
Unleashing the Shrew: a Stealth Greedy Targeted
Attack on TCP Traffic in Wireless LANs∗

Liyi Gu1, Jun Zhang2, Brahim Bensaou1
1Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

2Network and Computer Science Department, Telecom ParisTech
lgu@cse.ust.hk, jun.zhang@telecom-paristech.fr, brahim@cse.ust.hk

Abstract—This paper presents a new jamming attack in
wireless LANs that deliberately targets uplink TCP acknowledge-
ments (TCP-ACKs) of downlink TCP flows. To ensure immunity
to detection with existing schemes, in this attack, the attacker
does not jam the target constantly; instead, it relies on our
probabilistic estimation model to forecast the time when its
transmission has the highest likelihood of colliding with the
target’s generated TCP-ACKs. Repeating this process results in
a decrease of the average congestion window of the targeted due
to an increased round-trip time (RTT). The rogue node and/or its
colluding attackers can grab this freed bandwidth and increase
their throughput. We demonstrate via ns-2 simulation the effec-
tiveness of such attack and show how easy it is to deploy without
hardware modification. We also discuss its immunity to detection
by existing detection schemes and investigate some parameters
that may be used in building future detection mechanisms.

Index Terms—Jamming, wireless LAN, hidden node, TCP

I. INTRODUCTION

The shared nature of their medium makes wireless networks
susceptible to all sorts of careless or malicious misbehaviour.
Yet current wireless protocols such as the IEEE802.11 do
not have any built-in detection or prevention mechanisms to
deal with these aspects. Just like the internet, security has
come to wireless as an afterthought. With the proliferation
of wireless LANs (WLANs) and their increased popularity
in commercial enterprises, security in general has become of
utmost importance in recent years.

Jamming in general is one of the major forms of attacks
that can easily be staged in WLANs. Jammers can be divided
into two categories: disruptive jammers, who intend simply
to disrupt the normal functioning of a network, and greedy
jammers whose goal is to profit from their actions by grabbing
more bandwidth for example. A disruptive attack may be
staged by sending out packets continually to deceive the
receiver, or by coordinating such transmissions with channel
activity. Such attacks have been shown to be very effective [1],
[2], nevertheless, such jammers require drastic modifications
to their wireless hardware, rendering such attacks less easy to
stage by ordinary users of a WLAN. Greedy attackers, on
the other hand, try to increase their own throughput share
via misbehaviour. For uplink traffic, the greedy node can

∗This work is supported in part under grant: RGC GRF 610411
The work of Dr Jun Zhang was done while he was with the Hong Kong

University of Science and Technology

selectively scramble frames from other nodes, leading them to
increasing their contention window [3]. The greedy node can
also manipulate the protocol parameters, including the inter-
frame space (IFS) duration, the duration value in the MAC
frame header to induce longer NAVs for other nodes, and/or
the binary exponential backoff time [4]. For downlink traffic,
the greedy node can jam TCP-ACKs from the target to the
AP, so that they never reach the sender, which decreases its
sending rate, or it can jam the data frames from the AP to
the target node and forge MAC-ACKs to prevent the AP from
retransmitting the data, leading the sender to decreasing its rate
[3]. Many of these jamming techniques require also changes
to the hardware, making them inaccessible to “user lambda”.

Many detection schemes have been proposed to address
user misbehaviour in IEEE802.11 networks [3], [5]–[9]. While
some detection schemes [3], [5] assume the backoff duration
of each node to be observable at the detection terminal, other
alternative methods [6]–[9] take advantage of successfully
received frames at the AP and the channel idle period to
infer the backoff value indirectly. However, these detection
schemes are all based on the assumption that the nodes in
the network are all exposed to each other, thus they do not
take into account the complexity and abnormality that WLAN
network traffic exhibits even under non-jamming situations due
to the existence of hidden nodes.

Motivation. It is well known [10], [11] that TCP downloads
dominate today’s WLAN traffic thanks to the wide adoption of
progressive HTTP as a video streaming mechanism (YouTube,
Netflix). Therefore, an attack on TCP traffic could potentially
yield some good reward for the attacker in any normal
network. Furthermore, TCP is known for its self-clocking and
its supposed fairness (or lack of it when parameters such as
RTT or TCP flavours differ). Therefore, successfully targeting
TCP-ACKs may result in some occasional time-outs and most
frequently in an increased RTT for the target, leading to a
lower throughput. This is corroborated by the results in [12].
Meanwhile, staging an attack that does not require hardware
modification could make the attack accessible to ordinary users
making it more commonly stageable. As such, a jamming
attack in WLAN that targets TCP traffic of nodes that are
hidden from the attacker could be a good option because jam-
ming exposed nodes requires breaching the rules of the built-in
CSMA mechanism and thus needs non-trivial modification to

39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 337
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

the hardware. A typical scenario for such attack is a malicious
node joining a public hotspot turning on the jamming process
that first monitors the traffic for a few seconds in search for
appropriate hidden nodes targeting particularly those with high
bandwidth and jams them. The simplicity of such attack and
its versatility could pose a potentially threat to the viability of
WLANs in public places. Our goal in this paper is to design
such attack to demonstrate its feasibility, and by the same way
inseminate the area of research on countering such attack by
discussing some possible parameters that can be used to detect
such attack.

MACTCP Data IP

TCP Data IP

MAC

TCP Data

MAC ACKTCP Data IP

Target

TCP ACK

IP

MAC

TCP ACK

IPTCP ACK

MAC ACK MACIPTCP ACK MAC ACK

MAC ACK

AP

Rogue

Jam SignalMAC

Jamming Timer

Fig. 1: Attack illustration

Overview. In this paper, we focus on constructing a greedy
selective jamming attack model that targets downlink TCP traf-
fic of some node(s) in a WLAN. Although jamming exposed
nodes is more accurate, it requires non-trivial modifications
to the CSMA mechanism and therefore would require some
custom built hardware. As a result, we focus in particular on
targeting hidden nodes because of the relative simplicity of
staging such attacks with commercial off-the-shelf hardware
without modifying the MAC protocol. For the same reason,
our jammer does not jam the actual downlink TCP-data from
the AP nor the corresponding MAC-ACK frames to the AP
(see Fig. 1) as both can only be achieved by modifying the
hardware to enable custom inter-frame spaces. In the basic
access mode, TCP-ACK frames from a hidden target node to
the AP turn out to be a very good candidate for jamming, since
the jammer is no longer bound by the MAC IFS with respect
to the target’s uplink transmissions. Nevertheless, since the
target is now hidden from the jammer, this latter can no longer
exploit the listening capability to synchronize its jamming
signals with the target’s transmissions. Randomly jamming
such TCP-ACKs may improve the success rate of jamming
but it fails to achieve two of the fundamental requirements
of the greedy attacker – viz. increasing its throughput (as
now it occupies its share of bandwidth with jamming packets)
and remaining stealth. To tackle this problem and reduce the
frequency of jamming, our jammer makes jamming decisions
based on our analytical estimation model that intends to match
its sporadic attacks with the targets’ transmission times with
a high probability.

Outline. The rest of the paper is organized as follows; the
description of the attack model and the detailed event-driven
algorithm for deriving the jamming times are given in Section
II. Simulation results of the proposed strategy are presented
in Section III, and we conclude the paper in Section IV. For
ease of exposition, the actual analytical model is detailed in

the appendix.

II. JAMMING ATTACK

A. Settings and assumptions

Consider a WLAN with one AP associated with two or more
nodes, one of which is a rogue node, another (or several others)
is (are) the target(s) of jamming, and the remaining nodes are
ordinary nodes. The targets are hidden from the jammer, and
the ordinary nodes can be exposed to the jammer or exposed
to the target. Each node in the network (including the jammer)
is supposed to be involved in a TCP download, receiving
downlink TCP traffic from a remote sender, and the WLAN
link is assumed to be the bottleneck. Furthermore, we assume
that the TCP receivers running at the wireless nodes do not
use the delayed ACK mechanism, and all nodes use the basic
access mode in the MAC transmission (the use of RTS/CTS
will be discussed later). By setting its network interface card
into monitor mode, the jammer can capture any frame within
its floor and is able to inspect its type and destination (see
Fig. 1). The propagation time in the WLAN is assumed to
be negligible (compared to the TCP RTT), and the nodes are
assumed to be near the AP enough so that capture effect in
the channel is negligible (i.e., every collision results in a failed
transmission for all colliding frames).

The jammer can disguise its jamming signals by sending
out normal-length UDP datagrams (e.g., DNS queries or VoIP
packets). We assume that a jamming signal transmission spans
m (MAC) slots, a TCP-ACK spans n slots, and a MAC-
ACK spans r slots. We further denote by δ (respect. σ) the
DIFS (respect. the SIFS) duration in number of slots. For ease
of exposition, we use one jammer and one target only. The
multi-target case is discussed further later in the section and
is included in our probabilistic model.

Our jammer gains throughput by trying to jam the uplink
TCP-ACKs frames from the target to the AP, so that either
one of the following two events could take place: i) similar
to the idea of the “shrew” attack [13], when enough consecu-
tive TCP-ACKs have been jammed, a retransmission timeout
(RTO) at the target’s TCP source is caused, and this sender
looses its TCP self-clocking and enters into slow start again;
ii) even if the RTO is not caused (which is the case here
most often as shown later), the jamming process increases the
delivery time of the TCP-ACKs, thus increasing the round-trip
time (RTT) of the TCP stream (slowing down the TCP clock
that drives window increases) and thus reduces the frequency
of rate increases at the target’s TCP sender. Achieving either
event is difficult, as the jammer is hidden from the target, and it
cannot precisely jam the TCP-ACKs. To improve the accuracy
of jamming while keeping its frequency as low as possible (to
avoid detection), the jammer needs to know the probability
that the target will transmit a TCP-ACK at a given time slot
and only jams it when this probability is large enough.

To this end, the jammer maintains a backoff-slot counter
that mimics (and approximates) the counter at the target, and
estimates the total time the target has spent counting down over
all the backoff stages since its last successful transmission.

338
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

Using this counter and the probabilistic model of transmission
(see Appendix) the jammer calculates the probability that the
target will transmit a frame, and uses this probability to decide
to jam or to defer the jamming.

To reduce the frequency of jamming, the rogue node
maintains another timer, the “period timer”, used to initiate
jamming at intervals of (m + n − 1) slots. That is, since
the jamming signal is m slots and the TCP-ACK spans n
slots, any jamming that starts (n−1) slots after the TCP-ACK
starts is guaranteed to overlap the ACK for at least one slot.
In addition, the jammer also keeps track of how many of its
jamming signals have collided since the target’s last successful
transmission (not necessarily jamming the intended frames):
this can very simply be achieved by counting the returned
MAC-ACKs for the jamming signals sent out.

B. Jamming algorithm

Algorithm 1 shows the flow of the attack on a per-slot-
basis in a event-driven algorithm. Events of the type “received”
or “overheard” frame normally are asserted at the slot when
the frame has just finished full transmission and therefore
in practice we need to compensate for the duration of the
transmission in the calculations. In the algorithm we denote
the backoff-slot counter as B, the period timer as P and the
collision counter as C. In terms of sequencing, the jamming
attack can be divided into two stages: pre-jamming and actual
jamming. Once the jammer is in the latter stage, it remains in
this stage to attempt to jam all targeted frames until the user
decides not to jam any more.

In the pre-jamming period, besides initialization of B,C
and P , the jammer first observes the channel activity for
some time to obtain network information, in particular, the
number of nodes and their relative positions in the network.
This can be very easily done by overhearing and matching
frames from the AP to different MAC addresses with the
corresponding MAC-ACKs in monitor mode. If the jammer
identifies a viable jamming target, e.g., a node from which no
MAC-ACK frame is overheard but that receives many large
DATA frames from the AP (i.e., the node is hidden and takes
up a large bandwidth), it is ready to start the attack1. After
pinpointing a target the rogue node is ready to start sending
out the first jamming signal. To do this, The jammer listens for
a TCP data packet from the AP to the target node, and tries to
jam the returning TCP-ACK. In order to align the backoff-slot
counter with the actual one at the target, after the AP sends the
TCP packet the jammer waits for (δ + r + σ) before starting
the jamming process (Line 16-18) in the Algorithm.

During the actual jamming, there are two rules for the
jammer. First, when the jammer senses a busy channel, apart
from refraining from sending any jamming signals to obey
the carrier sensing mechanism, if the period timer P expires

1Note here that even with an encrypted link layer using WPA2, it is easy
to detect TCP packets and TCP ACKs from the length of the frame. For this
we have conducted some investigations on our WLAN and noticed that most
big downloads that are worth attacking constantly generate TCP data with an
MTU of 1500 bytes and ACKs of 40 bytes, including YouTube videos.

during this period, the jammer does nothing and restarts P
(Line 7-8). Second, when the jammer overhears a frame from
the AP, it freezes the backoff-slot counter and the period timer
until the end of the transmission plus (δ+r+σ) or δ depending
on the frame type (Lines 9-15, where the function Delay(x)
stops the whole attack for the next x slots). This is because the
target also is exposed to the AP and hears the frame and stops
its backoff countdown. Then, judging on the destination and
the type of the frame overheard by the jammer, or when one
of its timers expires, the algorithm may take different actions:

Algorithm 1 The jamming attack
1: Initialization
2: B := 0, P := n− 1, C := 0;
3: CounterOn := False; . True if first TCP Data is received
4: TwoT imers := False; . True if two timers in use
5: Execute the following for each elapsed slot
6: switch Event do
7: case Busy channel AND P = 0
8: P := m+ n− 1;
9: case A frame spanning φ from AP heard

10: B− := φ, P+ := φ; . Restore B,P to values before the
frame is heard

11: if The frame is DATA then
12: Delay(δ + r + σ);
13: else
14: Delay(δ);
15: end if
16: case CounterOn = False AND TCP-Data to target heard
17: CounterOn := True;
18: Delay(δ + r + σ);
19: if CounterOn = True then
20: switch Event do
21: case MAC-ACK to target
22: Goto 1;
23: case Jammer’s MAC-ACK time out
24: if TwoT imers = True then
25: B := Bold, P := Pold, C := Cold;
26: end if
27: C := C + 1;
28: if C ≥ c then
29: Cold := C, Bold := B, Pold := P ;
30: TwoT imers := True;
31: Goto 1;
32: end if
33: case MAC-ACK to jammer AND TwoT imers = True
34: TwoT imers := False;
35: case P ≤ 0
36: Send jamming signal with probability q(B);
37: P := m+ n− 1;
38: end if
39: B+ := 1, P− := 1;
40: if TwoT imers = True then Bold+ := 1, Pold− := 1;
41: end if

MAC-ACK to the target (Line 21-22): means the target
has most probably successfully transmitted a TCP-ACK to the
AP, and the previous jamming failed. The target will now reset
its backoff stage and transmit a new frame if applicable, so
the jammer should start the jamming process all over again.

Jammer’s MAC-ACK times out (Line 23-34, 40): A time-
out of the jammer is indication of a collision at the AP (i.e.,

339
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

the AP did not send the MAC-ACK). By default, the jamming
signal is to be resent after the collision, which is undesirable
considering that the jamming is based on the timers. We could
take advantage of the Quality of Service (QoS) enhancements
for wireless LAN by assigning the jamming frames to an
access category (AC) different from the normal frames, and
set the retry count of that AC to 0, i.e. a jamming signal is
not resent after a collision.

Meanwhile, the number C of collisions suffered by the
jamming signals since the target’s last successful transmission
is increased by one, and if C exceeds the retry count c, the
target could have dropped the frame and reset its backoff
window to CWmin. It also might not have done so as some of
the collisions experienced by the jamming signals may have
been caused by exposed-node collisions at the AP. Adjusting
the backoff-slot counter when the target resets its window is
crucial since if the target will transmits with CWmin while the
jammer still jams according to an estimated large window and
is highly likely to miss. In order to decide with confidence
whether the target has reset or not its window, whenever
C exceeds c, a new backoff-slot counter is initiated by the
jammer, while the old one is also kept running. A jamming
is first attempted with this new counter. As initial jamming
attempts have very high probabilities of success, if this first
jamming is successful then the target has most likely reset its
timer, and conversely, if the jamming is unsuccessful, then
there is a high probability that the target did not reset its
timer, and is still counting down in a further backoff stage.
Hence every time C exceeds c, while keeping the old values
B, P and C alive and running, the jammer initiates the new
jamming process with the parameters reset, sends out the first
jamming signal and waits for a returning MAC-ACK from the
AP. If this MAC-ACK is heard, it means the jamming signal
went through. Then we assume the target has not reset its
backoff window, and the jammer should come back to operate
on the old B, P and C. Conversely if the jammer’s MAC-ACK
timer for this signal expires, it means the jamming signal has
collided, in which case, the jammer should continue to work
on the new jamming attack procedure.

Expiry of the period timer (Line 35-37): Since corrupting
one single bit is sufficient for the frame to fail the CRC check,
the jammer does not need to jam the whole TCP-ACK from
the target. As a result, it can take advantage of the length
of the TCP-ACK to jam less frequently while achieving the
same effect. For example, at the start of a jamming process,
the jammer can wait until the (n− 1)th slot to start jamming,
so that even if the target sends out its TCP-ACK at the earliest
available opportunity, the tail of the ACK will still collide with
the very beginning of the jamming signal.

As the transmission of a jamming signal spans m slots and
the target’s TCP-ACK spans n slots, the whole jamming period
is divided into smaller periods of (m+n− 1) slots each, and
at the (n − 1)th slot in each period, the jammer decides to
transmit the jamming signal with probability q(B) where B
is the current elapsed slots on the backoff-slot counter. The
period timer is always reset to (m + n − 1) slots when it

expires. Probability q(B) is based on the expected data rate
of the target, the potential of being detected and the probability
p(B) that the target’s transmission of the TCP-ACK overlaps
with the next m slots: p(B) = Pr[target starts transmission
in [B − n+ 1, B +m− 1] slots]. Although the calculation of
this probability is central to the effectiveness of our jamming
attack, for ease of exposition, we relinquish the derivation of
p(B) to the appendix. In each period, priority is given to
normal data frames over jamming signals, in this case the
period timer is reset for the next jamming opportunity.

One prerequisite for accurate jamming is that the MAC layer
of the jammer emits the jamming signal as soon as it receives
the downward request. This can be achieved by the QoS of
802.11 to set the CWmin and CWmax of the AC assigned to
the jamming signals to 1.

C. Calculation of q(x)

The choice of the jamming probability q(x) should depend
on the target’s transmission probability p(x). This is intuitive
since if the target is going to send a TCP-ACK with high
probability, the jammer should also try to jam it with increased
effort in order to achieve a better jamming effect. Particularly,
q(x) → 0 when p(x) → 0 and q(x) → 1 when p(x) → 1.
Therefore, we could simply choose a power function, an ex-
ponential function or a linear function as the transfer function
f : p(x)→ q(x). In the model we choose the power function
q(x) = p(x)w, with w as a parameter. The function can either
be concave, linear or convex depending on the choice of w,
which enables us to test several shapes to achieve the best
jamming effect. The details of the derivation of p(x) and q(x)
are shown in the Appendix.

D. Other issues

Use of RTS/CTS: The use of RTS/CTS mechanism to avoid
hidden terminal collisions can be circumvented by targeting
the RTS frame for the TCP-ACK instead of the actual TCP-
ACK. In this case the jamming model still works with some
minor changes to some constants, including the short retry
count c and the length of the jammed frame n. Now, instead
of TCP-ACKs to be transmitted directly, the target node sends
out RTS frames first, which are jammed by the jammer with
a certain probability. The resulting effect remains the same.

Jamming multiple targets: It is known that unfair band-
width allocation exists in a network where the client nodes are
partitioned in mutually hidden clusters of nodes with different
numbers [14]. Therefore when there are multiple nodes hidden
from the jammer, jamming only one of them may not result
in any gain in throughput, as the other hidden nodes still
beat the jammer in grabbing the freed bandwidth and the
jamming signals also occupy some of the jammer’s bandwidth.
To address this problem, the jammer can be designed to jam
multiple targets at the same time, simply by keeping one copy
of the backoff-slot counter, collision counter and period timer
per target. When one period timer times-out while the jammer
is currently jamming, it is reset for the next period. Evidently,
there is a relationship between the jamming effort and the

340
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

jamming effect: the more nodes to jam, the more jamming
signals are needed, and these jamming signals may conversely
have a negative effect on the jammer’s throughput gain. Hence
the jamming attack to jam all nodes will be less effective with
the increase in the number of normal nodes on the other side,
and eventually worse than with no jamming. When multiple
normal nodes also exist on the jammer’s side, they could gain
a large additional throughput from the targets even if in this
case the jammer itself does not gain much. This opens up
the possibility to a scenario with colluding attackers (e.g.,
running a smart-phone to jam while grabbing the bandwidth
with a notebook). The attack does not need to be redesigned
to achieve this.

E. Immunity to detection

While the effectiveness of jamming is mainly verified by
the jammer’s achieved throughput gain, evading misbehaviour
detection is also of utmost importance. Here we assume
that the detection system is in the AP and can only gather
information that the AP can overhear and interpret. Since
there is no existing detection scheme that tackles either a
jamming attack against hidden nodes or against TCP-ACKs,
we cannot directly apply any detection system to it. Hence we
will explore the following different aspects of transmission to
see if a detection scheme based on any of them is viable:

Estimated backoff window: Because the jamming attack
involves manipulation of the backoff since a jamming signal
is transmitted as soon as the jammer decides to jam instanta-
neously, the jamming may become a target of backoff misbe-
haviour detection schemes such as DOMINO [3], in which
the station that emits two transmissions with no collision
in between is assumed to spend the idle time backing off.
This average backoff time is then compared with the nominal
backoff value (average backoff of the AP) times a parameter
less than 1. We test this value on our jamming to examine its
vulnerability to such detection method.

RTT: Assuming the AP is able to measure the end-to-end
TCP RTT, simply estimating this RTTs cannot give informa-
tion on jamming attacks because traffic streams naturally go
through paths with different delays. However if in addition the
AP can inspect the packets and know the source IP addresses,
it may estimate the approximate delay over the distance
between the source and itself. As discussed previously, the
jamming attack greatly increases the RTT of the target traffic,
so a huge discrepancy between the estimated RTT and the
real RTT values that exceeds the variance of RTT caused by
congestions, route changes and so on [15], could be a sign of
the existence of a jammer, albeit not a conclusive one.

Number of collisions: The hidden nodes setting inevitably
leads to more collisions than when the nodes are exposed, but
as the attack consciously aims at colliding the target frames,
the number of collisions could be even higher. Specifically, the
ratio between the number of collisions and the total number of
frames received at the AP may be higher than the case where
the nodes are still hidden but no jamming is staged. This may
be invoked as a tool for detection.

TABLE I: Simulation parameters

Frame payload 1500 bytes
Basic rate for ACK and MAC header 6 Mbps
minRTO 1s
Slot time 9µs
m 27 slots
n 4 slots
s 7 slots
r 5 slots
c 7
CWmin 15
CWmax 1023

We will examine all these aspects in our numerical study.

III. SIMULATION

We validate the effectiveness of our attack model via
network protocol simulation in ns-2 [16] in a wired-cum-
wireless network (we are currently building the attacker in
a real WLAN node). IEEE802.11 standard with basic access
mode is used in the simulation. The parameters used are shown
in Table I. The scenario consists of an AP placed in the center,
with two sets of nodes placed on the opposite sides. One set
is composed of the jammer plus other normal nodes if any,
and on the other side are the target nodes. The transmitters
range and the receivers sensitivity are properly configured
such that both sides can hear and transmit to the AP while
remaining hidden from each other. TCP sources are placed
in the wired network and are connected to the TCP sink
nodes in the wireless network. Each source generates downlink
TCP traffic to its corresponding wireless node. The round-trip
link delay in the wired link is set to 12 ms. The wireless
link bandwidth is 54Mbps and the wired links have 200Mbps
bandwidth, making the WLAN link be the bottleneck. Each
run of the simulation lasts 100 second, and the jammer starts
jamming after 20 seconds for the network to achieve a steady
state before the jamming process operates. Data for assessing
jamming performance is collected from 30 to 100 seconds.

We first inspect a particular case in detail to understand
what is actually happening in the jamming process, then look
at the overall effect of jamming under different circumstances.

A. A case in detail

For simplicity we consider a 1-on-1 case with w = 0.6, and
examine the throughput (Fig. 2), TCP sender’s window (Fig.
3) and RTT (Fig. 4, samples taken every 0.1 second) of both
the jammer and the target’s TCP traffic.

From these figures and other runs of simulation, we can
arrive at some key observations. First, as shown in Fig. 3
between 21s and 26s for the jammer and between 62s and 78s
for the target, both the jammer and the target may experience
an RTO, but the chance is not high for either one. In fact there
are more cases with no RTOs than those with RTOs. Also
with many runs, we observed that the jammer suffers much
less RTOs than the target as the jamming constantly delays the

341
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

Time (seconds)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Jammer

Target

Fig. 2: Throughput of jammer and target nodes

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Time (seconds)

W
in

d
o
w

 s
iz

e

Jammer

Target

Fig. 3: TCP sender’s window of jammer and target nodes

transmission of the target’s TCP-ACK, and if the target reaches
an RTO, on average it takes longer, if ever, than the jammer
to recover. When the target times out, the jammer can quickly
take over the bandwidth with its own TCP traffic. Second, even
when the target does not experience an RTO, its RTT, due to
the delay caused by the jamming, is much longer than that of
the jammer, making its TCP sender’s window grow at a much
slower rate than that of the jammer. This can be observed from
the slopes in the growth of the sender’s windows in Fig. 3.
Especially, when the target times out between 62s and 78s, the
jammer’s window grows particularly fast. This will eventually
lead to a low average window and a low average throughput
for the target.

B. Overall effect of jamming

Once we understand how the jamming works, we can
evaluate the effectiveness of jamming. Let us first investigate
the validity of basing q(x) on p(x) and the influence of
parameter w. In Fig. 5, we compare the average throughput of
the jammer for a constant transfer function q(x) = w vs. the
power function used in our model q(x) = p(x)w. Each case
consists of 100 averaged simulation runs. From the figure we
can see that our model achieves much better throughput.

We then run the simulation of the attack under different
settings, all with w = 0.6. In the “Setting” rows/columns in
the tables, the first number indicates the number of nodes on
the jammer’s side, where only one of them is the jammer while
other nodes, if any, are normal TCP sinks, and the second
number is the number of nodes on the targets’ side, where all
nodes here are targeted.

Throughput: Table II shows the throughput achieved under
attack with different settings, in Mbps. The throughput of
the jammer increases dramatically, in many cases to twice or
three times its normal (no jamming) throughput. However as
the number of nodes in the network increases, the share of
throughput the jammer could grab from other nodes becomes
smaller, while the need to jam more nodes exerts a negative

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

R
T

T
 (

s
e
c
o
n
d
s
)

Jammer

Target

Fig. 4: Samples of round-trip time of jammer and target nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

w

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

q(x)=p(x)w

q(x)=w

Fig. 5: Jammer’s throughput comparison: for different q(x)

TABLE II: Throughput simulation results

Setting Jammer
(Mbps)

Jammer
gain

Gain Jammer-
side nodes

Targets
average
(Mbps)

1/1 16.64 58% N/A 2.03
1/2 13.43 287% N/A 2.20
1/3 6.40 234% N/A 2.84
1/4 4.00 153% N/A 2.43
1/5 1.58 33% N/A 4.02
2/2 6.55 23% 55% 2.14
2/3 2.07 -30% 155% 2.57
3/3 1.98 -49% 52% 2.01

TABLE III: Estimated backoff window in slots: A=Jammer
Backoff window; B=Nominal (AP) backoff window

Setting 1/1 1/2 1/3 1/4 1/5 2/2 2/3 3/3
A 16.9 19.1 41.6 46.6 64.4 38.5 92.8 61.9
B 8.21 8.05 8.02 8.01 8.01 8.23 8.11 8.18

influence on the transmission of its own data. Therefore,
the throughput gain decreases and would finally vanish as
the number of nodes further increases. Still, in a multi-on-
multi scenario, the jamming throttles the target nodes, earning
bandwidth for normal nodes on the jammer’s side that are not
sending jamming signals. This suggests the effectiveness of
staging this attack by a group of normal nodes with a colluding
jammer.

Estimated backoff window: Table III shows the estimated
backoff window of the jammer and the nominal backoff
window in slots, (the nominal backoff window being the
window estimated by the AP). We can observe that even if
false positives increase in the presence of hidden nodes [3],
the average observed backoff window value of the jammer
never falls below the nominal backoff window, thus rendering
the detection scheme in DOMINO ineffective in this attack.
The detection based on the relatively large observed backoff
of the targets is also not viable, as the AP cannot distinguish
between the backoff time and the idle time. Further careful

342
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Average RTT: simulation results

Setting 1/1 1/2 1/3 1/4 1/5 2/2 2/3 3/3
Jammer (ms) 57 65 83 95 104 65 85 77
Target (ms) 145 158 164 172 181 128 135 127

TABLE V: Number of collisions α: simulation results

Setting 1/1 1/2 1/3 1/4 1/5 2/2 2/3 3/3
Jam. 0.4 0.7 1.6 2.1 2.7 0.7 1.1 1.0

No jam. 0.2 0.3 0.3 0.3 0.2 0.4 0.6 0.6

analysis based on packet inspection, transmissions and colli-
sions is needed to achieve a valid detection scheme. Another
possible misbehaviour, “Shorter than DIFS” in the DOMINO
mechanism is also not valid for the attack due to the jamming
algorithm mentioned above.

RTT: Table IV shows the average RTT in millisecond for
both sides in the simulation, displaying a large gap between
them. However, as the round-trip delay for both streams is
12ms, the jammer’s TCP traffic also experiences a large delay.
Thus using the difference in RTT as an indication of jamming
is not effective. Also, several conditions must be met before the
RTT can be used as a detection standard, including the precise
estimation of RTT, the steady routing and link conditions, the
use of the optional time-stamp, the synchronization of clocks
between the AP and the TCP source, and so on.

Number of collisions: Finally, Table V compares the num-
ber of collisions experienced under jamming and no jamming,
where α is the number of collisions divided by the number of
frames correctly received by the AP (rounded to one decimal).
From the comparison we can say that α seems to be a good
indication of jamming, especially when the number of nodes
is large and the jammer needs to jam more. Nonetheless, it
remains to be seen whether there could be scenarios where no
jamming is present yet the ratio is as high as the values shown
in the table.

IV. CONCLUSION

Jamming forms an important part of WLAN security issues,
yet previous research has ignored the case where deliberate
jamming occurs between nodes hidden from each other. Be-
cause such nodes can exist naturally in WLANs and are not
necessarily detectable with classic techniques, in this paper
we introduced a new jamming attack on hidden targets against
downlink TCP traffic. The jammer works by probabilistically
estimating the time when the target is expected to transmit
TCP ACKs and transmits its own jamming signal at the proper
time to suppress them. Throughput is gained by the jammer
by increasing the targets’ RTT. Simulations are conducted
in ns-2 to show the effectiveness of the attack and analyse
its immunity to detection schemes. Discussion of possible
parameters to use to detect such attack is also given. We are
currently focused on implementing and deploying this attack
in a real wireless network node to test it in real networks.

APPENDIX

Notice that the countdown must take into account all
possible sample paths that lead to a given estimated number
of slots. For example, if the timer of the target up till a given
slot is 20 slots of backoff, the target could have experienced in
its first transmission 10 backoff slots drawn from CWmin yet
failed, then is two-thirds through counting down 15 backoff
slots in the first retry drawn from 2CWmin; or, it could have
tried 5 backoff slots and failed in the first transmission, then
tried 9 backoff slots and failed again in the first retry, and is
half-way through trying 6 slots in the second retry drawn from
4CWmin. Obviously these two possible sample paths occur
with different probabilities since the retransmission process
has no steady state, and all are taken into account in the model.

Let, A(i, j) ≡ {the target transmits at the ith slot in its jth
backoff stage}, B(i, j) ≡ {the target does not transmit from
the ith to the jth slot}, and C(i) ≡ {no successful transmission
happens before the ith slot}. Then we have:

p(x) =

m+n−1∑
i=1

c∑
j=0

Pr[A(x− n+ i, j),

B(x− n+ 1, x− n+ i− 1)|C(x− n+ 1)] (1)

Here the index i iterates through the slots in the interval
where a transmission of the TCP-ACK from the target would
be hit by the (possible) jamming signal, and j is the count of
backoff stages, upper bounded by the long retry count of c.
B(x−n+1, x−n+ i−1) is present in the equation to make
the joint event in each term in the sum independent of each
other.

Define D(x, i, j) ≡ {A(x + i, j) ∩ B(x + 1, x + i − 1) ∩
C(x+1)}. Then from (1) by conditional probability we have

p(x) =

m+n−1∑
i=1

c∑
j=0

Pr[D(x− n, i, j)]
Pr[C(x− n+ 1)]

. (2)

If j = 0, i.e., the TCP-ACK is a newly-sent packet, then,

Pr[D(x, i, 0)] = Pr[(x+ i) chosen as backoff
from the minimum contention window]

=

{
1/(CWmin + 1) if x+ i ≤ CWmin

0 otherwise.
(3)

Define E(x, j) ≡ {A(x, j) ∩ C(x)}. Since if the target
transmits a TCP-ACK that is corrupted on the way, it needs
to wait for a MAC-ACK timeout period before realizing the
TCP-ACK is lost and tries to resend it, it cannot resend the
TCP-ACK immediately after a collision. Assume this MAC-
ACK timeout period spans s slots. Then for j > 0, expanding
on the time of transmission of the previously sent (and failed)
TCP-ACK, by the definition of E(x, j),

Pr[D(x, i, j)] =

min{x−1,x+i−n−s}∑
k=1

Pr[E(k, j − 1)]

×Pr[collision at k]
×b(x+ i− k − n− s, j − 1), (4)

343
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

where b(i, j) in is the probability that the backoff chosen from
the jth backoff window equals i slots, i.e.,

b(i, j) =

{
1/(CWj + 1) if i ∈ [0, CWj]

0 otherwise,
(5)

with CWj being the size of the jth contention window, i.e.
CWj = 2j(CWmin + 1)− 1.

The probability of the target TCP-ACK colliding with
anything at the xth slot, Pr[collision at x] is approximated
as follows:

Pr[collision at k] = 1− (1− q (d(k − 1)))

× (1− B(τ + 1)) , (6)

where B(n) is the probability of collision for n nodes in
Bianchi’s model [17], τ is the number of stations on the
targets’ side and d(x) is the slot where the last jamming
decision before the xth slot is made,

d(x) =

⌊
x

m+ n− 1

⌋
× (m+ n− 1) + n− 1. (7)

Pr[E(x, j)] induces on itself in a similar way:

Pr[E(x, j)] =

x−n−s∑
k=1

Pr[E(k, j − 1)]× Pr[collision at k]

×b(x− k − n− s, j − 1), (8)

with the base case being

Pr[E(i, 0)] =

{
1/(CWmin + 1) if i ≤ CWmin

0 otherwise;
(9)

and Pr[E(1, j)] = 0 for j > 0. All previously calculated
values of Pr[E(,)] are stored to be reused for later recursions.

By substituting (5), (6) and (8) into (4) we have a recursive
form on Pr[D(x, i, j)]. The denominator in (2), Pr[C(x−n+
1)] can also be represented by Pr[E(x, j)]:

Pr[C(x)] =

x−1∑
k=1

c∑
j=0

Pr[E(k, j)]× Pr[collision at k]

×a(x− k − n− s, j) + t(x), (10)

where a(i, j) is the probability that the backoff chosen from
the jth backoff window is larger than or equal to i slots, i.e.

a(i, j) =

(CWj−i+1)

(CWj+1)
if CWj ≥ i and i > 0

1 if i ≤ 0

0 otherwise,

(11)

and t(x) is the probability that no transmission occurred before
the xth slot, i.e.

t(x) =

{
(CWmin+2−x)
(CWmin+1)

if x ≤ CWmin + 1

0 otherwise.
(12)

By putting (3), (4) and (10) into (2) we obtain the value
of p(x). Note that in the calculation of p(x), previously
calculated values of q(x) with smaller x are used; on the
other hand, q(x) = f(p(x)). This means the calculation of
p(x) and q(x) are similar to dynamic programming, i.e., first
calculate p(x) for small x, obtain q(x) = f(p(x)), then
calculate p(x) for further x. This makes sense as the intensity
of jamming influences the target’s transmissions at a later time
which in turn influences the intensity of jamming then, by the
assumption of our model.

REFERENCES

[1] Z. Lu, W. Wang, and C. Wang, “On order gain of backoff misbehaving
nodes in csma/ca-based wireless networks,” in INFOCOM, 2010 Pro-
ceedings IEEE, pp. 1–9, IEEE, 2010.

[2] D. Thuente and M. Acharya, “Intelligent jamming in wireless networks
with applications to 802.11 b and other networks,” in Proc. of IEEE
MILCOM, vol. 6, 2006.

[3] M. Raya, I. Aad, J.-P. Hubaux, and A. El Fawal, “Domino: Detecting
mac layer greedy behavior in ieee 802.11 hotspots,” Mobile Computing,
IEEE Transactions on, vol. 5, no. 12, pp. 1691–1705, 2006.

[4] K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy, “Denial of service
attacks in wireless networks: The case of jammers,” Communications
Surveys & Tutorials, IEEE, vol. 13, no. 2, pp. 245–257, 2011.

[5] P. Kyasanur and N. Vaidya, “Selfish mac layer misbehavior in wireless
networks,” Mobile Computing, IEEE Transactions on, vol. 4, no. 5,
pp. 502–516, 2005.

[6] S. Radosavac, J. S. Baras, and I. Koutsopoulos, “A framework for mac
protocol misbehavior detection in wireless networks,” in Proceedings of
the 4th ACM workshop on Wireless security, pp. 33–42, ACM, 2005.

[7] A. L. Toledo and X. Wang, “Robust detection of selfish misbehavior in
wireless networks,” Selected Areas in Communications, IEEE Journal
on, vol. 25, no. 6, pp. 1124–1134, 2007.

[8] Y. Rong, S. K. Lee, and H.-A. Choi, “Detecting stations cheating
on backoff rules in 802.11 networks using sequential analysis.,” in
INFOCOM, Citeseer, 2006.

[9] J. Choi, A. W. Min, and K. G. Shin, “A lightweight passive online detec-
tion method for pinpointing misbehavior in wlans,” Mobile Computing,
IEEE Transactions on, vol. 10, no. 12, pp. 1681–1693, 2011.

[10] D. P. Blinn, T. Henderson, and D. Kotz, “Analysis of a Wi-Fi hotspot
network,” in Workshop Wireless Traffic Meas. Model., pp. 1 – 6, Jun
2005.

[11] M. Afanasyev, T. Chen, G. M. Voelker, and A. C. Snoeren, “Usage
patterns in an urban WiFi network,” IEEE/ACM Trans. Netw., vol. 18,
pp. 1359 – 1372, October 2010.

[12] A. Proano and L. Lazos, “Selective jamming attacks in wireless net-
works,” in Communications (ICC), 2010 IEEE International Conference
on, pp. 1–6, IEEE, 2010.

[13] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of
service attacks: the shrew vs. the mice and elephants,” in Proceedings
of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 75–86, ACM, 2003.

[14] K.-L. Hung and B. Bensaou, “Throughput analysis and bandwidth
allocation for ieee 802.11 wlan with hidden terminals,” Journal of
Parallel and Distributed Computing, vol. 71, no. 9, pp. 1201–1214,
2011.

[15] P. Sessini and A. Mahanti, “Observations on round-trip times of tcp
connections,” SIMULATION SERIES, vol. 38, no. 3, p. 347, 2006.

[16] K. Fall and K. Varadhan, “The ns manual (formerly ns notes and
documentation),” The VINT project, vol. 47, 2005.

[17] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coordi-
nation function,” Selected Areas in Communications, IEEE Journal on,
vol. 18, no. 3, pp. 535–547, 2000.

344
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:50:43 UTC from IEEE Xplore. Restrictions apply.

