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Abstract—We report preliminary results from a novel method
that predicts the value of the RF path loss exponent (PLE) from
satellite remote-sensing observations. The value of the PLE is
required when designing wireless sensor networks for environ-
mental monitoring. The model was produced by correlating field
measurements of path loss to Landsat 8 data for three dates in
2013. The correlations are strong (R2 > 0.87), and exhibit high
statistical significance (p < 0.01). As far as we know, this is the
first reported work that links remote sensing observations to field
predictions of RF loss.

The work reported here is preliminary because we were only
able to gather field observations for three dates in 2013. Now that
we know the approach holds some promise, we plan to extend the
work with a much more aggressive field campaign in the spring
and summer of 2014.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been very actively
studied. There is a rich literature of theoretical studies on
the abstract properties of WSNs, and algorithms for sensor
coverage, sensor placement, relay placement, and base station
mobility [1]–[4]. A key issue in designing and deploying
WSNs is the RF propagation environment [5], largely because
of the limited energy budget at the wireless nodes. RF trans-
mission, and to a lesser extent, signal reception are the main
consumers of energy in wireless nodes. Thus, if we can predict
the magnitude of RF signal loss in the area to be covered by a
WSN, we can develop power budgets for the links between
nodes, and estimate the lifetime of the network for given
battery resources.

RF propagation through vegetation has been studied at least
since the 1960’s [6]. One broad class of propagation models is
empirical. These are based on experimental measurements of
received signal strength, converting these data to attenuation,
and regressing against distance. The current ITU-R recom-
mended model for predicting attenuation in vegetation is of
this form [7]. The shortcoming of an empirical model is that
it has no mechanistic link to the properties of the vegetation
in the area of interest. Model parameter values are specific to
the site [8] or species investigated [9]. The key parameter in
models for RF propagation through vegetation, such as the one
recommended by the ITU-R, is the path loss exponent (PLE).

We propose a novel method for predicting PLE values
from Landsat 8 remote-sensing observations. At the moment,

our model is specific to aspen boreal forests, which cover
approximately 1.5 to 2.0 million square kilometres in Canada
alone. The method is generalizable to other forest types, and
we propose both broader coverage of boreal forests, and other
vegetation types, as future work. The satellite data we use are
available for any location on Earth, thus enabling character-
ization and prediction of the RF propagation environment in
forested areas without the need for field measurements. As far
as we know, this is the first reported work that links remote
sensing observations to field predictions of RF loss.

A second contribution is that we also propose a novel
way of predicting high-resolution 30m x 30m Landsat 8 data
required by our method from lower-resolution 250m x 250m
MODIS observations that are not as easily degraded. Such
degradation occurs relatively frequently when cloud cover or
aerosols such as pollution or sand storms degrade or signifi-
cantly interfere with the high-resolution satellite data we are
using. We tested our proposal by comparing its predictions to
actual values for a date when the 30m x 30m data are available,
and the results show absolute errors of less than 5%.

In the following section, we survey the previous work on
the general problem of predicting RF loss in vegetation. We
note that there is no previously published work linking remote-
sensing measurements to link budget analysis. We believe this
paper is the first published work on that topic. The survey of
related work is followed in Section 3 by a detailed description
of our methodology. Section 4 presents our experimental
observations and observations for leaf-on and out-of-leaf con-
ditions at a site in Alberta, Canada. Section 5 presents our
method for predicting missing high-resolution data from low-
resolution satellite observations. Section 6 presents conclusions
and future work.

II. PREVIOUS WORK

The topic of RF propagation through vegetation has been of
commercial interest since the 1960’s due to the importance of
wireless links for telephony [6]. The early work was relevant
to line-of-sight relay links. The propagation paths of interest
are above the forest canopy, between two terminals situated
several kilometres apart [10]. While more recently, the topic
has become important for the design and location of cellular
network towers. Models are required to predict attenuation
along the “slant path” between a cellular tower and a user
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situated in or travelling through a forested area such as an
urban park [8], [11]. Cellular operators also have an interest
in predicting the effects of isolated trees or lines of trees, as
these are common occurrences in urban landscapes [12].

Propagation paths for WSNs in forested areas are different
than for telephony, with both terminals typically being located
in or below the canopy. Paths are usually roughly horizontal,
following the terrain. There are some applications that need
to characterize vertical paths, such as measurements being
conducted in tree crowns [5]. In any case, the unpredictability
of RF signal strength is a major issue in the design of
WSNs [5]. Attenuation predictions are needed both statically as
a function of distance, and dynamically as a function of wind,
weather, and vegetation condition (leaf-on or out-of-leaf).

Several mechanistic models of RF attenuation in vegetation
have been developed [12], [13]. Below about 200 MHz, where
the dimensions of the vegetation are much smaller compared
to the wavelength of the RF signal, a dissipative slab model
can be used [6]. Above this frequency, from 200 MHz to 2
GHz, Cavalcante et al. proposed a four-layer slab model. This
consists of a semi-infinite ground plane supporting above it
a trunk layer, canopy layer, and air layer [14]. Models like
these require numerical methods for solution, and depend on
the values for several parameters in each layer (permittivity,
conductivity and permeability). Their chief advantage over
empirical models is that they provide physical insight into
wave characteristics and propagation modes [13].

The ITU-R in Recommendation P.833 [7] recommends
an empirical model, rather than a mechanistic one. Common
empirical models predict an exponential decrease in signal
strength with both distance and frequency [9], [12]. The ITU-
R Recommendation is a good starting point for the general
form of empirical predictions, but in itself is not sufficient
for WSN design, directed as it is towards paths that traverse
the forest canopy, rather than tree trunks and understory
vegetation [15]. The parameters in the Recommendation are
also of limited applicability, as they are tied to specific species
of trees that may or may not be present in a given area of
interest. In addition, the parameter values are for a single
species at a particular density. There is no guidance in the
Recommendation for sites consisting of a mixture of species
of varying densities or degrees of canopy openness.

Our goal is to extend models of the form recommended by
the ITU-R to heterogeneous forests consisting of a mixture of
species at varying densities. Our contributions are:

• exploration and demonstration of a significant correla-
tion between the value of the path loss exponent, and
the values of remotely sensed vegetation indices (VIs).
The global availability of high-resolution 30m x 30m
satellite data for these indices thus enables RF path
loss predictions for WSNs anywhere in the world.

• demonstration of a method for predicting high-
resolution VI values from low-resolution 250m x
250m MODIS data. This enables us to fill in gaps
in the temporal series of VI values when the satellite
view of the area of interest is obscured by clouds or
aerosols.

III. METHODOLOGY

The basic model for the attenuation of RF signals with
distance, also called free space path loss, is:

Pr(d) = Pt ×GrGt(
λ

4πd
)2 (1)

where Pr and Pt are the received and transmitted power in
mW, d is the distance from the transmitter to the receiver in
meters, Gr and Gt are the gain of the receive and transmit
antennas, and λ is the wavelength in meters. Defining K =
GrGt(λ/4π)

2 leads to:

Pr(d) = K × Pt/d
2 (2)

K is determined by the gain of the receive and transmit
antennas, their connection to the respective radio, and the
frequency of operation. The value of K is fixed once the radios
and antennas have been selected and interconnected and does
not change with variation of vegetation.

We apply this variation of the free space path loss equation
alone, and do not consider the potential effects of multi-path
propagation within the forest. Previous work sponsored by the
UK Radiocommunications Agency [9] found that multi-path
propagation is not a significant factor in forests as long as the
trees are in-leaf. That is the condition we consider in this work.

For areas with varying vegetation densities, we replace
the fixed value of 2 in the exponent of d with the path loss
exponent α, where densely forested areas have high values of
α, and sparsely forested areas have low values:

Pr(d) = K × Pt/d
α (3)

Our objective is to characterize the relationship between
path loss exponent, α, and vegetation density. α can be
obtained from signal loss measurements in the field, in the
area of interest. Vegetation density is usually represented
by vegetation indices (VIs) such as Normalized Difference
Vegetation Index (NDVI). NDVI assesses whether the observed
area contains live green vegetation or not and has a value
ranging from -1 to 1. Negative values correspond to water.
Very low values (0.1 and below) represent barren areas like
rock, sand, or snow. Moderate values (0.2 and 0.3) correspond
to shrub and grassland. High values indicate densely vegetated
areas including temperate and tropical rainforests (0.6 to 0.8).
Other vegetation indices including Simple Ratio (SR), and At-
mospherically Resistant Vegetation Index (ARVI) also reflect
the vegetation density. The equations defining these indices are
given in Eq. 4 through Eq. 7. The variables ρnir, ρr and ρb
represent reflectance of the near infrared, red, and blue band.
γ is used to minimize the atmospheric effects and usually set
to 1.0.

SR = ρnir/ρr (4)
NDV I = (ρnir − ρr)/(ρnir + ρr) (5)
ARV I = (ρnir − ρrb)/(ρnir + ρrb) (6)

ρrb = ρr − γ ∗ (ρb − ρr) (7)

We calculate the vegetation index values from Landsat 8
Operational Land Imager (OLI) satellite data for each 30m x
30m cell in an area of interest. Table I gives the bands and
wavelengths sensed by Landsat 8 OLI.
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Bands Wavelength (micrometers)
Band 1 - Coastal aerosol 0.43 - 0.45

Band 2 - Blue 0.45 - 0.51
Band 3 - Green 0.53 - 0.59
Band 4 - Red 0.64 - 0.67

Band 5 - Near Infrared (NIR) 0.85 - 0.88
Band 6 - SWIR 1 1.57 - 1.65
Band 7 - SWIR 2 2.11 - 2.29

Band 8 - Panchromatic 0.50 - 0.68
Band 9 - Cirrus 1.36 - 1.38

TABLE I. LANDSAT 8 OLI BANDS [16]

Fig. 1. Grid of Study Area

IV. FIELD MEASUREMENTS

We made field trips to the Ministik Game Bird Sanctuary
on July 23, August 21, and October 11, 2013. The Sanctuary
locates in the east of Edmonton, Alberta, Canada. Vegetation
includes Boreal mixed-wood forest, Populus balsamifera, and
Trembling Aspen. The forest has a dense understory with
almost no conifers.

We took signal loss measurements in a rectangular 90m x
90m area of interest. The grid was oriented along the cardinal
directions, with its northeast corner at UTM co-ordinates 12U
366975E 5907915N. We note that UTM co-ordinates are in
units of meters. The grid is shown on the map in Figure 1. We
divided the grid into nine 30m x 30m cells to match the pixel
size of the available Landsat 8 satellite data.

Determining K

Our first experiment was to make two sets of measurements
at several distances along straight lines in two different areas.
The vegetation density, and thus α, was roughly constant in
each of the two areas, with the second area being denser than
the first. Portable GPS receivers (Garmin model 62S) with
WAAS enabled were used to set the measurement positions. Li-
belium Waspmotes with Digi International Xbee Pro S1 radios
at 2.4GHz operating frequency and 2.1 dBi whip antennas were
used for the transmitter and receiver. Special-purpose software
was written for the transmitter to transmit packets, and for
the receiver to detect the RSSI value in dBm and display it
on an attached laptop. Ten values for RSSI were collected at
each distance, and averaged for the final result in each cell.
The radio and antenna configurations were kept the same for
these two sets of measurements, so while we expected α to
differ, K was physically constrained to remain the same. These

measurements were the raw data from which we calculated K
(see Table II, Figure 2 and Figure 3).

By taking logarithms on both sides of Eq. 3, we get

log Pr(d) = −α ∗ log d+ log K + log Pt (8)

where the transmitted power Pt of the Waspmotes is a constant,
63mW, and by taking ten times the logarithm of received power
Pr(d), it equals the measured RSSI. We used a least squares
regression to find the values of K and α that best explained
the two sets of measurements. We allowed α to be different
in the two areas, but forced K to be the same. We found the
value of log K to be -5.9. In the denser area, α had a value
of 3.2, while in the sparser area it was 2.4.

Line 1 - sparse Line 2 - dense
distance (m) RSSI distance (m) RSSI

7.07 -65 1.414 -65
10.63 -74 4.47 -76
20.00 -91 5.00 -77
20.81 -83 11.31 -74
28.64 -81 16.12 -87
36.07 -83 20.00 -83

TABLE II. RSSI MEASUREMENTS USED TO FIND K

Fig. 2. RSSI in the Sparse Area

Fig. 3. RSSI in the Dense Area

Measuring RSSI

Our second set of experiments was to record the received
signal strength indication, RSSI in dBm, on a diagonal path
across each cell. We made three separate field trips, in July,
August, and October, to gather data under different vegetation
conditions. We used the same equipment configuration as for
the determination of K. We used the previously determined
value for K plus the RSSI data to calculate the value of α for
each cell, under the vegetation conditions on the date of the
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measurements. One pair of diagonally opposite corners of each
cell were used to make each measurement. Each cell covers
one pixel in the Landsat 8 images of the area, so these corner-
to-corner measurements cover the smallest useful distance. In
effect, the resolution of the satellite image sets the spatial
resolution for our path loss predictions.

Predicting missing VI measurements

One of the potential drawbacks of relying on satellite data
in the visible spectrum is that clouds and aerosols can interfere
with the satellite’s view of the ground. To alert users to this
problem, Landsat 8 data products include an indication of
the cloudiness of the view of the area of interest on the
day each image is obtained. For August and October, these
values were 2.36 and 3.45, respectively. However, for July, the
cloudiness index was 13.15. This is extremely high, making
the VI calculations for that date unreliable. To solve the
problem of missing satellite data, we tested the use of lower
resolution MODIS satellite data having 250m x 250m pixels to
predict the July Landsat 8 data from the May and September
Landsat 8 data, following the same trend as the change in the
encompassing MODIS pixel. That is, if L denotes Landsat 8
values, M denotes MODIS values, and if the subscripts 1, 2
and 3 denote three successive dates, then:

L2 = L1 + (L3 − L1) ∗ (M2 −M1)/(M3 −M1) (9)

where date 2 is the date when the missing Landsat 8 values
are encountered. We first tested this method by comparing
the values it predicts for a date when the Landsat 8 data are
available. We used MODIS and Landsat 8 data from May 20,
August 24 and September 9. The actual and predicted Landsat
8 values are shown in Table III. The maximum error is 4.9%.
We then applied this method to calculate the missing NDVI
values for our July 23 field trip (Table IV).

cell Actual Predicted
1 0.7439 0.7587
2 0.7454 0.7643
3 0.7538 0.7759
4 0.7571 0.7719
5 0.7517 0.7776
6 0.7498 0.7864
7 0.7623 0.7695
8 0.7693 0.7874
9 0.7631 0.7893

TABLE III. ACTUAL AND PREDICTED NDVI VALUES FOR AUGUST 24

The raw RSSI data for all three field trips is shown in
Table IV, along with the values for α calculated from Eq. 8,
and the Landsat 8 NDVI of each cell. During our first field trip
in July, laptop power constraints prevented us from collecting
RSSI data for the ninth cell. The NDVI values shown for July
are the predicted values from Eq. 9.

V. RESULTS AND DISCUSSION

We tested linear, logarithmic, and quadratic equations for
their fit to the data (see Fig. 4 - 6). We use two figures of merit,
R2 and p, to assess how well each correlation fits a particular
data set. The coefficient of determination, R2, indicates how
well a set of data points fit a regression equation. The closer
the value of R2 is to one, the better the regression equation fits

July August October
Cell RSSI α NDVI RSSI α NDVI RSSI α NDVI
1 -94 3.256 0.798 -98 3.502 0.759 -90 3.010 0.431
2 -101 3.686 0.806 -98 3.502 0.753 -89 2.949 0.386
3 -100 3.625 0.819 -94 3.256 0.749 -88 2.888 0.386
4 -97 3.440 0.811 -95 3.318 0.763 -88 2.888 0.453
5 -98 3.502 0.826 -89 2.945 0.738 -96 3.380 0.352
6 -101 3.686 0.846 -96 3.379 0.747 -93 3.195 0.361
7 -94 3.256 0.803 -95 3.318 0.750 -92 3.133 0.423
8 -95 3.318 0.837 -90 3.035 0.742 -96 3.379 0.373
9 n/a n/a 0.838 -98 3.502 0.751 -93 3.195 0.357

TABLE IV. CELL DATA

the data. The statistical significance of the correlation is (1−p)
so that smaller values for p are better. The R2 and p values
for all the NDVI models we tested are shown in Table V.

Fig. 4. Linear fit of α vs. NDVI in July

Fig. 5. Linear fit of α vs. NDVI in August

Fig. 6. Linear fit of α vs. NDVI in October

For the July and August data, we found that the simplest
model, the linear function, fits NDVI and other vegetation
indices such as ARVI and SR to α very well. We present the
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results for the correlations with NDVI here; those for the other
indices behave similarly. It has R2 values greater than 0.80
and p values of 0.014 or better. The slightly more complex
quadratic model fits these data extremely well, and has R2

values greater than 0.87 and p values of 0.006 or better. The
logarithmic model for these data also has very good values of
R2 and p, but they are not significantly better than the simpler
linear model.

The correlation for the October data is qualitatively differ-
ent than for July and August, giving an inverse relationship
between α and NDVI. The explanation for this is that by the
time we visited the site in October, the trees had dropped their
leaves, and the forest was out-of-leaf. This can be observed
indirectly from the dramatic change in NDVI values. In July,
NDVI ranges from 0.79 to 0.85, and in August, it ranges
from 0.74 to 0.76. NDVI values of 0.7 and 0.8 correspond to
densely vegetated areas that can largely affect RF propagation.
However, in October, NDVI is much lower and ranges from
0.35 to 0.46, which indicates the area is out-of-leaf and RF
propagation is no longer affected by vegetation. The satellite
sensor, of course, was still receiving reflectance data from the
area of interest in October, likely from biomass on the forest
floor [17]. We conclude that our proposed method of using
NDVI data to predict α is only applicable when the forest is
in-leaf. Further work is required to predict path losses in the
out-of-leaf condition. As noted earlier, the underlying model
would also have to change, as multi-path propagation becomes
important in this condition.

To summarize, we found that a quadratic model has the
best ability to predict α from satellite NDVI measurements.
However, a simpler linear model also performs quite well. This
method is applicable only when the forest is in-leaf, although
that is satisfactory for link budget calculations, because the
in-leaf condition is when the highest path losses are observed.

Linear Logarithmic Quadratic
R2 p R2 p R2 p

July: α-NDVI 0.8160 0.0136 0.8201 0.0130 0.8812 0.0056
August: α-NDVI 0.8044 0.0025 0.8065 0.0025 0.8677 0.0012
October: α-NDVI 0.4233 0.0577 0.4334 0.0538 0.4766 0.0396

TABLE V. SUITABILITY OF REGRESSION MODELS

VI. CONCLUSIONS AND FUTURE WORK

We propose a relatively simple model to predict values for
the path loss exponent, α, based on satellite observations of
NDVI. We found this approach to work very well for leaf-on
conditions in a study site consisting of boreal forest in central
Alberta. We also propose a method to fill in missing high-
resolution 30m x 30m data for dates where the satellite’s view
of the area of interest is obscured by clouds or aerosols. Based
on these promising initial results, we plan to carry out a much
lengthier field campaign from April through October of 2014.
This will enable us to develop a method for predicting PLE
values from NDVI measurements for the entire leaf-on phase
in boreal forest sites.

Lastly, the authors would like to note that even for this
relatively small field study, substantial planning, as well as pa-
tience with weather and equipment was required. The step from
computer simulations and laboratory tests to real fieldwork in

a dense, buggy and sometimes wet forest is a substantial one.
We believe it has also been very rewarding.
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