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Abstract—Wireless sensor networks (WSNs) are especially
susceptible to denial-of-service attacks due to the resource-
constrained nature of motes. We follow a systematic approach to
analyze the impacts of these attacks on the network behavior;
therefore, we first identify a large number of metrics easily
obtained and calculated without incurring too much overhead.
Next, we statistically test these metrics to assess whether they
exhibit significantly different values under attack when compared
to those of the baseline operation. The metrics look into different
aspects of the motes and the network, for example, MCU and
radio activities, network traffic statistics, and routing related
information. Then, to show the applicability of the metrics to
different WSNs, we vary several parameters, such as traffic
intensity and transmission power. We consider the most common
topologies in wireless sensor networks such as central data
collection and meshed multi-hop networks by using the collection
tree and the mesh protocol. Finally, the metrics are grouped
according to their capability of distinction into different classes.
In this work, we focus on jamming and blackhole attacks. Our
experiments reveal that certain metrics are able to detect a
jamming attack on all motes in the testbed, irrespective of the
parameter combination, and at the highest significance value. To
illustrate these facts, we use a standard testbed consisting of the
widely-employed TelosB motes.

Index Terms—Wireless Sensor Networks, Denial-of-Service,
Measurements

I. INTRODUCTION

In the last years, the use of wireless sensor network (WSN)
technology in several practical problems has grown in inter-
est and relevance. From tracking industrial operations such
as leakage detection and pipe pressure measurement [1] to
monitoring critical infrastructures like the Golden Gate bridge
[2], there is a wide range of real-life applications in which
WSNs play an important role. Guaranteeing security in such
prominent applications is an issue.

A standard way of detecting attacks is by making use of
intrusion detection systems (IDSs). [3] explores the spatial
correlation in the networking behavior of sensors in close
proximity. In this approach, each sensor monitors its im-
mediate neighbors and identifies outliers using Mahalanobis
distances. Networking behavior is characterized here by packet
dropping rate, packet sending rate, forwarding delay time, and
the actual sensor readings. However, no reason is given why
exactly those metrics are analyzed.

At the moment, the decision on which features are relevant
for intrusion detection is rather arbitrary than scientifically

justified. To identify the most pertinent features, we need to
develop an understanding of the real-world effects of attacks
on WSNs. In this work, we describe a systematic way to
analyze these effects in a testbed consisting of TelosB motes.
For this purpose, we collect a large number of local metrics
under various combinations of parameters, such as topology
and traffic intensity. The jamming and blackhole attacks we
carry out are two benchmark denial-of-service attacks, which
operate on the link and the network layer, respectively. By
using statistical tests, we identify those metrics deviating
significantly in an attacking scenario as compared to normal
working conditions. The metrics are classified according to
their distinction capabilities, naming the metrics with high-
est significance value on all motes throughout all parameter
combinations as Class A metrics. The most promising Class
A metrics can be integrated in detection mechanisms such as
the one proposed in Di-Sec [4].

Our paper contributes to evaluate the effects of attacks
against WSNs in a systematic way. Particularly, (1) in the case
of denial-of-service attacks, we identify generally applicable
metrics which are able to differentiate between attacking and
non-attacking scenarios. (2) Our results lay the foundation for
developing lightweight intrusion detection systems for WSNs,
focusing on the most suitable metrics.

The remainder of this paper is organized as follows. In
Section II, we present related work. Section III is devoted to
describe our exhaustive scheme to analyze whether a metric
is appropriate to detect an attack. Therefore, we describe our
testbed, the topologies we have used, what type of attacks
have been implemented and the set of metrics we have tested.
In Section IV, we assess our procedure, and thus we classify
metrics according to their response to attack detection. Finally,
some concluding remarks are outlined in Section V.

II. RELATED WORK

Systematic quantification of the effects of denial-of-service
attacks on WSNs has been neglected in the field literature.

Xu et al. [5] analyzed several detection approaches for
jamming attacks. They used three different metrics to dis-
tinguish between jamming and normal or congested traffic:
(1) the averaged received signal strength indicator (RSSI),
(2) the carrier sense time, and (3) the packet delivery ratio
(PDR). The authors concluded that the combination of PDR
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and RSSI is able to detect jamming attacks reliably. These
same authors extended their work on jamming attacks in [6],
and examined the impact of jamming attacks on the packet
delivery ratio and implemented channel surfing techniques to
cope with interference.

Also Zhao et al. [7] conducted a study on packet delivery
performance in dense wireless sensor networks. Even though
they take into account interfering transmissions at the MAC
layer occuring during normal operation, an intended attack is
not considered.

Another work dealing with packet delivery performance was
presented in [8]. Hauer et al. evaluated the effects of WLAN
interference on packet delivery performance in IEEE 802.15.4
body area networks.

Recently, Lu et al. [9] introduced a system to detect
jamming attacks in time-critical networks. They proposed a
new metric for performance quantification called the message
invalidation ratio. Eventually, a message is regarded as invalid
if the message delay is greater than a certain threshold. They
studied the impact of jamming attacks on this particular metric.

Despite some of these works address the impact of jam-
ming attacks on packet delivery performance, they lack a
comprehensive analysis of other mote-level metrics, such as
energy consumption or routing-related information. In addi-
tion, they are not concerned with different classes of denial-
of-service attacks, such as blackhole attacks. To the best of
our knowledge, we conducted the most comprehensive set of
measurements in a real WSN testbed to study the effects of
denial-of-service attacks on a large set of metrics. Our work
focuses on individual and locally available metrics; thus, the
normal operation of the WSN is not obstructed, and at the
same time we keep the metric collection lightweight.

III. METHODOLOGY, METRICS AND ATTACKS

In this paper, we quantify the effects of denial-of-service
attacks in WSNs on a variety of metrics. Our work aims at
establishing a comprehensive scheme to find out if there are
metrics more susceptible to exhibit an altered behavior under
attack than others. Also, we want to rank a set of metrics
fitting typical WSNs according to their response in case of
attack. This could be further applied to develop IDSs.

A number of factors might influence a WSN under attack.
For example, in a dense WSN the attack effects should prop-
agate faster. In a systematic fashion, we control the topology,
the intensity of the normal data traffic in a WSN, and the
transmission power in order to understand the impact of these
factors on the metrics, and thus on attack detection. We con-
sider two DoS attacks, one prohibiting other communication
(jamming) and one misdirecting the traffic (blackhole).

In what follows, we describe in details the testbed we
use, the underlying protocols, attack implementations and the
metrics we analyze.
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Fig. 1: Mote placement at the computer science build-
ing and sample deployment in one office (Image source:
http://www.tudunet.tu-darmstadt.de).

A. Testbed

Our measurements are carried out in the TUDµNET1, a
federation of wireless sensor network testbeds deployed at
various buildings of the Technische Universität Darmstadt.
We have selected two different testbeds, i.e., subgroups of
TelosB motes within the TUDµNET (Figure 1 is showing the
mote placement in the corresponding offices; the attacker has
node ID 14 in testbed 1 and node ID 7 in testbed 2). These
motes provide a MSP430 MCU and a CC2420 radio chip.
We run the operating system Contiki [10] using ContikiMAC.
The first testbed contains 14 motes, located in neighboring
office rooms of the computer science building. The second
testbed is located at a different place of the TUDµNET to
compensate for environmental influences or interferences, and
to show the applicability of the analyzed metrics to other
WSNs. This second testbed consists of 7 sensor nodes. The
main difference between the two testbeds is the environment
influencing the networks. While one testbed is located in office
rooms with few people, the second is, among others, located
in a pool room with frequently moving people and other
interference resulting in a more challenging environment with
respect to factors such as link quality. We also face common
problems like unidirectional links and a constantly changing
neighborhood. Hence, we address many challenges of real-
world deployments. We vary a number of parameters such as:
• Topology (mesh/collect) - With the mesh and the collec-

tion tree protocol2 [11], we consider two of the most
widely-used protocols in WSNs.

• Traffic (high/low) - We want to analyze the impact of
different traffic intensities on the detection capabilities of
the metrics.

• Transmission power (high/low) - To vary the average node

1http://www.tudunet.tu-darmstadt.de
2In the remainder of this document we use the terms collect protocol as

well as collection tree protocol interchangeably.
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degree, we use two different transmission power settings.
• Attack (jamming/blackhole/no attack) - The influence of

two different DoS attacks on the metrics is analyzed, and
compared to an attack free scenario.

To generate artificial normal data traffic in the mesh net-
work, messages containing a timestamp are exchanged be-
tween a random source and destination node on a regular
basis. The nodes in the collect network periodically transmit
messages to the base station. The intervals between the trans-
missions are set to 4 (for high traffic) and 10 seconds (for
low traffic). Thus, the artificial traffic varies between 6 and 15
transmitted packets per minute in each node. Each packet has
a message size of 6 bytes.

The varied transmission power leads to new topologies with
changing network density. The CC2420 radio chip allows to
set it to a value in the range of 1 (minimum) to 31 (maximum).
For the first testbed, the transmission power is set to 10 for the
“low power” setting, and to 16 for the “high power” setting.
In the second testbed, the configuration is set to 8 and 16,
because the second WSN is smaller and the distance between
nodes is reduced.

During the series of measurements, each node periodically
collects local metrics and makes them available through its
serial port. The local collecting cycle time is set to 4 seconds.
Note that all metric values are measured for the duration of
the collecting cycle and then reset. The TUDµNET allows
collecting all serial outputs in one centralized SQL database.
This approach offers the advantage that all the metrics are

Fig. 2: Topologies of the two testbeds with high transmission
power. Each arc connecting two nodes is labeled with the
minimum transmission power value required to establish a path
between both nodes.

Fig. 3: Topologies of the two testbeds with low transmission
power. Each arc connecting two nodes is labeled with the
minimum transmission power value required to establish a path
between both nodes.

collected over an out-of-band communication channel. Thus,
the artificial traffic and our measurement collection do not
interfere with each other.

Figures 2 and 3 depict the topologies of the two testbeds
depending on the transmission power. Nodes are labeled with
an ID number. Each arc connecting two nodes is labeled with
the minimum transmission power value required to establish
a path between both nodes. In the first collect testbed, node
13 is the base station. In the second collect testbed, the base
station is located at node 1. When running the mesh protocol,
base stations are not needed. The adversaries are placed
close to the inner nodes of the two testbeds. To compensate
for specific measurement errors or temporary anomalies, we
perform three different test-runs at different daytimes for each
combination of the testbed parameters topology, traffic flow,
transmission power and attack. Each test-run has a duration
of 15 minutes. We have chosen the test-run duration after
assessing the time the network requires to reach steady state,
which is about 1 minute. Overall, there are 144 measurement
test-runs performed in both testbeds, providing about 3 million
metric values.

B. Protocols Employed

We have chosen the mesh and collection tree protocol
topologies, because they are among the most relevant protocols
in WSNs. They are common for a lot of practical deployments
[12], [13] and are used in scenarios such as central data
collection and meshed multi-hop networks.

Collect Protocol: The collect protocol [11] is used in data
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collection scenarios and provides mechanisms for building up
a tree-based topology within the WSN. It also yields reliable
hop-by-hop data packet forwarding to the base station at the
root. Therefore, the collect protocol has desirable properties
such as tracking network information and message delivery
state, for example, packet successful reception. Furthermore,
it has built-in methods for collecting statistical network data,
which we use as protocol specific metrics in our analysis.

Mesh Protocol: The mesh protocol is implemented by Con-
tiki’s Rime stack and allows sending messages using multi-
hop routing to specific destinations in the WSN. For finding
the best route to the destination, each node manages an own
routing table containing the next-hop neighbor for a specific
receiver. However, the multi-hop forwarding mechanism can-
not ensure packet delivery, since no acknowledgement packets
are sent at the reception of data. Hence, the mesh protocol
provides support for less metrics than the collect protocol.

C. Attack Implementations

An analysis of the literature reveals that the question of
security has been mainly tackled from the cryptographic point
of view, with a focus on data integrity and confidentiality.
For instance, besides standard symmetric algorithms which run
very efficiently on the resource-constrained nodes, also public-
key cryptography has become feasible [14], [15]. Still, given
the often unattended nature of sensor nodes, it is reasonable
to assume an attacker physically compromising the nodes and
gaining access to the cryptographic key material. Therefore,
defense mechanisms against threats to the availability of the
WSN, such as denial-of-service (DoS) attacks, and mech-
anisms to provide operational security are needed. Hence,
we consider two (standard) denial-of-service attacks. First,
we analyze a physical layer jamming as it is a simple but
still powerful attack. Then, we evaluate a blackhole attack.
We implement both attacks in the collection tree and mesh
protocol, respectively.

Jamming: Jamming is a denial-of-service attack on the avail-
ability of the communication channel. In our implementation
on the TelosB motes, we directly access the physical layer
transmitting method provided via the radio chip. Using this
method, the jamming node directly transmits the jamming
packets to the environment. The implemented jammer is
independent of the network protocols used in the WSN.

Blackhole: A blackhole node tries to attract all the neigh-
borhood traffic. Instead of forwarding this traffic to the des-
tination, it discards all incoming data packets. The imple-
mentations of this attack on the routing protocol need to
be specifically adapted to mesh and collect networks. In the
case of a mesh network, the blackhole node advertises route
announcements with the best routing metric to all destinations
and also replies to route requests by handling the incoming
requests as the desired final destination and replying on behalf
of it. The collect protocol also requires some modifications
for attracting the traffic. The blackhole node periodically
broadcasts announcement messages with routing information
which are used for selecting the parent node. In particular,

it sets its own announcement routing metric to one in order
to trick the other nodes into selecting it as parent. Since the
base station has announcement value zero, a blackhole setting
this value to zero would be suspicious. The routing metric
is not only announced directly, but is also piggybacked onto
outgoing data or acknowledgement packets.

Taking into account these characteristics of jamming and
blackhole attacks in both collect and mesh networks, it is
possible to develop specific detection approaches. However,
we are interested in the actual impact of these attacks on real
wireless sensor networks.

D. Metrics

We identify an exhaustive list of metrics that have been
selected based on two main criteria. First, we focus on metrics
that are already provided by the node or the used protocols.
Second, the metrics should be calculatable in a lightweight
manner. This choice stems from efficiency reasons, as we
envision the metrics to be used in lightweight IDSs. In our
experiments, metrics can be divided into three categories:
elementary metrics, collection tree specific metrics, and mesh
network specific metrics. Due to the lack of acknowledgments
in the mesh protocol, metrics such as the packet delivery rate
are missing for this type of network. In the following, we
describe our metrics that were directly provided by Rimes-
tats/Energest in detail.

Elementary Metrics All sensor nodes can obtain elemen-
tary metrics, independently of the underlying protocol.

• Received Signal Strength Indicator (RSSI): RSSI rep-
resents the current radio signal power measured at the
receiver and is typically expressed in dBm.

• Transmit/Listen time: It represents the amount of time
the radio chip is in transmitting/listening mode during a
specific time period. We measure the time with a timer
of 8192 Hz.

• Transmit/Listen duty cycle: It depicts the usage of the
transmit and listen time as percentage values with respect
to the entire measurement period.

• Transmitted/Received packets on network layer: The
packet rate metrics at the network layer contain counters
for all outgoing and incoming packets.

• Transmitted/Received packets on MAC layer: It counts the
outgoing and incoming packets on the MAC layer.

• Packets with invalid CRC checksum: It counts, how often
a received packet is discarded because of an invalid CRC
checksum.

• Energy consumption by radio activities: It is calculated
as3

energyr = (l ·18.8+ t ·17.4+ i ·0.426) · v

where energyr is the current energy consumption of the
radio activities, l is the listen time, t is the transmit time,
i is the idle time, and v is the current operating voltage.

3The specific values are taken from the CC2420/MSP430 manual
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• Radio load percentage: This metric also represents the
uptime of the radio. It is given as the percentage value of
the uptime with respect to the entire measurement period.

• Energy consumption by MCU activities: It is calculated
as3

powerMCU = m ·0.5 · v

where powerMCU is the current energy consumption of
the MCU, m is the MCU uptime, and v is the current
operating voltage.

• MCU load percentage: This metric represents the per-
centage value of the MCU uptime with respect to the
entire measurement period.

• Contention drop: This metric counts the number of times
the node fails to send a packet due to a busy channel.

• Pending packets: This is a boolean metric indicating
whether the node has unprocessed packets in the incom-
ing packet buffer.

• Too short packets: When received packets are shorter than
the footer plus the checksum, this counter is increased.

Metrics of the Collection Tree Protocol The collection tree
protocol provides additional routing statistic measurements
which can be used as possible detection metrics:

• Transmitted/Received data packets: These counters repre-
sent the amount of transmitted/received data packets using
the collection tree protocol.

• Transmitted/Received acknowledgement packets: It counts
the amount of transmitted and received ACK packets.

• Received duplicate packets: It describes the amount of
received duplicate data packets.

• Dropped packets by queue overload: If the queue buffer
for incoming data packets is overloaded, the next arriving
packets will be discarded. This metric counts the occur-
rences of this event.

• Packet delivery rates (PDR): The PDR describes the
fraction of successfully transmitted data packets.

• Changing parent node: If a sensor node is not able to
communicate directly with the base station, it will connect
to a parent node which then forwards its data traffic. The
amount of changing events is counted by this metric.

• Link estimation of best neighbor: A node defines its
parent node by choosing the neighbor with the lowest
routing costs. The routing costs are calculated by either
the link estimation or by the header information of
incoming packets. This metric estimates the link quality
to the best neighboring node.

• Number of neighboring nodes: This value represents the
number of reachable nodes in the neighborhood.

Metrics of the Mesh Protocol The mesh protocol used in
the testbed is based on a simple broadcasting of normal data
messages. The following metrics are derived:

• Number of direct neighbors in the routing table: It repre-
sents the number of reachable nodes in the neighborhood.
It is identified by those routing table entries having the
same value for the next hop and the destination.

• Number of entries in the routing table: This metric
contains the number of all entries in the routing table, and
not only the direct neighbors as in the previous metric.

Having detailed the metrics we study under two different
denial-of-service attacks, we will now illustrate a systematic
way to assess the metric behavior. This assessment can also be
applied for evaluating additional metrics in arbitrary protocols.

IV. EVALUATION

In this section we describe the analysis of the collected
metric data from the testbed and present the evaluation results.
We particularly investigate the influence of the network density
and the traffic intensity on the metric behavior.

A. Methodology

To determine whether the metric measured values under
attack deviate significantly from those in an attack-free sce-
nario, we perform a statistical test. We inspect the cumulative
distribution function and perform the Kolmogorov-Smirnov
test at a significance level of α = 0.05 to check for normality.
Both analyses show that there is evidence enough to assume
the data not to be normally distributed and, hence, we carry out
a non-parametric test. We have chosen the so-called Wilcoxon-
Mann-Whitney test [16] to contrast whether there are statis-
tically significant differences between attack and attack-free
scenarios. The Wilcoxon-Mann-Whitney test is the analogue
of the t-test without the assumption of normality. We use the
open-source statistic tool R4 for all tests.

Before starting the evaluation process, we first have to
preprocess the collected data. We introduce a binary label
(attack/no attack) to distinguish between values in an at-
tack/normal scenario. Furthermore, we have to remove the
first minute of each test-run, since the WSN is unbalanced
during start-up, leading to wrong metric values. For instance,
the PDR is always -1 in the collect protocol, as no packets have
been sent yet and thus the PDR cannot be calculated. Next,
we group the obtained information during the three test-runs
according to every combination of parameters separately for
each metric and for each node. With a significance level of α =
0.05 we test the null hypothesis that the attack values and the
normal values have identical data distributions, and note the
corresponding p-values. Therefore, if the p-value is less than
the significance value, we reject the null hypothesis. The lower
the p-values are, the more differ attack values from normal
values. We also calculate for each run and for each node
the arithmetic mean and standard deviation of the different
metrics.

B. Metric Assessment

In order to assess the quality of a metric for distinguishing
between attack and no attack, we classify them into four
categories, namely A, B, C, and D metrics. This is done
independently for the collect and mesh protocol, as they
provide different metrics. As explained in Section IV-A, the

4http://www.r-project.org
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TABLE I: Classification of the analyzed metrics for the
different scenarios. Sc. 1: Jamming (Collect), Sc. 2: Jamming
(Mesh), Sc. 3: Blackhole (Collect), Sc. 4: Blackhole (Mesh)

Metric Class
Sc. 1 Sc. 2 Sc. 3 Sc. 4

RSSI B B C C
Transmit time B B C C
Transmit percentage B B C C
Listen time A A C D
Listen percentage B B B C
NET Sent pkts B B B C
MAC Sent pkts B B B D
Sent data pkts B N/A B N/A
Received data pkts B N/A B N/A
Sent ACK pkts B N/A B N/A
Received ACK pkts B N/A - N/A
Received duplicates C N/A C N/A
Dropped pkts D N/A D N/A
Packet delivery rate A N/A B N/A
Changing parent D N/A D N/A
Link estimation B N/A B N/A
No. of neighbors A A B C
No. of routing entries N/A A N/A C
NET Received pkts B B B C
MAC Received pkts B B B C
Invalid CRC C C C D
Radio energy B B B C
Radio load B B B C
MCU energy B B B C
MCU load B B B C
Contention drop D D D D
Pending pkts C D - -
Too short pkts D - - -

p-values are determined by performing the Wilcoxon-Mann-
Whitney test. The classification is performed for each attack
in the following way:
• Class A - These metrics are able to detect the attack in

both traffic intensities, both transmit power settings, on all
nodes in both testbeds, and with highest significance value
(minimum and maximum p-values are lower than 2.2 ·
10−16, which indicates that the null hypothesis is rejected
at all possible significant values α = 0.1,0.05,0.01, ...).

• Class B - Metrics which can detect the attack in both
traffic intensities, both transmit power settings, and hav-
ing a minimum significance level lower than 2.2 · 10−16

in both testbeds.
• Class C - Metrics that identify an attack in both traffic

intensities, and both transmit power settings.
• Class D - All remaining metrics that are capable to

disclose the attack.
This classification allows us to identify generally applicable

metrics for attack detection (Class A), while others are only
suited for specific scenarios or specific nodes (Classes B, C,
and D). We admit that our classification is biased towards
globally effective attacks and is dependent on the network
size as well as on the strength of the attack. Thus, in a larger
network there might be no Class A metrics at all. Still, it gives
us a more fine-grained view on the impact of the implemented
attacks on our testbeds.

C. Results

We find that several metrics are well-suited to detect the
implemented attacks. From Table I we observe that the metrics

in the collect topology constantly perform as good as the
metrics in the mesh topology, and in some cases better (an
entry in the table marked with “-” indicates there is not
enough evidence to reject the null hypothesis; an entry marked
with “N/A” signifies that the corresponding metric is not
available in this protocol). In the collection tree protocol
setting, the implemented traffic is more deterministic because
all traffic is destined to the sink, whereas in the mesh protocol
we use broadcast messages to different destinations. Thus,
metrics related to network traffic statistics perform better in
the collection tree protocol.

The main finding is that jamming attacks have a more sig-
nificant global influence on the metrics than blackhole attacks,
which tend to be locally restricted. Class A metrics are only
available for jamming attacks. For example, the number of
neighbors is significantly reduced. The most affected nodes are
in the direct neighborhood of the jammer, having a neighbor
count of zero whenever the WSN is jammed, as shown in
Figure 4 (in all subsequent figures the error bars show the
standard deviation of the metric values). While this metric
can be obtained in both collect and mesh networks, another
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Fig. 4: Jamming attack in a mesh WSN with low traffic and
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TABLE II: Influence of the Network Density.

Row Metric Topology Traffic Attack p for Sparse Network p for Dense Network
d1 Changing parent Collect Low Jamming p < 1.6 ·10−10 p > 0.05
d2 Contention drop Collect Low Jamming p > 0.05 p < 3.9 ·10−6

d3 Too short pkts Collect High Jamming p < 6 ·10−4 p > 0.05
d4 Changing parent Collect High Jamming p < 7.3 ·10−15 p > 0.05
d5 Dropped pkts Collect High Jamming p < 2.2 ·10−16 p > 0.05
d6 Changing parent Collect Low Blackhole p < 1.2 ·10−6 p > 0.05
d7 Changing parent Collect High Blackhole p < 5.1 ·10−7 p > 0.05
d8 Contention drop Collect High Blackhole p > 0.05 p < 1 ·10−6

d9 Dropped pkts Collect High Blackhole p < 2.2 ·10−16 p > 0.05
d10 Pending pkts Mesh Low Jamming p > 0.05 p < 2.2 ·10−16

d11 Contention drop Mesh Low Jamming p > 0.05 p < 6.4 ·10−5

d12 Contention drop Mesh Low Blackhole p > 0.05 p < 6 ·10−5

d13 Listen time Mesh Low Blackhole p < 5.4 ·10−5 p > 0.05
d14 MAC Sent pkts Mesh Low Blackhole p < 7.7 ·10−5 p > 0.05
d15 Contention drop Mesh High Blackhole p < 3.6 ·10−12 p > 0.05

metric which is only available for collect networks also reaches
class A quality, namely the packet delivery rate. As shown in
Figure 5, in an attack-free scenario the PDR is almost 100 for
all nodes. In contrast, under a jamming attack, the PDR drops
to zero, i.e., no packets can be transferred successfully. In a
wireless sensor network with higher traffic, the average PDR
in a normal scenario is reduced due to the higher amount of
collisions. Besides, the PDR is also able to detect blackhole
attacks, but in this case the effects of the attack are more local.
The PDR is especially reduced for nodes that are not the direct
neighbors of the base station and hence have to route their data
via other nodes. In such a situation, the blackhole is effectively
causing denial-of-service by dropping packets.

There is also a large number of Class B metrics that
are heavily influenced by the attacks. Unsurprisingly, met-
rics covering traffic related information such as the number
of sent/received packets are helpful in detecting the attack.
However, not all nodes in the testbeds are affected in the same
significant way, as some are more distant from the attack. Next,
we want to give insights on the impact of selected parameters
on the metrics’ attack detection capability.

Influence of the Network Density We now investigate the
influence of the network density on the metric distinction
capabilities between an attacking scenario and the normal
operation. Therefore, we describe the behavior of those metrics
that are able to identify the attack in one network density
setting, but fail to do so in the other density setting. We
perform this analysis separately for the different network
protocols and the different attacks. From now on, we call a
network using the high transmission power a dense network.
A network operating with the low transmision power setting
is called a sparse network. An overview of the results is
presented in Table II, in which we list the minimum p-value we
calculated across all nodes in both testbeds, if we were able to
reject the null hypothesis that the attack and the normal values
of this metric have identical data distributions. Otherwise,
p is greater than 0.05, which means that the metric in this
density setting cannot differentiate between attack and normal
operation.

Jamming: We start with analyzing the influence of the
network density under a jamming attack on the metrics in the
collect topology. If we compare the dense to the sparse WSN,
we notice four differences. First, the jamming attack affects
the sparse WSN stronger and thus causes parent changing
events (rows d1 and d4). The effects of the jamming on the
routing metric are more severe and influence the reachability of
nodes. Second, the dense WSN is subject to a greater message
dropping due to contention, because there is higher traffic than
in a sparse network (row d2). Third, in a sparse network the
count of invalid packets because of short packet size is higher
(row d3). The jamming attack has a greater chance to corrupt
messages because a sparse network does not suffer as much
from contention as a dense WSN. The same reasoning explains
the last difference. In a sparse wireless sensor network, there
are no dropped packets due to queue overload in an attack-
free scenario, since the overall traffic is lower. Consequently,
packet dropping indicates the presence of jamming attacks
(row d5).

Regarding the mesh topology, the results are similar: in
a dense network, the number of messages dropped due to
contention (row d11) and the number of pending packets (row
d10) is higher.

Blackhole: Concerning the collect protocol, the blackhole
causes a higher number of parent changing events in the sparse
network due to the lower number of possible parents (rows d6
and d7). As Figure 6 shows, nodes that are not direct neighbors
of the blackhole (node IDs 1-6) exchange their parent ID with
the attacker. We also find that in an attack-free sparse network
there is a low number of dropped messages caused by queue
overload. A blackhole increases this count in a sparse network
by actively advertising routes very often (row d9). In addition,
a blackhole attack in a dense network provokes more message
dropping at certain nodes due to contention (row d8).

For the mesh network we make the following observations.
The number of contention drops is in general higher in a dense
network with high traffic and is therefore not a significant
metric for detecting blackhole attacks. However, an increase in
this contention dropping rate is significant in a sparse network
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TABLE III: Influence of the Traffic Intensity.

Row Metric Topology Network Density Attack p for Low Traffic p for High Traffic
i1 Too short pkts Collect Sparse Jamming p > 0.05 p < 6.7 ·10−4

i2 Contention drop Collect Sparse Jamming p > 0.05 p < 1.3 ·10−11

i3 Dropped pkts Collect Sparse Jamming p > 0.05 p < 2.2 ·10−16

i4 Contention drop Collect Sparse Blackhole p < 5.6 ·10−7 p > 0.05
i5 Dropped pkts Collect Sparse Blackhole p > 0.05 p < 2.2 ·10−16

i6 Contention drop Mesh Sparse Jamming p > 0.05 p < 6.9 ·10−5

i7 Pending pkts Mesh Dense Jamming p < 2.2 ·10−16 p > 0.05
i8 Contention drop Mesh Sparse Blackhole p > 0.05 p < 3.6 ·10−12

i9 Invalid CRC Mesh Sparse Blackhole p > 0.05 p < 4.7 ·10−5

i10 Listen time Mesh Dense Blackhole p > 0.05 p < 7.1 ·10−11

i11 MAC Sent pkts Mesh Dense Blackhole p > 0.05 p < 2.2 ·10−14

i12 Invalid CRC Mesh Dense Blackhole p > 0.05 p < 1.3 ·10−5

i13 Contention drop Mesh Dense Blackhole p < 6 ·10−5 p > 0.05

(row d15). In particular, we notice that the direct neighbor of
the attacker in the second testbed (node ID 6) has a highly
increased number of packets dropped due to contention. In a
sparse network, traffic is flowing to the blackhole over fewer
nodes, provoking an increased number of messages dropped
due to contention at the direct neighbors of the blackhole.
This behavior cannot be observed in the tree-structured collect
protocol and is weakened in a low traffic scenario, where the
corresponding metric is not significant in a sparse network,
as opposed to a dense network (row d12). Further, we note
that when a blackhole is active, the listen time for nodes on
the route to the blackhole is increased in a sparse network, as
more messages have to be transferred over those nodes (row
d13). Similarly, the number of sent packets on the MAC layer
is significantly reduced in a sparse network because messages
are not forwarded by the blackhole (row d14).

Influence of the Traffic Intensity Equal to the analysis of
the network density, in what follows we evaluate the impact
of the traffic intensity on the metrics. For an overview of the
results, please refer to Table III. Again, for significant metrics
we give the minimum p-value we calculated across all nodes
in both testbeds; otherwise p is greater than 0.05.
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Fig. 6: Comparison of the effects of a blackhole attack in a
low traffic collect WSN, depending on the density. The count
of parent changing events is shown for every node.

Jamming: Investigating the metric behavior in the collect
protocol, we remark three observations in a high traffic setting:
(1) there is higher packet dropping due to contention (row i2)
and (2) due to queue overload (row i3), and (3) the number
of too short messages is higher (row i1). Thus, the jamming
attack has a more severe negative effect on these three metrics,
since more messages flow through the network.

Correspondingly, also the mesh protocol exhibits a higher
packet dropping rate due to contention under high traffic (row
i6). Besides, with low traffic and under normal operation, no
pending packets are observed. A jamming attack increases the
number of pending messages (row i7). In a high traffic wireless
sensor network, this metric is not significant, as we also have
pending packets without attack.

Blackhole: Focussing on the collect protocol, a high traffic
results in more messages dropped due to queue overload (row
i5), since a higher count of messages has to be transferred over
fewer links. When the traffic is low, the number of messages
dropped due to contention is significantly increased during a
blackhole attack because of the malicious node blocking the
channel with its route announcements (row i4).

Again, we observe similar results in the mesh protocol. In
a high traffic setting, the number of packets dropped due to
contention (row i8) and the number of packets with bad CRC
checksum (row i9) is higher. This holds for nodes on the
route to the blackhole, which experience an increased traffic
flow. In contrast to the sparse network, the number of packets
dropped due to contention is not significant in a dense high
traffic WSN. Also without attack this number is relatively high,
as opposed to the low traffic WSN experiencing a significant
increase under a blackhole attack (row i13). Given high traffic,
the number of packets with bad CRC checksum (row i12)
and the count of sent packets on the MAC layer (row i11)
is higher when compared to the low traffic WSN. Besides, in
a high traffic WSN the listen time is reduced for nodes that
are exposed to the blackhole dropping packets, while with low
traffic there is no significant difference (row i10).

D. Discussion

Except for the metric dealing with too short packets, all
other metrics we tested are at least able to detect the jamming
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attack. The distinction capabilities in the case of a blackhole
attack are a little worse, as the metric classification exhibits.
The reason for these results is the different types of attacks.
Jamming targets the physical or low layer communication
medium, while the blackhole is an attack on the routing
algorithms at higher layers. Therefore, it is difficult to find
indications for a blackhole at the lower layers. One of the best
blackhole metrics in the collect network is the link estimation,
which measures the link quality to the neighbors with expected
transmissions to the sink as cost metric. Routing algorithms
make use of these values on higher layers. Therefore, the link
estimation provides information about network anomalies with
regard to manipulated values. For this reason, the metric might
also have detection capabilities for sinkholes and wormholes,
being also based on the same traffic attracting scheme.

The received packet rate on the MAC layer, counting all
received regular packets using the radio chip, is another metric
that can detect jamming attacks. The implemented attacker
uses regular packets for the jamming, which is the reason for
the highly increased values in the jamming scenarios. If a
jammer uses a random signal without any packet structure,
this metric might be unsuitable for jamming detection.

V. CONCLUSION AND FUTURE WORK

In this work, the effects of DoS attacks on 28 distinct
performance and network metrics in WSNs are studied in a
systematic way. We identify widely applicable metrics and
verify that they show a significantly different behavior under
attack when compared to the baseline operation. The local
metrics are able to detect jamming and blackhole attacks in a
lightweight and practical way, since they are easily obtained
without incurring too much overhead. Most of the metrics
are already calculated by the lower network layers. Hence,
it is possible to directly implement the intrusion detection
mechanisms in the operating system of the sensor nodes to
locally detect network anomalies.

We identify the packet delivery rate as a decisive metric
to distinguish between attacking and normal scenario. Other
highly significant metrics for jamming detection are the listen
time and the number of neighbors; both can detect the attack
on all nodes in the testbeds, and across all combinations of pa-
rameters. The effects of the blackhole attack are more locally
restricted, yet we find several highly significant metrics that are
able to detect the attack on selected nodes. Examples include
the number of sent/received data packets, the link estimation
of the best neighbor, and the radio energy consumption.

The analysis of the relationship between the analyzed met-
rics and important IDS metrics such as false-positive rates
and detection time is part of our future work. We also plan
to examine the combination of metrics. For example, the
detection capability of the transmit duty cycle metric is higher
in wireless sensor networks with high traffic. In contrast to
that, the listen duty cycle metric has a better distinction
capability in low traffic WSNs. Thus, the combination of these
two metrics might be a relevant metric as well. A logistic
regression can be applied to study such effects.

We focused on lightweight detection of two denial-of-
service attacks, however, our approach to identify the quality
of the metrics will also work to identify attacks other than
DoS, thus paving the way to practical lightweight IDS in
wireless sensor networks.
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