
Making Active-Probing-Based Network Intrusion
Detection in Wireless Multihop Networks Practical:
A Bayesian Inference Approach to Probe Selection

Rodrigo do Carmo, Justus Hoffmann, Volker Willert, and Matthias Hollick

Abstract—Practical intrusion detection in Wireless Multihop
Networks (WMNs) is a hard challenge. The distributed nature
of the network makes centralized intrusion detection difficult,
while resource constraints of the nodes and the characteristics
of the wireless medium often render decentralized, node-based
approaches impractical. We demonstrate that an active-probing-
based network intrusion detection system (AP-NIDS) is practical
for WMNs. The key contribution of this paper is to optimize
the active probing process: we introduce a general Bayesian
model and design a probe selection algorithm that reduces
the number of probes while maximizing the insights gathered
by the AP-NIDS. We validate our model by means of testbed
experimentation. We integrate it to our open source AP-NIDS
DogoIDS and run it in an indoor wireless mesh testbed utilizing
the IEEE 802.11s protocol. For the example of a selective
packet dropping attack, we develop the detection states for our
Bayes model, and show its feasibility. We demonstrate that our
approach does not need to execute the complete set of probes,
yet we obtain good detection rates.

Index Terms—Bayes inference, Security, Intrusion Detection,
Wireless Multihop Networks

I. INTRODUCTION

COMMUNICATIONS in Wireless Multihop Networks
(WMNs) run on top of a decentralized, wireless, and

cooperative infrastructure. Because of their decentralization,
WMNs are harder to monitor and to control than traditional
centralized wired networks. However, a reliable multihop in-
frastructure is desirable for most applications. Several attacks
can drastically harm a multihop network; for instance, a
properly located attacker might carry out an easy-to-implement
selective packet dropping, and this is both nocuous and diffi-
cult to detect [1]. For this reason, the security of the underlying
infrastructure is specially important in these kind of networks.

The nodes in a WMNs are, generally, not accessible for
centralized management, and they are very often resource
constraint. Therefore, local Intrusion Detection Systems (IDS)
are unpractical for these networks. In addition, passive eaves-
dropping limits the range of attacks that can be detected [2].
In previous work, a practical conceptually different alterna-
tive has been presented for intrusion detection: the so-called
active probing [3], [4]. By transmitting testing packets to the

Rodrigo do Carmo, Justus Hoffmann, and Matthias Hollick are with
the Secure Mobile Networking Lab (SEEMOO) at TU Darmstadt,
Mornewegstr. 32, 64293, Darmstadt, Germany. Email: {rdocarmo, jhoffmann,
mhollick}@seemoo.tu-darmstadt.de.

Volker Willert is with the Control Theory and Robotics Lab at TU
Darmstadt, Landgraf-Georg-Str. 4, 64283, Darmstadt, Germany. Email:
vwillert@rtr.tu-darmstadt.de.

nodes and analyzing their response, an Active-Probing-Based
Network IDS (AP-NIDS) achieves intrusion detection while
conserving the resources of the nodes. It is deployed on a
single, trusted node which serves for intrusion detection.

Active probing for intrusion detection is a promising ap-
proach in WMNs, yet making it completely functional remains
an open challenge. An AP-NIDS is provided with a set of
probes, and each probe aims at unveiling the presence of a
particular attack. Transmitting the complete set of probes is,
clearly, not wise because it increases the network overhead,
detection time, and most of the attacks are unlikely to happen
simultaneously. For this reason, creating a mechanism that
uses a logic in order not to transmit the complete set of probes
is necessary.

Rish et al. proposed a probe selection mechanism for fault
determination in distributed systems [5], [6]. Their idea is
conceptually similar to what we need for AP-NIDS but it
is intended for determining faults in complete systems, as a
result of probing their individual components. Each component
has only two states, namely, “up” or “down”, and the system
state is inferred from the state of all of its components. In an
AP-NIDS, however, the scenario is different. The performed
probings are reduced to single individual nodes, their state
being not only “up” or “down” but all the different possible
attacks. Thus, in this work we reformulate the approach
presented in [5], [6] to make it applicable to active probing
intrusion detection. Our approach is, nevertheless, valid for
other applications where individual nodes have to be probed
against different states.

The contributions of this paper are as follows.
• We model a temporal-selective Bayes classifier to infer

the state of a network node under test. It classifies whether
a node misbehaves based on the outcome of a set of
active probes. To implement this classifier, we design
a recursive probe selection scheme. It is based on the
current posterior of the Bayes classifier and a prediction
step, and facilitates to reduce the number of active probes
while maximizing the insights gained by the set of probes
executed.

• We integrate the proposed mechanisms into our open
source AP-NIDS DogoIDS1. We perform extensive ex-
perimentation in an indoor mesh testbed using the IEEE
802.11s protocol for evaluating the performance of our
proposed Bayesian classifier. We perform our evaluation

1DogoIDS is available at http://sourceforge.net/projects/dogoids.

39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 345
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

with real attacks.
The rest of this paper is organized as follows. Section II
describes related work. In Section III, we introduce the nec-
essary background on active-probing intrusion detection, and
define our adversary model. Section IV presents the Bayesian
inference model proposed in this paper. In Section V, we
describe the experiments performed to evaluate our model,
and Section VI presents and discusses the results obtained.
Finally, Section VII concludes this work.

II. RELATED WORK

Rish et al. proposed a probe selection mechanism for fault
determination in distributed systems [5], [6]. They employ a
two-layer Bayesian network where a prior distribution over the
states of a system is employed to select the most informative
probes, and the belief is updated on each test. Although this is
an interesting approach for fault localization, in this paper we
reformulate it for intrusion detection. We use a naive Bayes
classifier. The components of our network (the nodes) are
individually tested and therefore not interconnected in a Bayes
network. The state of a node is not only “up” or “down” but
also the attack/misbehavior present. The outcome of our active
probes is a vector that contains the probability of a node to be
in a certain state. In addition, we adapt the algorithm for probe
selection in [5]. We do not employ an information theoretic
approach that links the probes with a dependency matrix, but
a search algorithm that looks into the distributed probabilities
of the attacks.

Regarding intrusion detection in wireless multihop net-
works, many schemes propose the deployment of sensors in
all or a great part of the network nodes [7], [8], [9], [10], but
none of them is validated in practice. There exists work that
is experimentally validated, such as AODVSTAT [11], LiPaD
[12], or OpenLIDS [13]. These implementations, however,
are expensive for the network nodes in terms of resources.
Some other works propose modifying the routing protocols
[14], [15]. These are not validated in practice and therefore
we argue that modifying the protocols currently employed
and standardized might be a reasonable approach only if the
modification notably improves the attack detection/repudiation
and if they are validated. In previous work, we presented an
alternative to intrusion detection which does not need to be
deployed in every node [3], [4]. We deployed a proof-of-
concept and showed that it is practical for WMNs.

III. BACKGROUND: ACTIVE-PROBING INTRUSION
DETECTION

In this paper we propose a naive Bayes classifier to infer
the state of component under test based on the outcome of a
sequence of measurements, or probes. Our approach is general
enough and can be applied to a variety of situations. However,
we are also interested in applying our model to a concrete
case: attack/misbehavior inference in an active-probing-based
network intrusion detection system. For this reason, in this
paper we model our classifier in the context of an AP-NIDS.
We show how we can theoretically model the classifier and,
at the same time, how it can be applied to solve a particular

problem. In order to understand the active probing mechanism,
we describe in this section the basics of an AP-NIDS together
with the adversary model we employ.

A. Adversary Model

Capabilities of the attacker. We assume that the attacker is
capable of either introducing one or multiple malicious nodes,
or of taking control of one or multiple legitimate nodes of the
network (byzantine behavior). In both cases we assume the
malicious nodes to be internal to the network, i.e., the nodes
belongs to the network. The attacker is active and, hence, can
freely communicate with the legitimate nodes. In particular,
it can create, manipulate, send, receive, forward, and drop
packets.

Limitations of the attacker. We assume that the attacker
cannot launch attacks on the physical layer (like jamming
attacks), and it can only communicate with the nodes within
its transmission range. The attacker cannot increase the trans-
mission power or improve its sensitivity. The computation and
power capacity of the attacker are limited to the resources of
the nodes that it is controlling. In addition, the attacker cannot
change the physical location of the compromised nodes. The
attacker’s purpose is to degrade the quality of service of the
network by selectively dropping packets [3].

B. The Active Probing Mechanism

In a wireless multihop network there is no clear line
of defense; the network is created ad hoc and the nodes
collaborate to forward the packets to their destination without
the need of a central management unit. Hence, the intrusion
detection should be distributed in the network. Since we do
not want to harm the resources of the nodes by deploying IDS
sensors on them, we utilize an active-probing-based IDS which
is deployed in single node (or more) dedicated for intrusion
detection which can also be mobile. We consider that the
mobility of the AP-NIDS node is out of the scope of this
paper.

The active probing technique uncover malicious nodes by
creating and transmitting testing packets. The testing packets
are transmitted within the context of a probe that is defined as
follows: a probe is the set of steps and testing packets involved
to detect one particular attack. For example, a probe can be
created to detect “selective dropping of HTTPS packets”. To
do so, it might send several different testing packets. Although
a probe is well-defined to detect one particular attack, it also
holds information about other attacks. A detected attack could
be a subcategory of a more general attack category or vice
versa, hence, it is obvious that the observations of different
probes are correlated. For example, if a probe aims at detecting
the dropping of HTTPS packets, some of the testing packets
might establish information pointing to a more general attack
dropping all TCP packets.

After the testing packets are sent to the target node, which
is the node being tested, the AP-NIDS gathers the traffic
generated by this node (if any) and analyzes it. The testing
packets are assumed to be indistinguishable from regular
packets in the network to conceal the IDS from attacker nodes.

346
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

The reaction of the nodes to these packets depends on the
packets themselves and on the chosen protocol. For example,
data packets might need to be forwarded to neighboring
nodes while path discovery packets are replied according
to the specification of the protocol. In order to accomplish
the active-probing-based intrusion detection, the AP-NIDS
performs three general steps:

1) Selection of the mesh node to be probed, 2) sending of
testing packets, and 3) analysis of the data generated by the
target node after the active probing.

After completing the above steps, the AP-NIDS infers that:
1) Either the target node behaved as expected and no attack
is detected, 2) an attack was detected and classified, or 3) the
IDS cannot assess the target node sufficiently [3].

Given that an AP-NIDS is provided with a potentially large
set of probes, launching all of them sequentially until an attack
is detected is not resource efficient. To reduce the overhead of
active probing, in the next section we propose a mechanism
based on Bayesian inference to reduce the number of probes.

IV. BAYESIAN INFERENCE MODEL FOR ACTIVE-PROBING
INTRUSION DETECTION

In this section, we describe the temporal-selective Bayesian
classifier to optimize the active probing process. We first
concisely describe the basics of the naive Bayes classifier,
which we then extend to the temporal domain. We further
introduce a novel feature selection strategy for our classifier.

A. Definitions

Let N = {ni}I
i=0 be a set of I + 1 class labels/hypotheses,

which are in our case the different attacks to be detected by the
AP-NIDS. One of the classes (labeled n9 in our experiments)
represents “normal condition”, and stands for the detection
result “no attack detected”. Let Nx ∈ N be the discrete state
of the target node at position x in the network that is analyzed
by the AP-NIDS. Let Φ = {φ j}J

j=1 be a set of binary features
Φ∈ {true, false}J . In our case each feature φ j equals the result
of a probe j applied to the target node, and is designed to
detect one specific attack ni . From now on, we assume there
is only one specific probe per attack and for each attack there
exists a probe. The probe j corresponds to attack ni if i = j.
The different attacks to be investigated by the AP-NIDS are,
for example, n1 “dropping of ARP packets” or n2 “dropping
of DNS packets”.

B. Bayesian Model for Attack Detection

Our goal is to infer whether the target node is attacked
or not and—in case of attack—which kind of attack has
taken place. One simple way to detect an attack is to apply
all probes to the target node, look at all feature vectors,
and choose the probe labeled with a “true”. However, this
method has a number of drawbacks. First, what to decide
if several probes lead to a positive answer. This usually
happens because it is typically not possible to design probes
that lead to an unambiguous classification result. Second, we
have to execute all probes, which causes a large amount of

Table I
CONDITIONAL PROBABILITY TABLE p(φi|Nx)

φi n1 n2 n3 n4 n5 n6 ... ni ... nI

true pt1 pt2 pt3 pt4 pt5 pt6 ... pti ... ptI

false p f 1 p f 2 p f 3 p f 4 p f 5 p f 6 ... p f i ... p f I

traffic, is computationally expensive, and time consuming.
We propose to follow a probabilistic detection approach to
reduce this overhead. Now, the AP-NIDS provides conditional
probabilities p(φi|Nx) for a specific feature of a probe φi given
a specific attack Nx = ni . This tells how uncertain the AP-
NIDS is for its feature given an specific attack. Here, p(φi|Nx)
is a discrete conditional probability that can be summarized
in a Conditional Probability Table (CPT) with probabilities
p(φi = true|Nx = ni) = pti and p(φi = false|Nx = ni) = p f i
for all possible attacks ni ∈ N and binary feature values
φi ∈ {true, false} shown in Table I.

Each probe results in a certain CPT that has to be ei-
ther learned from data or constructed empirically. It satisfies
p(φi|Nx) ≥ 0 and ∑φi p(φi|Nx) = 1. Assuming that the fea-
tures φi of the different probes are statistically independent,
p(Φ|Nx) = ∏i p(φi|Nx), and introducing a prior probability
p(Nx), we are able to infer the posterior probability p(Nx|φi)
for each probe individually via Bayes’ rule:

p(Nx|φi) ∝ p(φi|Nx)p(Nx) . (1)

Combining all individual features to one common posterior
probability, we arrive at the naive Bayes classifier [17] as
depicted in Fig. 1 a):

p(Nx|Φ) ∝ p(Nx)
J

∏
j=1

p(φ j|Nx) (2)

This classifier fuses all the different information sources Φ,
namely the features of the different probes, to one common
output. Which attack n? has the biggest probability to be the
attack really present can be found by maximizing the posterior
probability as follows:

n? = argmax
i

p(Nx = ni|Φ) . (3)

a) Naive Bayes classifier

φ1 . . . φ j . . . φJ

Nx

⇒

b) Temporal-selective Bayes classifier

φ1,φ2, ...,φ j, ...,φJ

φk φk+1

Nk
x Nk+1

x

Figure 1. a) Graphical model of the naive Bayes classifier and b) the proposed
temporal selective Bayes classifier. Nk

x is the state of the target node x and φk

is the selected probe at time step k.

347
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

Using this approach, we are able to express uncertainty
about the features and the classification result, and consider
the statistical dependency between attacks. In addition, we can
account for prior knowledge modeled with the prior p(Nx)
preferring specific attacks. But still all probes have to be taken
into account. Therefore, we unroll the naive Bayes classifier
along discrete time and only allow for one probe φk ∈ Φ to
be executed at each time step k. This leads to a first order
Markov chain [16] for the state of the target node as depicted
in Fig. 1 b). Hence, the state of the target node Nk

x also
becomes time dependent and we arrive at a time dependent
posterior:

p(Nk+1
x |φ1:k+1) ∝ p(φk+1|Nk+1

x)∑
Nk

x

p(Nk+1
x |Nk

x)p(Nk
x |φ1:k)

︸ ︷︷ ︸
p(Nk+1

x |φ1:k)

,

(4)
where φ1:k is the set of all probes φ1:k = (φ1,φ2, ...φk)

executed up to time k. This Markov chain is completely
determined by the initial prior probability p(N0

x), the tran-
sition probability p(Nk+1

x |Nk
x) and the observation likelihood

p(φk|Nk
x) applying one specific probe φk = φi at each time

step k. Assuming the transition probability to be the identity
matrix, there is no uncertainty introduced because of the
state transition and for the temporal prior/prediction it follows
p(Nk+1

x |φ1:k)=∑Nk
x

p(Nk+1
x |Nk

x)p(Nk
x |φ1:k). Hence, the Markov

chain equals a stepwise executed naive Bayes classifier. Ad-
ditional sources of information can easily be introduced,
e.g., knowledge about correlations between attacks that have
already been detected in neighboring nodes and the attack to
be detected in the current node. However, up to now, we do
not know which probe φi to execute at which time step k. It
thus remains open: how many probes to execute and in which
temporal order should they be executed to yield a reliable
detection result?

Our selection mechanism is a two step procedure that is
executed each time after a new posterior has been calculated.
We define two sets of probes with their elements changing
over time. The first set Γ− := φ1:k is the set of all the probes
executed up to time step k. The second set Γ+ := Φ−Γ− is
the set of the remaining probes that can still be executed in
the future. First, the current posterior is maximized following
Equation 3

nk
? = argmax

i
p(Nk

x = ni|Γ−) . (5)

Now, the attack nk
? the AP-NIDS assumes to be most prob-

able is time dependent. If this maximum probability exceeds
a given threshold θ at time k

p(Nk
x = nk

?|Γ−)> θ , ⇒ nfinal = nk
? , (6)

the AP-NIDS is certain enough about its classification result,
the temporal selective naive Bayes classifier stops, and the final
decision is nfinal. If Equation 6 is not fulfilled, the AP-NIDS
selects a new probe φk+1 to be launched based on the following
optimization criterion:

Algorithm 1: Probe selection and state update algorithm

Input: State Nk
x of the target node

Output: Updated state Nk+1
x of the target node

Φ←− available set of probes;
Γ−←− /0;
while nk

? < θ and Γ+ 6= /0 do
nk
?←− attack to be most probable (Equation 3);

Select φk+1 ∈ Γ+| so that after executed, nk
? is still

maximum (Equation 7);
Execute φk+1;
Γ−←− Γ−∪φk+1;
Update Nk+1

x (Equation 4);
end

φ
k+1 = argmax

j
{p(Nk+1

x = nk
?|Γ−,φ j)} j∈Γ+ (7)

This criterion analyzes the next possible posterior probabil-
ities p(Nk+1

x = nk
?|Γ−,φ j) = p(Nk+1

x |Γ−)p(φ j|Nk+1
x = nk

?) that
could happen. Note that we do not depend on the outcome
of the probe (true or false). We loop for the complete set of
remaining probes Γ+ and select the one that maximizes the
prediction 7 of the new posterior. This is somehow intuitive,
because we seek for an affirmation of the current attack
estimate that results in an increase in posterior probability
in order to exceed the threshold in Equation 6. Since the
remaining probes are not designed for testing the current attack
estimate, the posterior only increases if the new probe also
holds some information about the current attack (encoded in
its CPT), although it favors a different one.

We map the above reasoning into the Algorithm 1 and we
show in Fig. 2 a practical example of the updating process
after each iteration when we deployed the dropping of HTTP
packets attack.

ARP DNS HTTP HTTPS SSH TCP UDP All Normal
0

0.25

0.5

0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

a) Starting vector. We use a equal distributed prior probability.

ARP DNS HTTP HTTPS SSH TCP UDP All Normal
0

0.25

0.5

0.07 0.07

0.22
0.11 0.07

0.17
0.07

0.15
0.09

b) Updated state after launching the probe φ3. HTTP has highest probability.

ARP DNS HTTP HTTPS SSH TCP UDP All Normal
0

0.25

0.5

0.06 0.06

0.41

0.10 0.06 0.08 0.06 0.06 0.10

c) Final state after launching probe φ6. The node is dropping HTTP packets.

Figure 2. Sequence of the updated state values when detecting the dropping
of HTTP packets.

348
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

Table II
CONDITIONAL PROBABILITY TABLE p(φ1|N)

φ1 n1 n2 n3 n4 n5 n6 n7 n8 n9

true 0.99 0.20 0.50 0.30 0.40 0.30 0.50 0.50 0.40

false 0.01 0.80 0.50 0.70 0.60 0.70 0.50 0.50 0.60

C. Optimal Probe Selection

To answer the question of which order of probe execution
is most suitable, we define an optimization criterion that is
based on the current posterior and a prediction step. Note that
we allow each probe to be executed only once. This leads to
a recursive selection mechanism that is optimal with respect
to the optimization criterion. The criterion has to be evaluated
anew at each time step and results in the next best probe to
be executed. To answer the question on the minimal number
of probes to execute, we define a simple stopping criterion
that is based on a threshold on the maximum of the posterior.
Once the maximum posterior probability is higher than the
threshold, the AP-NIDS stops probe execution and provides
the final classification result.

The selection of the first probe. Special care has to be
taken in the selection of the first probe since the choice of the
first probe can have a huge impact on the amount of probes
to be launched afterward. Initializations of this kind should
involve as much prior knowledge as possible/available.

In our experiments, the system administrator determines the
first probe to be launched. Here the administrator’s experience
is needed—the administrator is assumed to know which attack
is more common to occur in the network where the AP-NIDS
is deployed. Practical alternatives to choosing the first probe
could be:

• Selecting very critical probes first: the probe that is
designed to detect the attack that is most harmful for
the actual deployment of the network.

• Choosing very certain probes first: the probe offering a
maximal probability in the CPTs p(φi|Nx) for one specific
attack.

• Choosing more likely probes first: the probe that maxi-
mizes the prior probability p(N0

x).

Of course, a tradeoff between all three criteria is also possible.
A probe that is 1) quite critical, 2) quite certain to detect and
3) quite likely to occur.

Implementation of the CPTs. The CPTs are build on sta-
tistical analysis of data, or/and a logical reasoning subjective
to the administrator of the AP-NIDS. How to build the CPTs
is out of the scope of this paper, and the CPTs we use for the
evaluation of this paper are available to download together
with the DogoIDS source code. As an example, to perform
our experimentation we configured our AP-NIDS with the
set of probes described in Table III, and the CPT associated
to the outcome of φ1 is given in Table II. The columns in
Table II correspond to the different possible classes or attacks:
n1 for “dropping of ARP packets”, n2 for “dropping of DNS
packets”, ..., n9 for “normal (no dropping)”.

Table III
PROBES IMPLEMENTED FOR DETECTING SELECTIVE DROPPING OF

DIFFERENT SERVICES.

Probe Reference Type of packets dropped State

φ1 ARP ARP Requests and Responses n1

φ2 DNS UDP packets with port 53 n2

φ3 HTTP TCP packets with port 80 n3

φ4 HTTPS TCP packets with port 443 n4

φ5 SSH Every packet with port 22 n5

φ6 TCP Every TCP packet n6

φ7 UDP Every UDP packet n7

φ8 All Every UDP and TCP packet n8

— Normal condition (no dropping) n9

V. EXPERIMENTAL DESIGN

We detail the experimental design for evaluating our Bayes
classifier.

A. Goals

Bayes classifier (attack detection and classification). The
goal is to experimentally demonstrate that using our proposed
Bayes classifier and probe selection algorithm have notable
advantages in comparison to running the complete set of
probes. First, we want to examine how the number of probes
executed to detect a particular state decreases when using our
classifier. Consequently, we expect that the overall detection
time also decreases.

Overhead. We analyze the effects on the network overhead.
We examine if employing an AP-NIDS highly loads the
network with probes, and how it is decreased with our Bayes
classifier. We also examine if varying the throughput of the
network harms the active probing.

A B
AP-NIDS

Figure 3. Our indoor mesh testbed and a snapshot of the network topology.
Note that the location of the AP-NIDS nodes does not represent their exact
physical location (they are located inside the room left of Node A).

349
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

Table IV
SETTING OF OUR EXPERIMENTS.

Parameter Value/Description

Mesh network

Number of nodes 16 fixed nodes + 2 netbooks (as AP-NIDS)

HW fixed nodes PC Engines series Alix 3D2 boards [17]

HW notebooks Asus Eee-Pc 1005HA

Nodes OS Ubuntu 12 (netbooks) and Debian 5 (fixed nodes), with
the wireless-testing kernel 3.5.0-rc4 [18]

Mesh protocol IEEE 802.11s implementation from open80211s [18],
using the Atheros drivers ath5k and ath9k

TX power 20 dBm

Data rate Auto, up to 54 Mbit/s (Minstrel algorithm)

RTS/CTS Off

AP-NIDS setup

IDS node 2 netbooks (for emulating 2 interfaces)

Target node Node B (see Fig. 3)

Background traffic

Traffic tool iperf

Traffic type UDP packets, CBR

Server node Node B

Client node Node A

Traffic throughput 0 (0%), 6.25 (25%), 12.5 (50%), 18.75 (75%), 25
(100%) Mbit/s

B. Setup

The most relevant settings of our experiments are described
in Table IV.

AP-NIDS. We perform the evaluation of this paper using
our open source proof-of-concept DogoIDS. It is written in
Python and runs under Linux. We implemented our Bayes
classifier and configured the rules of Table III (for the states
n1–n9). We employ 2 nodes running as an AP-NIDS. One node
runs the AP-NIDS, and the other node works as final destina-
tion (MAC address) for the testing packets. The second node
actually emulates having a second interface on the first one.
Using two interfaces for an AP-NIDS is an implementation
criterion and not a requirement [4].

Bayes engine. The conditional probability tables utilized in
our evaluation are depicted in Table V. We build the CPTs
using logical reasoning. For example, we give high values
when the probe results are true for the attack they are supposed
to be designed for. Note that the values of the rows are
normalized before being combined with older measurements
(for comparison, see in Fig. 2 the vectors already normalized).
We set the probe φ3 (dropping of HTTP packets) as the starting
probe. This probe give us enough information about other
attacks and it does not launch many probes (2 probes is not
much in comparison to, for example, 5 of the dropping of
HTTP packets).

Testbed. We employ an indoor testbed composed of 16
mesh nodes installed on two floors of an office building. We
use the IEEE 802.11s mesh protocol. Figure 3 depicts the
setup of our testbed and a snapshot of the network topology.

Normal

All

UDP

TCP

SSH

HTTPS

HTTP

DNS

1 2 3 4 5 6

Average number of probes launched

Figure 4. Number of probes needed to be launched for detecting different
attacks.

Regarding the background traffic, we set 25 Mbit/s as the
maximum achievable throughput between two nodes, and we
employ different percentages of it for varying the load. We
refer to 0 Mbit/s when we do not employ background traffic.
We perform 50 analyses per experiment, and 3 replications of
each test. The error bars in the figures represent the standard
deviation.

Attacks. To perform the evaluation of this paper, we use
selective dropping of packets. We find this attack of high
interest for a couple of reasons: as explained in [1], this attack
can severely degrade the performance of the network if, for
example, a small number of highly critical control packets
are dropped; in addition, it allows to define several detection
rules for different services which helps us evaluating the Bayes
classifier. We implement the attacks of Table III (with the
exception of the dropping of ARP) by modifying the module
mac80211 of the wireless-testing Linux kernel. In particular,
we modify some of the functions of the file net/mac80211/rx.c
in order to allow the dropping of packets according to their
transport protocol (TCP and/or UDP) and port number. This is
necessary because in IEEE 802.11s the forwarding of frames
is performed at layer 2 and they do not go up in the stack, so
we cannot use layer 3 filters such as iptables. We remark here
that the attack is relatively easy to implement if the attacker
has basic Linux knowledge; easy but yet harmful attacks are
usually preferred by attackers.

VI. RESULTS

In this section we present and we analyze the results of our
experiments.

A. Number of Probes Launched and Detection Times

The goal is to observe how the inference model reduces the
number of probes executed. As shown in Fig. 4, launching
all the probes to detect an attack was not required in any of
the analyzed cases. Even when the node was not dropping
packets (Normal), only 5 of the 8 probes implemented were
launched. In the best case, for detecting dropping of HTTP
packets, only two probes were necessary, which represents

350
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

Table V
CONDITIONAL PROBABILITY TABLES IMPLEMENTED FOR OUR EXPERIMENTATION

CPT φi
n1 n2 n3 n4 n5 n6 n7 n8 n9

(ARP) (DNS) (HTTP) (HTTPS) (SSH) (TCP) (UDP) (All) (Normal)

p(φ1|N)
true 0.99 0.20 0.50 0.30 0.40 0.30 0.50 0.50 0.40

false 0.01 0.80 0.50 0.70 0.60 0.70 0.50 0.50 0.60

p(φ2|N)
true 0.20 0.90 0.50 0.30 0.30 0.30 0.90 0.50 0.40

false 0.80 0.10 0.50 0.70 0.70 0.70 0.10 0.50 0.60

p(φ3|N)
true 0.70 0.30 0.99 0.50 0.30 0.80 0.30 0.70 0.40

false 0.30 0.70 0.01 0.50 0.70 0.20 0.70 0.30 0.60

p(φ4|N)
true 0.60 0.60 0.60 0.99 0.60 0.60 0.60 0.60 0.01

false 0.40 0.40 0.40 0.01 0.40 0.40 0.40 0.40 0.99

p(φ5|N)
true 0.50 0.40 0.50 0.40 0.99 0.50 0.50 0.50 0.30

false 0.50 0.60 0.50 0.60 0.01 0.50 0.50 0.50 0.70

p(φ6|N)
true 0.50 0.50 0.01 0.50 0.50 0.75 0.50 0.80 0.40

false 0.50 0.50 0.99 0.50 0.50 0.25 0.50 0.20 0.60

p(φ7|N)
true 0.50 0.30 0.50 0.50 0.50 0.30 0.99 0.80 0.40

false 0.50 0.70 0.50 0.50 0.50 0.70 0.01 0.20 0.60

p(φ8|N)
true 0.50 0.50 0.50 0.50 0.50 0.30 0.40 0.99 0.40

false 0.50 0.50 0.50 0.50 0.50 0.70 0.60 0.01 0.60

25% of the set of probes. If the AP-NIDS would not have an
algorithm for selecting the probes, it would need to transmit
the complete set of probes to detect the attack precisely, given
that the success of one probe is not enough to alert of the
attack with confidence.

In Fig. 5 we show the average duration of the execution
of each probe. These times include the transmission of the
probe plus the gathering of data afterward. Intermediate times
such as pauses between probes and processing times are not
considered because they do not belong to the individual probes
but to the analyses. As we can observe, the duration of the
probes is different for each probe. Some probes demand about
11 s, while others around 30 s. If we compute the average of
all the probes, we get a probe duration of 21.42 s ±1.53.
It is easy to observe the time saved when using the probe
selection algorithm. For each probe that is not executed, the
analysis requires 21.42 s less in average. This is an important

ARP DNS HTTP HTTPS SSH TCP UDP All
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

pr
ob

e
du

ra
ti
on

[s
]

Figure 5. Average total duration of the individual probes.

reduction if we consider that the AP-NIDS is set with many
different probes.

Figure 6 depicts the average duration of the complete active
probing process. As we already observed in Fig. 5, some
attacks take more time to be detected because more probes are
launched (the analysis consist of several probes). The duration
of the active probing is slightly affected by the traffic load of
the network. In Table VI, we show the analysis duration for
detecting the dropping of SSH packets, and for detecting the
dropping of UDP packets when the network is loaded with
different levels of traffic. Only when no background traffic is
present, 0 Mbit/s, the analysis duration is in all cases shorter,
because less data has to be processed by the IDS (it searches
for the testing packets in the traffic gathered.)

DNS HTTP HTTPS SSH TCP UDP All Normal
0

20

40

60

80

100

120

140

A
ve

ra
ge

du
ra

ti
on

pe
r
an

al
ys

is
[s

]

Figure 6. Average total duration of the detection of the different attacks.

351
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

Table VI
AVERAGE ANALYSIS DURATION FOR DIFFERENT BACKGROUND TRAFFIC

LEVELS

Background traffic Analysis duration [s]

Attack launched: dropping of SSH packets

0 Mbit/s 87.76±6.83

6.25 Mbit/s 101.84±26.33

12.5 Mbit/s 109.54±15.07

18.75 Mbit/s 101.74±28.52

25 Mbit/s 107.01±28.57

Attack launched: dropping of UDP packets

0 Mbit/s 51.32±3.80

6.25 Mbit/s 65.55±11.38

12.5 Mbit/s 66.66±10.20

18.75 Mbit/s 61.28±8.96

25 Mbit/s 64.54±6.52

B. Attack Detection

Our goal is to show if our Bayes classifier detects and
labels correctly the different attacks we have implemented.
We consider the results for the detection of attacks to be quite
satisfactory. We depict the results in Table VII. We define
as true positive an attack that takes place and it is detected
(prior to the classification, provided that it is classified as an
attack) by the AP-NIDS. A well-classified attack is an attack
that takes place (true positive) and it is correctly classified by
the Bayesian engine. On the contrary, a misclassified attack is
an attack that takes place but it is not correctly classified,
although it is still as an attack identified (for example, a
dropping of TCP packets classified as dropping of HTTP
packets). We differentiate between the true positives and well-
classified attacks for the following reason: to validate our
Bayes classifier, the number of well-classified attacks is an
important metric to examine how good/bad it classifies the
attacks. However, for intrusion detection, it is more important
to firstly detect that an attack takes place. Ultimately, if the
attack is detected but misclassified, an alarm will still be
triggered and countermeasure actions can be taken. According
to the results in Table VII, we observe that our Bayes classifier
had some minimal troubles in classifying some attacks, but
in any case the well-classified attack goes under 93% in the
absence of background traffic.

Additionally, we are also interested in observing what
happens if there is background traffic present. In Table VII
we also depict the results for varying background traffic
when detecting the attacks dropping of SSH packets, and
dropping of UDP packets. The background traffic does affect
the attack detection. In the worst case, we observe that the
dropping of SSH was 80% well-classified. The reason of the
misclassification is as follows. For detecting, for example, the
dropping of SSH packets, the AP-NIDS launches four different
probes (see Fig. 4). If one of these probes gives an incorrect
result (a false detection, i.e., “true” when it should be “false”,
or vice versa), the Bayes classifier gets a wrong belief about
the probability of one of the possible states, and it unleashes

Table VII
RESULTS OF THE ATTACK DETECTION. SSH AND UDP ARE

ADDITIONALLY MEASURED WITH VARYING BACKGROUND TRAFFIC.

Attack True positives Well-classified Misclassified

DNS 100% 93% 7%

HTTP 100% 100% 0%

HTTPS 100% 100% 0%

SSH 100% 93% 7%

TCP 100% 100% 0%

UDP 100% 97% 3%

All 100% 100% 0%

Normal 93% 93% 7%

Attack True positives Well-classified Misclassified

Dropping of SSH packets

6.25 Mbit/s 100% 83% 17%

12.5 Mbit/s 100% 93% 7%

18.75 Mbit/s 100% 80% 20%

25 Mbit/s 100% 90% 10%

Dropping of UDP packets

6.25 Mbit/s 100% 97% 3%

12.5 Mbit/s 100% 100% 0%

18.75 Mbit/s 100% 93% 7%

25 Mbit/s 100% 100% 0%

a set of wrong decisions of the probe selecting algorithm
and, eventually, a wrong inference about the attack. For this
reason, improving the attack classification implies improving
the “robustness” of the individual probes. This is, however,
not a drawback of the Bayes classifier. If a probe fails, even
when transmitting the complete set of probes, the IDS can get
an erroneous detection.

C. Overhead

Our goal is to measure the impact of the active probing in
the network overhead. DogoIDS transmitted in the maximum
case 1.85 Kbit/s for a complete analysis. That was the case
of HTTP, including the control packets and testing packets
generated. We argue that an AP-NIDS does not create a
harmful amount of overhead. For example, our testbed handles
25 Mbit/s in the best case. The throughput generated by
DogoIDS represents only 0.01% of the maximal achievable
throughput. For a 25% utilization (6.25 Mbit/s), the throughput
of DogoIDS represents 0.03%. Of course, the amount of data
generated by DogoIDS depends on how many probes are
executed and how many bytes are injected per probe. The
data generated by the probe is a “user-defined” parameter. For
example, in our experiments we generate “lightweight” testing
packets, which contains a very small payload. We consider
this is an appropriate choice but, at the end, the administrator
of an AP-NIDS is free to create his/her testing packets as
he/she considers. However, regardless of the individual testing
packets, with our Bayes classifier and probe selector we
directly reduce the number of injected bytes by reducing the
number of probes launches, as discussed in Section VI-A.

352
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

On limiting the probe set to the available bandwidth.
We claim that an AP-NIDS does hardly harm the network
overhead. However, if this would be the case for very specific
applications (bandwidth-limited sensor networks, for exam-
ple), we propose to give a different view on the probe
selection. An interesting approach is to limit the set of probes
or attacks to detect a certain allowed throughput. For example,
if network policies establish that only 5% of the maximal
network throughput can be used for active probing intrusion
detection, we can configure our AP-NIDS not to exceed that
limit. That can be done by limiting the probe set, reducing
the length of the testing packets, or increasing the intervals
between probes or testing packets. We did not implement this
idea but we leave it as future work.

VII. CONCLUSIONS

In this paper we highlight two contributions. We modeled
a temporal-selective Bayes classifier to infer the state of a
device under test. Different to similar classifiers proposed
in the literature, the state of a device is a vector of all
possible malicious behaviors. The transmission of probes feeds
the Bayes classifier and updates the state. A recursive probe
selection scheme, based on a prediction step, facilitates to
reduce the number of probes while maximizing the insights
gained. We modeled a general classifier and applied it to
solve a particular problem, the malicious state inference for
an active-probing-based network intrusion detection system
for wireless multihop networks. We implemented our model
and performed testbed experimentation. We showed how an
inference model can improve the reduce the number of probes
executed and therefore reduce overhead and detection time.

ACKNOWLEDGMENTS

This work was gratefully supported by the German Research
Foundation (DFG) within the GRK 1362 (www.gkmm.tu-
darmstadt.de) and CASED (www.cased.de).

REFERENCES

[1] T. Shu and M. Krunz, “Detection of malicious packet dropping in
wireless ad hoc networks based on privacy-preserving public auditing,”
in Proceedings of the 15th ACM conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ’12). ACM, 2012.

[2] R. V. Boppana and X. Su, “On the effectiveness of monitoring for
intrusion detection in mobile ad hoc networks,” Transactions on Mobile
Computing, IEEE, Aug 2011.

[3] R. do Carmo and M. Hollick, “DogoIDS: a mobile and active intrusion
detection system for IEEE 802.11s wireless mesh networks,” in Pro-
ceedings of the 2nd ACM Workshop on Hot Topics on Wireless Network
Security and Privacy (HotWiSec ’13). ACM, 2013.

[4] R. do Carmo and M. Hollick, “Analyzing active probing for practical
intrusion detection in wireless multihop networks,” in Proceedings of the
11th IEEE/IFIP Annual Conference on Wireless On-demand Network
Systems and Services (WONS ’14). IEEE/IFIP, 2014.

[5] I. Rish, M. Brodie, N. Odintsova, M. Sheng, and G. Grabarnik, “Real-
time problem determination in distributed systems using active prob-
ing,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS). IEEE, 2004.

[6] M. Brodie, I. Rish, and S. Ma, “Intelligent probing: a cost-effective
approach to fault diagnosis in computer networks,” IBM Syst. J., vol. 41,
no. 3, Jul. 2002.

[7] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc networks,”
in Proceedings of the 6th annual international conference on Mobile
computing and networking (MobiCom ’00). ACM, 2000.

[8] Y. Huang and W. Lee, “A cooperative intrusion detection system for ad
hoc networks,” in Proceedings of the 1st ACM workshop on Security of
ad hoc and sensor networks (SASN ’03). ACM, 2003.

[9] C. Tseng, S. Wang, C. Ko, and K. Levitt, “DEMEM: Distributed
evidence-driven message exchange intrusion detection model for manet,”
in Recent Advances in Intrusion Detection, ser. Lecture Notes in
Computer Science, D. Zamboni and C. Kruegel, Eds. Springer Berlin-
Heidelberg, 2006, vol. 4219.

[10] O. Kachirski and R. Guha, “Effective intrusion detection using multiple
sensors in wireless ad hoc networks,” in Proceedings of the 36th An-
nual Hawaii International Conference on System Sciences (HICSS’03).
IEEE, 2003.

[11] G. Vigna, S. Gwalani, K. Srinivasan, E. M. Belding-Royer, and R. A.
Kemmerer, “An intrusion detection tool for AODV-based ad hoc wire-
less networks,” in Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC ’04). IEEE, 2004.

[12] F. Anjum and R. Talpade, “LiPaD: lightweight packet drop detection for
ad hoc networks,” in Proceedings of the 60th IEEE Vehicular Technology
Conference (VTC Fall 2004). IEEE, Sep 2004.

[13] F. Hugelshofer, P. Smith, D. Hutchison, and N. J. P. Race, “OpenLIDS:
A lightweight intrusion detection system for wireless mesh networks,”
in Proceedings of the 15th annual international conference on Mobile
computing and networking (MobiCom ’09). ACM, 2009.

[14] C. Tseng, P. Balasubramanyam, C. Ko, R. Limprasittiporn, J. Rowe,
and K. N. Levitt, “A specification-based intrusion detection system for
AODV,” in Proceedings of the 1st ACM Workshop on Security of ad
hoc and Sensor Networks (SASN ’03). ACM, 2003.

[15] F. Oliviero and S. P. Romano, “A reputation-based metric for secure
routing in wireless mesh networks,” in Proceedings of the Global
Communications Conference 2008 (GLOBECOM ’08). IEEE, 2008.

[16] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., 2006.

[17] “Alix Board 3D2 Wiki,” online, http://goo.gl/fTzhO, Last accessed on
June 11, 2014.

[18] “open80211s project,” online, http://open80211s.org, Last accessed on
June 11, 2014.

353
Authorized licensed use limited to: IEEE Xplore. Downloaded on September 10,2024 at 19:14:02 UTC from IEEE Xplore. Restrictions apply.

