES

[1] I. T. Union, “Vocabulary and effects of transmission parameters on
customer opinion of transmission quality, amendment 2,” ITU-T Rec-
ommendation P.10/G.100, Tech. Rep., 2007.

[2] R. Schatz, T. Hoßfeld, L. Janowski, and S. Egger, “From packets to
people: quality of experience as a new measurement challenge,” in Data
Traffic Monitoring and Analysis. Springer, 2013, pp. 219–263.

[3] K. Piamrat, C. Viho, J. Bonnin, and A. Ksentini, “Quality of experience
measurements for video streaming over wireless networks,” in Proceed-
ings of Sixth International Conference on Information Technology: New
Generations. IEEE, 2009, pp. 1184–1189.

661
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 09:17:40 UTC from IEEE Xplore. Restrictions apply.

[4] J. Pokhrel, B. Wehbi, A. Morais, A. Cavalli, and E. Allilaire, “Estimation
of QoE of video traffic using a fuzzy expert system,” in Proceedings
of Consumer Communications and Networking Conference (CCNC).
IEEE, 2013, pp. 224–229.

[5] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of
experience of HTTP video streaming,” in Proceedings of IFIP/IEEE
International Symposium on Integrated Network Management (IM).
IEEE, 2011, pp. 485–492.

[6] V. Ghini, “QoS-adaptive middleware services,” Ph.D. dissertation, Uni-
versity of Bologna, Italy, 2001.

[7] J. Klaue, B. Rathke, and A. Wolisz, “EvalVid - a framework for video
transmission and quality evaluation,” in Proceedings of 13th Interna-
tional Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2003, pp. 255–272.

[8] C.-H. Ke, C.-K. Shieh, W.-S. Hwang, and A. Ziviani, “An evaluation
framework for more realistic simulations of MPEG video transmission,”
Journal of Information Science and Engineering, vol. 24, no. 2, pp.
425–440, 2008.

[9] A. Lie and J. Klaue, “Evalvid-RA: trace driven simulation of rate
adaptive MPEG-4 VBR video,” Multimedia Systems, vol. 14, no. 1, pp.
33–50, 2008.

[10] GERCOM. [Online]. Available: http://gercom.ufpa.br/
[11] D. Saladino, A. Paganelli, and M. Casoni, “A tool for multimedia quality

assessment in NS3: QoE Monitor,” Simulation Modelling Practice and
Theory, vol. 32, no. 0, pp. 30–41, 2013.

[12] C. Lee, M. Kim, S. Hyun, S. Lee, B. Lee, and K. Lee, “OEFMON: An
open evaluation framework for multimedia over networks,” Communi-
cations Magazine, IEEE, vol. 49, no. 9, pp. 153–161, 2011.

[13] J. Zhang and Z. Qin, “Taprouter: an emulating framework to run real
applications on simulated mobile ad hoc network,” in Proceedings of the
44th Annual Simulation Symposium. International Society for Computer
Simulation, 2011, pp. 39–46.

[14] M. Skjegstad, F. T. Johnsen, and J. Nordmoen, “An emulated test
framework for service discovery and manet research based on ns-3,” in
Proceedings of the 5th International Conference on New Technologies,
Mobility and Security (NTMS). IEEE, 2012, pp. 1–5.

[15] G. Calarco and M. Casoni, “On the effectiveness of Linux containers
for network virtualization,” Simulation Modelling Practice and Theory,
vol. 31, pp. 169–185, 2013.

[16] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM demonstra-
tion, 2008.

[17] NS3. [Online]. Available: http://www.nsnam.org
[18] Linux Containers. [Online]. Available: https://linuxcontainers.org/
[19] VLC. [Online]. Available: http://www.videolan.org/vlc
[20] J. Bustos-Jiménez and J. M. Piquer, “Frame allocation algorithms for

multi-threaded network cameras,” in Proceedings of the 16th Interna-
tional Euro-Par Conference on Parallel Processing: Part I. Springer,
2010, pp. 560–571.

[21] G. Muñoz, H. Méric, J. Piquer, and J. Bustos-Jiménez, “Performance
evaluation of streaming algorithms for network cameras,” in Proceedings
of IEEE INFOCOM Workshop on Communication and Networking for
Video. IEEE, 2014, pp. 1–6.

[22] NS3 Manual. [Online]. Available: http://www.nsnam.org/docs/release/3.
11/manual/html/realtime.html

662
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 09:17:40 UTC from IEEE Xplore. Restrictions apply.

