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Abstract—High accurate indoor localization and tracking of
smart phones is critical to pervasive applications. Most radio-
based solutions either exploit some error prone power-distance
models or require some labor-intensive process of site survey
to construct RSS fingerprint database. This study offers a new
perspective to exploit RSS readings by their contrast relationship
rather than absolute values, leading to three observations and
functions called turn verifying, room distinguishing and entrance
discovering. On this basis, we design WaP (WiFi-Assisted Particle
filter), an indoor localization and tracking system exploiting
particle filters to combine dead reckoning, RSS-based analyzing
and knowledge of floor plan together. All the prerequisites of WaP
are the floor plan and the coarse locations on which room the APs
reside. WaP prototype is realized on off-the-shelf smartphones
with limited particle number typically 400, and validated in a
college building covering 1362m2. Experiment results show that
WaP can achieve average localization error of 0.71m for 100
trajectories by 8 pedestrians.

I. INTRODUCTION

Indoor localization provides crucial services for mobile
and pervasive applications from advertisement promotion in
shopping mall to navigation during emergency rescue. Taken
along by users round-the-clock, mobile phones nowadays have
become the most important information interface between
users and environments, stimulating extensive research on
localization based on smartphones.

Besides exploiting properties observed from real traces
[1] [2], previous research on indoor localization systems can
generally be divided into two categories based on the nature
of measurements: (1) Pedestrian Dead Reckoning (PDR) based
on Inertial Measurement Units (IMU) and (2) Received Signal
Strength (RSS) as a metric for location determination.

PDR systems exploit the readings of off-the-shelf IMUs
embedded on smartphones, such as accelerometers, gyroscopes
and magnetometers to detect steps, calculate stride length
and determine heading direction. PDR localization precision
suffers from that small errors could be magnified by integration
[3]. The noise in low cost IMUs in commodity smartphones
will cause error in the process of numeric integration during
walking [4] [5]. And the unconscious human behavior, such
as hand trembling [6], will also create great change on the
readings of gyroscope, while the phone is held in hand. This
kind of readings introduces errors into indoor localization and
tracking, for it has nothing to do with human motion, so some
calibrations are needed, e.g, in turning phase [7].

RSS-based approaches can be further classified into two
categories: model-based and fingerprint-based. Model-based

techniques are error-prone mainly because the uncertain in-
fluences cannot be reflected in power-distance model, like
background interference, non-uniform spreading, signal fading
and reflections [8]. D. Turner et al. [9] investigated several
model-based techniques, reporting average error greater than
5 meters. Meanwhile, the accurate locations of APs are often
unable to get for privacy reasons and redeployment of APs.

Fingerprint-based systems [10] [11] include an off-line
training phase and an operating phase. Training phase aims
to build the RSS fingerprint database through site survey by
engineers. In operating phase, users interact with the finger-
print database to get their locations by sending his current
RSS fingerprint. To some extent, the accuracy of localization
depends on the density of site survey [12] [13]. And it exposes
the user’s location and trajectory to the database server, causing
some privacy issues. Site survey is not only labor intensive but
also vulnerable to environmental changes. Several researches
have been proposed to replace site survey by crowdsourcing,
exploiting PDR to get the location and RSS fingerprint [14]
[15].

To address above issues, we bring up this question: How
to combine these two approaches to realize localization and
tracking with high accuracy without exposing the trajectory?
Several new challenges are confronted under this question.
First, we need a new perspective to interpret RSS readings, for
model-based technologies are error-prone and the fingerprint-
based approaches suffer from privacy issues. Second, we need
new methods on how to apply RSS readings to address the
error accumulation problem of PDR. Last but not least, the
computation resources of smartphone are still limited, so the
components implemented in smartphones should be light-
weighted.

In this study, we propose WaP (WiFi-Assisted Particle
filter), an indoor localization and tracking approach exploiting
dead reckoning with the help of RSS readings. Inspired by our
previous study on RSS [16], we find that notable variety will
appear in RSS values during the motion of a pedestrian. This
offers us a new perspective to exploit RSS readings by their
contrast relationships rather than absolute values, concluding
in three observations of Turn Verifying, Room Distinguishing
and Entrance Discovering (details in Section III). WaP adopts
particle filter as its core to represent and control uncertainty in
dead reckoning. When applying these observations on RSS,
WaP corrects the accumulated error of dead reckoning to
achieve high accuracy. Meanwhile, WaP only needs several
hundred of particles typically 400 distributed in 1.2m radii
around the center location, which can be dealt efficiently with
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Fig. 1: WaP Architecture

commodity smartphones’ restricted resources of computation
and storage.

Without arduous site survey and deploying an extra server,
WaP works only on the smartphone itself under the knowledge
of the floor plan and the coarse knowledge in which room the
APs reside. The floor plan can be downloaded while entering
the target building. The coarse distributions of APs can be
supplied within the floor plan, or can be provided through
naming the APs according to their room numbers by users,
which is common in practice.

To validate this design, we implentment a prototype sys-
tem on Google Android G3 phones. Extensive experiments
are conducted in a middle-sized college building covering
1362m2. The average localization error of 100 trajectories by
8 pedestrians is 0.71m.

The major contributions are as follows:

• We identify a new perspective of applying RSS read-
ings by their contrast relationships rather than absolute
values, and exploit such observations into three func-
tions, i.e. Turn Verifying, Room Distinguishing and
Entrance Discovering.

• We design a practical scheme that requires limited
computation and storage resources and no interaction
with center servers. The preconditions of WaP are only
the floor plan and which room APs reside rather than
a RSS fingerprint database or exact locations of APs.

• The prototype of WaP is realized on Andriod smart-
phones, and is evaluated upon 100 trajectories by 8
pedestrians. WaP achieves average localization accu-
racy of 0.71m.

The rest of the paper is organized as follows. We present
the system overview of WaP in Section II. Section III illustrates
our new perspective on exploiting RSS readings and how these
observations can be utilized in WaP. The complete design
of WaP is showed in Section IV. Section V exhibits the
experiment result of WaP prototype. We conclude the work
in Section VI.

II. WAP OVERVIEW

This section presents the system architecture of WaP,
shown in Fig. 1. WaP takes the readings of WiFi sensor, inertial
sensors and magnetometer embedded on smartphone as input,
outputting the user’s location upon each step.

WaP contains three major components: PDR, WiFi and
Particle Filter (PF). Based on the accelerometer readings, PDR
component counts the steps of the user, and calculates the
stride length of each step. It also computes the heading direc-
tion of each step based on gyroscope and magnetometer read-
ings. Merging these, a < displacement, direction, time >
tuple forms the human motion vector, which will pass to PF
component. The realization details of PDR component are
based on our previous work [7], so we eliminate the details of
PDR due to page limit though there are slight improvements
in step counting and heading estimation.

WiFi component records RSS values periodically from
all available APs in the floor as a RSS vector of <
rss1, rss2, . . . , rssn, time > if n APs can be heard. WiFi
component has three functions, all of which are deduced from
that user motion will cause notable variety in RSS vectors.
Turn Verifying will judge whether the heading direction change
comes from user’s turning or other transient unconscious
behavior like hand trembling, which may mislead PDR due
to insufficient scanning of low cost inertial sensors. If the
latter happens, it will correct the heading direction. Room
Distinguishing focuses on the change of RSS vector. It informs
the PF component which room the user is entering by detecting
specific variety of elements in RSS vectors. Entrance Dis-
covering tries to discover a possible path when the estimated
position remains almost the same while particles keep dying
for a number of steps. Such three observations and functions
are described in Section III.

Particle filter represents and handles the uncertainty of
PDR, leveraging the constraints imposed by the floor plan
and the indication of the WiFi component. PF component
redistributes every particle according to the motion vector from
PF component in propagation phase. Then the correcting phase
first correct the weight of each particle according to the floor
plan and calculate the weighted center of the particles. Upon
the geometric relationship between the new center and last
tracking position, PF component invoke Turn Verifying, Room
Distinguishing and Entrance Discovering of WiFi component
to farther correct the particle weights. The resampling phase
follows and outputs the center of weighted particles as the
current estimated location of the pedestrian. The details of PF
component will be described in Section IV. The sampling rate
of WiFi sensors is much lower than that of inertial sensors, so
WiFi component employs the RSS vector which is the nearest
to a certain motion vector in time series.

III. OBSERVATIONS

Model-based RSS localization techniques are error-prone
and require the exact locations of APs. Besides, fingerprint-
based RSS localization needs site survey or crowd sourcing
to construct fingerprint database, which is not only labor-
intensive but time-consuming. Even the AP redeployment in
the same room would make the database lose efficacy. So a new
perspective to apply RSS readings is nontrivial. We describe
our observations and corresponding methods to exploit RSS
readings in this section, only needing to know which room the
APs reside in. This kind of coarse locations can be directly
provided by naming the APs after the room number.

Our perspective is to exploit RSS readings by their contrast
relationship rather than absolute values, coming from our

211
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 17:15:11 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

Fig. 2: Observation of RSS variety while motion (a) trajectory (b) RSS values

Fig. 3: Trace on Turn Verifying with RSS Direction: (a)hand
trembling (b)readings of gyroscope (c) intentional turn

previous RSS study [16]. We observe notable varieties in RSS
vectors during human motion process, shown in Fig. 2. When
walking from point A to B, Fig. 2(b) shows the pattern that
the closer a pedestrian walks to an AP, the higher RSS values
the mobile phone reads.

This observation is leveraged into three detailed circum-
stances, to judge whether an intentional turn appears or just
some unconscious trembling behavior happens in motion, to
distinguish which room the pedestrian enters, and to amend
from the dead end to nearby entrance of a certain room. We
call them Turn Verifying, Room Distinguishing and Entrance
Discovering respectively, elaborating them in the following.

A. Turn Verifying

When a pedestrian walks, unconscious human behaviors,
such as hand trembling, will cause great change on the readings
of direction sensors. Figure 3 shows a walking scenario that
the pedestrian walks along the corridor from left to right.
There is an unconscious trembling at the current step. The
readings of gyroscope are shown in Fig. 3(b), including a
considerable fluctuation. Counting such fluctuation into di-
rection integration, an offset of heading occurs, and PDR
component creates the motion vector indicating the pedestrian
arrives at the shadow location in Fig. 3(a). If such wrong
estimation is not corrected, huge localization errors will appear
through accumulation, which will be demonstrated in one real
trajectory in evaluation section.

When examining RSS vectors between continuous steps,

Algorithm 1: verifyTurn(tc, tp1, tp2)
Input: tc, tp1, tp2
//tc, tp1, tp2: current and last two steps’ times
Output: HeadingDirection
1 v1 = CalculateRSSDirection(tc, tp1);
2 v2 = CalculateRSSDirection(tc, tp2);
3 ω = arccos(v1 · v2)/(|v1| · |v2|);
4 if ω ∈ (π/4, 3π/4) then
5 //trembling threshold= π/4;
6 return HeadingDirection on tp1;
7 end
8 else
9 return HeadingDirection on tc;

10 end

Algorithm 2: CalculateRSSDirection(tc, tp)
Input: tc, tp
//tp:current and previous steps’ times
Output: RSS Direction

1 for each rss in RSS vector do
2 if rsstc(i) − rsstp(i) > 0 then
3 add APi to SetI ;
4 end
5 else
6 add APi to SetD;
7 end
8 end
9 if SetI 6= φ && SetD 6= φ then

10 pI = CalculateGeometricCenter(SetI);
11 pD = CalculateGeometricCenter(SetD);
12 return pI − pD;
13 end
14 else
15 return null;
16 end

we find the key to distinguish pedestrian turning from hand
trembling. We classify the APs into two sets according to
whether the RSS value increases or decreases between consec-
utive RSS vectors. So APs are differentiated into the increasing
set (SetI ) and the decreasing set (SetD) shown in yellow
(right) and blue (left) separately in Fig. 3. Because WaP does
not have exact locations of APs, we paint the rooms they
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(a) (b) (c) (d) (e)

Fig. 4: Trace and process on Room Distinguishing (a) trajectory (b) RSS readings (c) before handling (d) after handling (e) after
a few more steps

residing. Assuming that each AP resides in the center of their
rooms, the geometric centers of SetI and SetD can be deduced
as two points in Fig. 3 with an arrow linked each other. We
call the direction of this segment as RSS Direction of the
current step.

RSS Direction is used as an index to confirm whether a
turn happens. If the angle of two consecutive RSS Directions
is higher than a threshold defined beforehand, WaP affirms the
turn behavior; otherwise, WaP replaces the heading direction
with the one from previous step. Because if no turn exists in
motion, there will be no obvious change on RSS Direction,
shown as the arrow above the pedestrian’s head in Fig. 3(a).
Algorithm verifyTurn is illustrated as Algorithm 1 and 2,
which is invoked by PF component when a turn is found
according to inertial sensors’ readings. When an intentional
turn is conducted, a remarkable change on RSS Direction
will appear, because elements in both SetI and SetD will
change due to the change of receiving position and the block of
human body. Hence, the new RSS Direction from the current
geometric center of SetD to that of SetI changes considerably,
as the arrows shown in Fig. 3(c), calculated from the trace data
containing a real turn.

B. Room Distinguishing

When a user is entering a room, we find a clear tendency
in the change of RSS vectors. Figure 4(a) demonstrates a walk
trace, in which a pedestrian starts from point A after standing
still for 5 seconds, enters the room R1 where AP1 resides
and goes to point B. Figure 4(b) reveals the RSS readings
from AP1 and AP2 during the walking process with sampling
frequency of 4 Hz. The increase of RSS from AP1 is larger
than that from AP2, especially after entering R1, shown in red
color. In such scenario, the RSS readings of AP1 will be the
highest in the RSS vector. And the maximal change in RSS
readings among successive steps will be from AP1 as well.
These two conditions give us the hint to distinguish which
room is entered, agreed with all the traces. We quantify the
conditions of room entering in Algorithm 3.

This observation helps distinguishing which room the
pedestrian enters, when two doors are close to each other as
the scenario shown in Fig. 4 (c)-(e). If the user is localized
in the adjacent room, it will arise problems for context-aware
applications and even fail the PDR systems in further steps.
We discuss this example here and a typical trace containing
such scenario in evaluation section.

As the distance between the doors of R1 and R2 is only
0.8m, we find in Fig. 4(c) that plenty of particles enter R2

Algorithm 3: distinguishRoom(tc, tp)

Input: tc, tp
//tc, tp :current and previous steps’ times
Output: RoomNumber
1 j1 = argmax

i
(RSStc(i));

2 j2 = argmax
i

(RSStc(i) −RSStp(i));

3 if j1 == j2 then
4 return RoomNumber where APj1 resides;
5 end
6 else
7 return null;
8 end

Algorithm 4: handleRoomDistinguishing()
//recalculate weights

Input: RSS, F loorplan,CurrentRoom r
Output: null
1 find the wall of r, spliting Pt into Set1 and Set2;
2 RSSi(1) = rss measured from Set1’s nearest AP;
3 RSSi(2) = rss measured from Set2’s nearest AP;
4 for each particle in Set1 do
5 wi =

(90+RSSi(1))
180+RSSi(1)+RSSi(2)

∗ wi;
6 end
7 for each particle in Set2 do
8 wi =

(90+RSSi(2))
180+RSSi(1)+RSSi(2)

∗ wi;
9 end

because of the accumulated error of PDR. If the location is es-
timated based on this distribution of particles, the smartphone
will believe the user enters R2, shown as the dark point. This
is why WaP needs Room Distinguishing, which will correct
the weights of the particles through Algorithm 4.

Algorithm 3 and 4 will be invoked by PF component in the
correcting phase on finding a room-enter motion. After that, PF
component will resample all the particles as distributed in Fig.
4(d). After further steps the particles will be distributed like
Fig. 4(e), calibrating the weighted average location of particles
to the reasonable position. Algorithm 4 uses 90 to compensate
for the low bound of RSS measurements, which is −90db.

C. Entrance Discovering

In order to save the computation and storage resource
on smartphone, the number of particles is limited to several
hundred typically 400 in WaP, distributed under Gaussian

213
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 17:15:11 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

Fig. 5: Process on Entrance Discovering (a) before (b) dead
end affirming (c) after

distribution within the radius of 1.2m which is half of a
common corridor width. There may exist some odd situation
that the steps of a pedestrian continue counting, but the
estimated position keeps almost the same while particles dying.
Figure 5(a) shows such scenario that a pedestrian enters a
room while the particles keep dying with the estimated position
against the wall and no particle is resampled in the room.

This kind of scenario may happen because of PDR errors
and the limit particle distribution which cannot cover the right
path. However, it is hard to tell by inertial sensors whether
the pedestrian is colliding against the wall or PDR errors
accumulate. Again the key to alleviate such dilemma lies in
RSS vectors. If there are continuous changes on readings from
some APs, WaP takes it for granted that the pedestrian is not
running into a wall but is on a moving trajectory, as shown in
Fig. 5(b).

WaP chooses three steps as a reasonable threshold. After
finding that the estimated position keeps almost the same, PF
component invokes discoverEntrance in Algorithm 5. It first
find the AP of most RSS variety during these three steps. Then
it queries the floor map to locate the nearest room entrance
between the founded AP and current estimated position. A
new particle will be created with weight 1, and positioned upon
this entrance center plus three motion vectors of the last three
steps. All other particles will be eliminated. It may somehow
find the wrong room due to the uncertain influence on wireless
signals. WaP can further correct such wrong choice through
Room Distinguishing after further steps. The pedestrian will be
localized to the position with higher accuracy after resampling
phase of PF component, shown in Fig. 5(c).

IV. WIFI-ASSISTED PARTICLE FILTER

PF component receives the motion vector from PDR com-
ponent. As the core of WaP, PF component drives particle filter
and interacts with WiFi component, and outputs localization
result. It starts with a set of weighted particles:

Pt = {< pit, w
i
t >}, i = 1, · · · , N

pit = (xit, y
i
t, θt)

Algorithm 5: discoverEntrance()
Input: estPosi, estPosi−1, estPosi−2, estPosi−3,
thrd,RSSt, {li}, {ϕi}
//{li}: step lengths, {ϕi}: step directions, thrd: threadhold
Output: Pt

1 if distance(||estPosi − estPosi−1||) < thrd then
2 if distance(||estPosi−1− estPosi−2||) < thrd &&

distance(||estPosi−2 − estPosi−3||) < thrd then
3 j = argmax

i
(RSSt(i)−RSSt−3(i));

4 (x, y) =center of the entrance of the Room
(APj) resides;

5 x1t = x+
∑2

n=0 li−n(cos(ϕi−n));

6 y1t = y +
∑2

n=0 li−n(sin(ϕi−n));
7 w1

t = 1;
8 p1t = (x1t , y

1
t , ϕt);

9 Pt = {(p1t , w1
t )};

10 return Pt

11 end
12 return Pt

13 end

where pit is the estimated position with weight wi
t of the

ithparticle at step t. N is the number of particles. Iteratively,
the new set Pt is generated from Pt−1 through three phases
as following:

Particle propagation: This phase updates positions for
each particle. Both stride length lt and heading orientation
θt are passed by PF component and assumed to interfere by
zero-mean Gaussian random noises. Hence the new location
and heading orientation of the ith particle at step t are

θt = ϕt + ε

xit = xit−1 + (lt + δ)cos(θt)

yit = yit−1 + (lt + δ)sin(θt)

where δ and ε are zero-mean Gaussian noises for stride
length and heading orientation respectively.

Particle correction: This phase is responsible to correct
the weights of propagated particles. First, under the constraint
of the floor plan, if the particle moves across a wall during the
propagation, it will be given wt = 0. On the contrary, longer
surviving time (number of steps), higher probabilities are the
particles besides the true location. So the weights are further
updated as:

wi
t =

wi
t−1∑

i∈Pt
wi

t−1

Then the wighted center of all particles are calculated and
compared to the previous estimated positions. PF component
will interact with WiFi component on particular conditions. If
a turn is found, PF component will invoke Turn Verifying. If
Turn Verifying denies the current turn and changes the heading
direction back to the one from last step, PF component will
cancel current position update and redo the propagation phase.
Upon case of room entering, Room Distinguishing will be
invoked. When the estimation position stays still for three steps
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Fig. 6: Floor plan and AP distribution

by some wall, Entrance Discovery will be called. All these
functions help in correcting the particle weights.

Resampling: This phase first delete the particles with
weight 0. And all surviving particles will generate new ones
distributed under Gaussian distributions according to their
weights. The weighted center of all particles will be calculated
again and outputted as the estimated position of current step.

V. EVALUATION

We develop the prototype on Google G3 phones, which
support WiFi and inertial sensors and magnetometer. The sam-
pling frequency of inertial sensors can achieve about 100Hz on
this type of smartphone, and we set it at 40Hz in order to save
resources. The sampling frequency of WiFi sensor is much
lower, which is approximately 4Hz. Experiments are conducted
on one floor of the campus building covering 1362m2, as
shown in Fig. 6. 19 APs are deployed in this floor, one for
each office room and 4 in the large laboratory. Room R17 is a
storage room without any AP. As no site survey is organized
to obtain the exact deployment of APs, WaP only has the
knowledge that which room APs reside in and thereby assumes
the room center as AP location.

Holding smartphones in hand during the experiments, 8
volunteers (4 females and 4 males) collect 100 trajectories.
We first illustrate the performance of WaP on a long trajectory,
which contains occurrences of Turn Verifying, Room Distin-
guishing and Entrance Discovering. The result is compared to
the scheme without WiFi component i.e. PDR+PF. We then
analyze the error distribution of all traces on the impact of AP
number, comparing to Horus [11], a fingerprint-based system.
Next, an offline analysis on particle number and distribution
is conducted to affirm the computation-saving feature of WaP,
compared to the system in [5], which exploits PDR and particle
filter without WiFi signals.

A. Performance of WaP

To confirm the validity of WaP, a long complex trajectory,
shown in Fig. 7, is designed, and the trajectory is labeled in
alphabetical order according to the walking sequence, starting
from point A and ending at point Q. Note that at point N, a
hand trembling is arranged to demonstrate the function of Turn
Verifying. Following the route sketched in Fig.7, localization
and tracking results with PDR+PF and with WaP are presented
in Fig. 8 (a) and Fig. 8 (b) respectively, in which the trajectory
starts from the triangle icon and ends at the star icon.

Fig. 7: Ground truth

Figure 8 (a) shows the localization and tracking result only
with components of PDR and PF. There are two areas, pointed
by red arrows, where critical errors for tracking happen, which
makes the final estimated location unacceptably far from that
in ground truth. In the area pointed by red arrow 1, the ground
truth trajectory is that the pedestrian enters the room labeled
R8, turns backwards and walks out. While most particles move
past the door of R8 and enter R9 owing to limited number of
particles, restricted distribution radii and some accumulated
error on distance calculation in PDR. Hence the pedestrian is
located in room R9, which needs to be corrected by Room
Distinguishing of WiFi component. The area pointed by red
arrow 2 is where the hand trembling is arranged. The system
determines that a turn is made there due to unreliable readings
of the gyroscope. As there is no Turn Verifying, a turn has
been made in Fig. 8(a), eventually leading to great returning
error.

Figure 8 (b) shows the localization and tracking result
of WaP, which is better than that without WiFi component.
Room Distinguishing is evoked and finds R8 pointed by blue
arrow 1, where biggest RSS reading changes happen for its
corresponding AP. The weights of particles residing in R8

will increase, then the pedestrian will be located to R8 after
particles resampling. The circle linked by the arrow represents
the result of Room Distinguishing in Fig. 8(b). After that,
further steps of the pedestrian is tracking correctly in room
R8.

At the area pointed by blue arrow 2, when the results of
PDR indicate that a turn happens, Turn Verify function of
WiFi component begins and compares the RSS Direction of
current step to previous step. As there is no obvious change on
RSS Directions i.e. the angle between two RSS Directions
is smaller than the threshold, Turn Verify function will change
the heading direction to the one of previous step.

After finding that the estimated position keeps the same
against the wall for three times, Entrance Discover function
begins at the area pointed by blue arrow 3. It first checks
whether the RSS vector changes continuously in these steps.
For the scenario here, the RSS readings from the AP in R2

see a continuously upward trend, and the AP that has the
maximum reading variety is also in R2. Then the nearest
entrance between the estimated location and R2, will be looked
up in the floor plan. Entrance Discover function thereby set all
particles with zero weight, create a new particle with weight 1
at the center of the door of R2, and plus previous motion
vectors, shown as the three circles. Finally the estimated
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(a) (b)

Fig. 8: Performance of WaP on a long trajectory (a) PDR+PF (b) WaP

position arrives at the end point only 0.9m away from the
ground truth end.

B. Performance vs. AP Number

In order to further evaluate the performance of WaP, we cut
down on the use of APs, setting the number 5, 10 and 15. We
compare the localization results to Horus [11], a fingerprint-
based approach without exploiting inertial sensor. We carry out
site survey for the RSS fingerprint database of Horus with a
sampling density of 2m beforehand.

Though we have 19 APs on the whole floor, there are only
15 AP-installed rooms in Fig. 6. WaP does not survey the exact
position of each AP, so utilizing all four APs in room R1 does
not help much on performance of WaP. So we only choose one
AP from room R1 and every AP from all the other 14 rooms
for the experiment with 15 APs. For 10 APs, we choose the
APs residing in room R1, R2, R3, R6, R8, R9, R12, R14, R15

and R16. And the APs residing in room R1, R5, R8, R12 and
R16 are employed in the 5-AP experiment.

As it is too toilsome to survey the ground truth of each
step, we examine the distance between the tracking position
and the room entrance center on the time when pedestrians
walking through the entrances. Every pedestrian is asked to
walk through the entrances on the center beforehand. The
tracking end position is also compared to the end of the ground
truth. These differences are regarded as the localization error,
used in this and next subsection.

100 trajectories by 8 pedestrians are used to construct
localization error CDF in Fig. 9. It reveals that above 86%
localization error distribution is below one meter of WaP
for 15APs, however Horus needs over 2m to satisfy 86%
of localization error distribution. As for 10-AP and 5-AP
situations, performance of WaP to a large extent surpasses
that of Horus. Besides, Horus is more vulnerable to the
decrease of AP number: the errors upon 5 and 10 APs increase
dramatically than 15 APs and even worse than WaP with 5
APs.

The average and standard deviation of localization error
are described in Table 1. It shows the localization precision of
WaP is about 100% better than Horus for all three scenarios.
And the performance of WaP is also above 40% more stable
than Horus with AP number of 5 and 10, and 120% with 15,
respectively, confirming the localization stability. It should be

emphasized that WaP achieves that without any training effort,
a.k.a. onerous site survey.

C. Performance vs. Resource Cost

Although location accuracy can be theoretically boosted by
using more particles, the computation and storage cost of PF
is proportion to the number of particles, leading to a trade-off
between localization accuracy and utilization of smartphone
resources.

In order to gain insight into such compromise, we conduct
offline analysis on the trace data of 100 trajectories. The
different choices of particle numbers are 100, 400, 1000,
4000 and 10000, respectively; and the choices of distribution
radius are 1.2, 1.8, 2.4 and 3 meters, respectively. Therefore
20 combinations of particle number and distribution radius
are adopted. WaP is compared with one adaptive approach
proposed in [5], which exploits PDR and particle filter, without
applying indoor WiFi signals.

Figure 10(a) shows localization error distribution of the
approach in [5] under the above 20 combinations. The location
error is among [104cm, 350cm] for all combinations shown in
the color bar. The minimum occurs at 10000 particles with
distribution radius 3m, while the maximum occurs at 400
with 3m. It also shows that for different particle numbers,
the minimum location error exists with different distribution
radius. For example, the minimum for 400 particles is 1.9m
with radius 1.2m. This reflects that the density and coverage
of particles affect localization precision, also existing in WaP.

For WaP, Fig. 10(b) shows the maximum location error is
1.18m under the composition of 100 articles with distribution
radius 1.2, which is below the results for most combinations
in Fig. 10(a). And the minimum happens at 10000 particles
with distribution radius 3.0m, which is 0.31m. But for all the
other combinations, the location error is above 0.6m. For 400
particles, the minimum average location error is of 0.7m under
the sub-meter level. Actually it is challenging for a smartphone

TABLE I: Localization error comparison: WaP vs. Horus

#AP WaP Horus
Ave.(m) S.D. Ave.(m) S.D.

15 0.71 0.57 1.56 0.81
10 1.92 1.04 3.94 1.49
5 3.42 1.32 6.63 2.80

216
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 17:15:11 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9: Localization error CDF on different AP number,
comparing WaP to Horus

itself to handle too many particles in real time without the aid
of an extra server. Considering the computation and storage
resources on mobile phone, and the radius of the human body,
WaP chooses such combination for common use as in all above
experiments. It indicates that WaP can perform satisfactorily
even though restricted resources are used.

VI. CONCLUSION

This work proposes a novel approach, WaP, for indoor
localization and tracking. WaP explores a new perspective on
how to apply RSS readings by their contrast relationship rather
than absolute values. WaP exploits particle filter as the bridge
to integrate dead reckoning, RSS-based motion correcting and
knowledge of floor map. WaP only needs the prerequisite
of the floor plan with the coarse knowledge in which room
APs reside rather than the exact locations. Performance of the
prototype suggests WaP is a light-weighted and unconventional
approach for indoor localization and tracking, motivating us
to discover and utilize novel potential indicators under indoor
environments.
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