
Evaluating CoDel, PIE, and HRED AQM

Techniques with Load Transients

Ilpo Järvinen and Markku Kojo

Department of Computer Science

University of Helsinki

Email: ilpo.jarvinen@helsinki.fi, markku.kojo@cs.helsinki.fi

Abstract—In the past, networks have been mainly optimized
for good system throughput but recently achieving low delay has
also gained notable traction. Active Queue Management (AQM)
has long been recognized necessary for operating Internet routers
with shorter standing queues but only limited deployment has
occurred. The recent interest in AQM has resulted in new AQM
proposals. In this paper we evaluate CoDel (Controlled Delay)
and PIE (Proportional Integral controller Enhanced), both being
new AQM proposals, and compare the performance against an
aggressive RED (Random Early Detection) variant called HRED
(Harsh RED). We focus on AQM behavior during load transients
typically occurring at the network edge with the common traffic
types of today such as Web transactions. We discover that CoDel
auto-tuning does not scale well with the load. With the high-end
delays experienced, HRED is better than PIE and CoDel when
more than a few simultaneous flows share the bottleneck.

Index Terms—Active Queue Management (AQM); TCP; Slow
start; Queuing delay

I. INTRODUCTION

Traffic in the Internet of today differs significantly from

that of the early Internet. A significant portion of the user-

generated traffic is short transfers, for example, Web traffic.

Also Web traffic has evolved as the pages have grown in

complexity. In order to minimize page download latencies,

Web browsers typically allow multiple Web objects to be

transferred in parallel but only up to a limit per host or

domain [8], [44]. Many Web sites are not satisfied with the

latency offered by this off-the-shelf parallelism and resort to

a technique called domain sharding in which the Web site

artificially inflates the number of hostnames that are used

within a single site. Therefore, a Web transaction may consist

of a rather large number of parallel object transfers overlapping

to various degree.

Transmission Control Protocol (TCP) [40] which acts as

the workhorse for a large portion of the Internet traffic,

Web traffic included, has been specified decades ago. TCP

implements congestion control function [24], [5] that controls

how fast data can be injected into the network. It has two

major operating modes: slow start and congestion avoidance.

Initially, slow start was intended to only transit a TCP flow

into equilibrium where from congestion avoidance takes over

and continues [24]. However, the current way of using TCP

with short transfers has entirely reversed the situation. As

typical traffic patterns include many parallel TCP flows each

performing slow start, this tends to generate load transients

to the network and the flows often even complete before it

is possible to reach the equilibrium. Timescale of such load

transient is very short, typically from milliseconds to a few

seconds depending on the end-to-end path capacity and round-

trip time.

Optimizing networks for high throughput has led to an

increase in buffer sizes of various network devices because

memory capacity has increased together with lower cost as-

sociated with larger buffers. In general, for high throughput

a larger buffer is better. TCP congestion control continuously

drives the network to drop packets after which it backs off and

then the process repeats. This TCP probing combined with

large, simple FIFO buffers leads to a significant buffer build-

up called bufferbloat [16] because drops occur only when the

buffer becomes full. The buffer build-up then is visible to all

flows sharing the same queue as increasing queuing delay.

However, simply making buffers small to optimize for delay

is not enough as the buffers also serve an important role

in absorbing short-term bursts. Therefore, buffering is often

considered harmful only when a standing queue forms.

Often only a trivial queue management using FIFO/drop-

tail principles is applied to the buffers in network devices,

disregarding any advice on implementing Active Queue Man-

agement (AQM) [7]. The purpose of AQM is to enable an

Internet router to inform the senders that they need to reduce

sending rate before the buffer becomes full, allowing routers to

maintain small queues and avoid bufferbloat. The awareness of

widespread bufferbloat has recently increased interest in AQM

again and resulted in a few new AQM proposals in addition

to the traditional AQM techniques such as Random Early

Detection (RED) [14]. CoDel (Controlled Delay) [33], [35]

and PIE (Proportional Integral controller Enhanced) [36], [37]

represent such new state-of-the-art AQM algorithms. Recently

also IETF has formed a new AQM working group [1] to focus

on better algorithms for managing queues.

In this paper, we perform a simulation study to evaluate

how well CoDel and PIE manage load transients as we sus-

pected there would be potential shortcomings in that area. For

comparison we use HRED (Harsh RED) [26] which we built

earlier on top of RED. Our study significantly differs from

earlier studies on PIE and CoDel performance [28], [46], [47],

[17], [18], as we focus on very short-term transient effects

39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 159
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

that are typical with the traffic patterns of today and do not

introduce long-running TCP flows at all. The dynamics during

load transients have in general received too little attention in

AQM research, whereas steady-state behavior is much better

covered. The load transients introduced by series of short

transfers tend to generate delay spikes that co-existing real-

time traffic, such as interactive audio, video, or gaming traffic,

sharing the same bottleneck easily experiences as distortions

in media quality and lag. In addition, the metrics used in the

earlier studies often summarize the results in such a way that

transient behavior becomes totally invisible. Our simulation

results confirm our suspicions as neither CoDel nor PIE really

handles load transients well, and HRED outperforms both

in the load transient handling. We also experimented with

SFQ CoDel that is a combination of Stochastic Fair Queuing

(SFQ) [30] and a CoDel-enabled queue for each SFQ bucket,

as it is recommended that CoDel is deployed with multiple

queues instead of a single-queue CoDel only [35]. While the

results with SFQ CoDel are more promising than with the

single-queue CoDel, there are issues in deploying multiple

queues with AQM and also some room for improvement with

it.

The rest of the paper is organized as follows. In Section II

we discuss the related work. Section III introduces the AQM

proposals we study and Section IV describes the simulation

arrangements. In Section V we present the results, and we

continue by discussing additional thoughts on AQM in Sec-

tion VI. Finally we conclude the paper in Section VII.

II. RELATED WORK

Bufferbloat and its problems are described in [16]. Existence

of bufferbloat with particular wireless link technologies was

measured in [27], [22]. The recent measurements in [3] used

peer-to-peer traffic as a vessel to probe the network conditions

experienced by a large number of Internet hosts in order

to estimate bufferbloat, and the existence of bufferbloat was

questioned. However, the use of peer-to-peer flows likely

distorts the results significantly because the peer-to-peer traffic

is mostly autonomous machine-to-machine traffic whose la-

tency is largely irrelevant. Because the amount of peer-to-peer

traffic easily becomes much larger than that of user generated

counterpart, it is expected to dominate the result data over the

typical user generated traffic. Therefore, any statistical analysis

over a full set of packets diminishes the interesting portion of

traffic to the invisible upper-end of the cumulative distribution.

In addition, the peer-to-peer traffic TCP flows are likely to

spend most of the time in the TCP congestion avoidance mode,

whereas user generated TCP flows such as Web traffic spend

a significant portion of their lifetime in TCP slow start.

In [28] the authors experimented with CoDel, PIE, Adap-

tive RED (ARED) [12], and a limited set of tests with

FQ CoDel [20]. Both wired and WLAN network setups were

used with a varying number of long-running TCP flows. The

main conclusion was that also ARED performs reasonably

well, or even better than PIE and CoDel. However, with a very

low number of TCP flows the goodput with ARED was lower

compared to PIE and CoDel because of the bottleneck link

under-utilization. PIE performed better than CoDel or ARED

when the channel access latency in WLAN was a significant

factor.

CableLabs has carried out a simulator-based study [46],

[47], [48] on performance of CoDel, CoDel-DT, SFQ CoDel,

PIE, and SFQ PIE in order to support the selection of the

default AQM to be implemented in Data Over Cable Service

Interface Specification (DOCSIS) 3.1 [9] conforming cable

modems. Various combinations of Voice-over-IP (VoIP), Web,

Constant Bit Rate (CBR), and FTP traffic were tested. TCP

congestion control variants under experimentation included

Cubic [19], [42], TCP Reno, and low priority LEDBAT [43].

Both CoDel and PIE were shown to provide good or very

good latency. In most cases PIE outperformed CoDel. DOC-

SIS 3.1 choose to not mandate fair queueing due to added

implementation complexity [48].

A simulation study on PIE, CoDel, ARED, and FIFO is

conducted in [18]. The traffic workload is a mixture of long-

lived TCP flows, Web, video streaming, and VoIP traffic. AQM

was found to reduce latency at the cost of increase in packet

loss rate. CoDel was found to be the most aggressive AQM,

whereas PIE performed the best. Unfortunately, the metrics

used do not highlight the worst-case delays, and the load itself

is not very volatile because of the long-lived TCP flows.

Low priority TCP traffic is tested together with AQM

in [17]. The main conclusion was that the use of AQM makes

low priority TCP variants to become elevated in priority equal

to normal flows.

Data-Center TCP (DCTCP) [2] is another new proposal to

address bufferbloat. DCTCP is a combination of AQM, end-

host TCP modifications, and enabling Explicit Congestion No-

tification (ECN) [41] to signal congestion. It tries to leverage

existing RED deployment for the AQM by configuring RED

to a degenerated mode where RED “average queue” tracks

instantaneous queue without any averaging. DCTCP AQM

then becomes simply a step function where ECN is used to

signal if the queue is above a configurable threshold. Because

a large number of ECN marked packets are triggered when

the queue exceeds the threshold, the end host compensates

for it depending on the severity of the detected congestion.

Therefore, DCTCP may back off less on congestion than a

traditional TCP would. Less dramatic backoff allows operating

shorter queue lengths without under-utilizing the bottleneck

on backoff but also introduces danger of unfairness compared

with the traditional TCP. In addition to potential fairness prob-

lems, DCTCP deployment is challenging because of required

changes both to end hosts and routers. Therefore it is different

from AQM only solutions such as RED, CoDel, or PIE.

III. ACTIVE QUEUE MANAGEMENT

Using Active Queue Management (AQM) has been recom-

mended over a decade ago [7] but only limited deployment has

taken place even though many routers come with RED [14]

capability, but it is off by default. The recently introduced

160
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

new AQM proposals, CoDel and PIE have also been actively

pushed to deployment.

CoDel design goals introduce the notion of “good queue”

and “bad queue”, and CoDel aims to solve the latter one which

is considered to be a persistently full buffer. CoDel monitors

the queuing delay of packets in the router and starts reacting if

the measured queuing delay is above a target delay (5 msecs

by default). CoDel discerns good queue from bad queue by

delaying response to delay growth by a configurable interval

(100 msecs by default) after it first detects queuing delay above

target. Once CoDel enters to the dropping state it maintains a

count that is increased by one after every drop. CoDel auto-

tunes the dropping distance by dividing the interval by square

root of the count. The next drop is scheduled to occur when

the current time is past the dropping distance. As such, there

is no random dropping in CoDel. The drops are recommended

to be performed from the head of the queue in order to reduce

the feedback delay to the sender. When the delay falls below

target, CoDel leaves the dropping state. If dropping state was

recently used when re-entering the dropping state, a recall for

the count is performed immediately instead of starting from

scratch. Multiple variants exist for formula that is used to

determine the actual value of count when the recall occurs.

In all fairness, those advocating CoDel admit that CoDel

is not expected to be effective during TCP slow start [45].

The problems with slow start are circumvented by introducing

flow isolation with some variant of fair queuing. Therefore,

CoDel is recommended to be deployed with a variant of SFQ

called Flow Queuing CoDel (FQ CoDel) [20]. FQ CoDel

implements the shortest queue first optimization [6] for the

flows that do not build a queue. As such, FQ CoDel is not

equal to SFQ CoDel but closely related. We believe, however,

that enabling any variant of fair queuing may not be practical

with many link technologies at least within the near future

because the interface to many lower-layer technologies lacks

necessary support. Therefore, FQ CoDel may fail to control

the queues efficiently because of a non-cooperative link layer

with hidden buffering [29]. Even if the lower layer is able

to cooperate, there may be a number of queues at the link

layer which need a fair queue enabled CoDel each, leading

to increased complexity with an excessive number of queues.

There are already real-world examples for not favoring multi-

queue AQM over single-queue because of complexity. For

example, with cable modems having typically 16 or 32 link-

layer service classes, it was concluded that even with small

number of queues such as 32 (i.e., 16/32 service classes times

32 queues in total) the performance increase with multi-queue

AQM is insufficient to justify the increase in implementation

complexity [48]. Obviously the recommended default of 1024

FQ CoDel queues [20] per service class would be even more

unrealistic to be implemented on such hardware. Therefore,

we consider single queue AQM testing very important to

give insights on how AQM behaves when fair queuing is not

practical to deploy. We also believe that FQ CoDel simply

hides undesirable shortcomings by making them infrequent

instead of offering a proper solution.

PIE is based on Proportional Integral controller (PI) [21].

With PI, not only current delay is used to control the drop

probability but also the delay trend is considered. PIE provides

a solution to determine current delay (delaycurr) without per

packet calculation and adds burst allowance to avoid drops

with short-term bursts. PIE maintains estimate for departure

rate. When there are more than departure rate threshold

(dq threshold) packets in the queue, a measurement cycle is

started which ends once threshold number of packets have

been transmitted. At the end of the cycle, the departure rate is

calculated by dividing the amount of data transmitted by the

elapsed time. The average departure rate is then calculated us-

ing exponentially weighted moving average. A periodic timer

with tUpdate interval is used to update the drop probability p:

delaycurr =
queuelength

departurerateaverage

p = p+α ·(delaycurr−delayref)+β ·(delaycurr−delayold)

The calculated drop probability p is used on arriving pack-

ets. Reference delay delayref is the target delay for PIE. The

α and β determine how much a deviation from reference delay

and delay trend affect the drop probability, respectively. PIE

auto-tunes α and β based on drop probability to scale the

response timescale. PIE also implements burst allowance; if a

short-term burst occurs, no random dropping is performed as

long as there is burst allowance quota remaining. The quota is

reduced whenever a departure rate measurement is successful.

If the delay is below the reference delay, the burst allowance

quota is reset to max burst.

HRED [26] is an aggressive RED variant that is designed

TCP slow start in mind. The recommended RED parametriza-

tion [13] is not useful with load transients. Adaptive RED

(ARED) [12], [15] is also likely to be too slow to respond

resulting in similar behavior as with regular RED because state

is only updated using relatively infrequent timer while the slow

start keeps increasing the load constantly. Usually such a slow

AQM response leads to fallback using tail-drop [26]. Instead

of auto-tuning the dropping probability slowly such as with

ARED, HRED immediately starts with aggressive dropping.

HRED is parametrized so that a drop will take place no later

than a defined point in slow start. Once the dropping starts,

HRED tends to drop rather aggressively which helps when

multiple flows are in the common-mode slow start because

they are likely to experience some drops each leading to back

off one RTT later. Although dropping is heavy, HRED still

retains benefits of random dropping which makes it to provide

rather good fairness in most of the cases.

As HRED is not able to discern the reason for queue

excursions, it always responds as if slow start would be in

progress. Occasionally this can lead to under-utilization. How-

ever, similar problem might also affect other AQM techniques

if operating point is set such that a really low target delay is

used. This is due to the well know trade-off in AQM between

delay and throughput; while operating close to minimum

161
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

TABLE I: AQM parameters

CoDel [32], [34] PIE [31] HRED

target 5 msecs delay ref 20 msecs thmax 40 pkts

interval 100 α 0.125 thmin 3 pkts
msecs β 1.25 wq 0.02/0.04

max burst 100 msecs maxp 0.65
dq threshold 5/10 pkts
tUpdate 30/60

msecs

delays, TCP congestion control is less likely to fully utilize

the bottleneck link because it halves the number of packets in

flight (congestion window) when AQM drops a packet.

IV. TEST SETUP

Sender

11 msecs

1 Gbps Dominant

bottleneck

2 Mbps

70 msecs

Receiver

Fig. 1: Test setup

We use ns2 simulator [23] to conduct the experiments. The

workload consist of a number of simultaneous TCP flows. The

flows are started in groups. First group of flows starts at zero

seconds and the second group start is delayed slightly. The

delay is uniformly distributed between 0 and 0.65 seconds. All

TCP flows within a single group start at the same point of time.

The transfer size for the flows within a single group is 360

kbytes in total, that is, the total size is divided by the number

of flows in the group to get the transfer size for a single TCP

flow. We chose this workload close to the worst-case TCP slow

start in mind. That is, when the TCP flows perform a common-

mode slow start, the combined effect is likely to be somewhat

higher than when the TCP slow starts are spread out as with

typical Web traffic. The number of TCP flows in a group is 1,

2, 4, or 6, which is well within what a typical browser may

use [8]. In order to limit the number of test cases, we decided

to limit the number of flows to 6+6 flows even though real

browsers may use even higher number of parallel connections.

The selected transfer size resembles the composition of a

typical Web page [39], however, we exclude modelling the

effects of DNS queries or internal dependencies within the

Web page. We believe our model is still good enough to cover

the area close to the worst case with reasonable accuracy.

The TCP flows use ns2 Sack1 TCP. TCP initial window [4]

is three segments, the initial RTO is three seconds, and TCP

delayed ACKs [10] are in use.

Figure 1 shows the test setup. The access link at the network

edge that is the bottleneck for the workload is 2 Mbps with 70

msecs one-way propagation delay. The link is error free. On

the Internet side, there is an additional 11 msecs delay for the

rest of the path. We also experimented with 101 msecs delay

for the rest of the path besides of 11 msecs delay to see if our

results are also valid with a larger delay. The AQM parameters

are show in Table I. For PIE there are three variants: one

TABLE II: 95th percentile of the queuing delay (secs)

Flows
1+1 2+2 4+4 6+6

CoDel 0.090 0.126 0.170 0.246

PIEupdate 0.234 0.252 0.294 0.332

PIEthresh 0.198 0.216 0.246 0.270

HRED 0.120 0.126 0.132 0.132

HRED (aggressive) 0.096 0.096 0.108 0.109

SFQ CoDel 0.060 0.057 0.054 0.066

with default parameters of 10 packets for the departure rate

threshold and 30 msecs for the update interval (PIE), and

two other variants where either the departure rate threshold

is changed to 5 packets (PIEthresh) or the update interval

is changed to 60 msecs (PIEupdate). With HRED we use

the original HRED parametrization with wq = 0.02 and also

introduce a more aggressive variant with wq = 0.04 that trades

off delay at the cost of utilization. The physical buffer size is

set to 100 packets to allow AQM to operate without falling

back to FIFO behavior during load transients. In addition, we

also experiment with SFQ CoDel using the same parameters

as with CoDel.

V. RESULTS

In the result analysis we focus on the queuing delays

observed in the bottleneck router queue. Figure 2 shows the

cumulative distribution function for queuing delay experienced

by the TCP packets with 4+4 TCP flows for different AQM

techniques. Up to median, all AQMs yield relatively low queu-

ing delay up to 24 msecs only. With other workloads having

different number of simultaneous TCP flows the median delay

does not exceed 24 msecs either, regardless of the AQM

technique in use. Interactive traffic, however, is affected by

high delay spikes because the deadlines with interactive traffic

are short and the low delay periods usually cannot offset the

harm caused by the periods with higher delay. Therefore, we

turn our attention to the high-end queuing delays that occur

during each testcase.

Table II shows the 95th percentile of queuing delay with

different AQM algorithms and number of flows and Figure 3

shows the median and quartiles (25th and 75th percentiles) of

the maximum queuing delays observed over 100 replications

with different AQM algorithms and number of flows. The bars

represent median and the error bars show quartiles. In practice,

the high-end delays with our workload occur mostly because

of the load transients caused by TCP slow start. During slow

start TCP increases the load exponentially on each round trip,

resulting in packet bursts of increasing size that pile up at the

bottleneck router queue and require a quick response from the

AQM mechanisms.

CoDel is promising with 1+1 TCP flows. However, when the

number of flows increases, both 95th percentile and maximum

delay increase significantly. The behavior is due to the too

slowly responding auto-calibration of the drop distance in

CoDel. The auto-calibration is only based on interval and

square root of count. As neither of these is in a direct

162
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
D

F

Queuing delay (secs)

CoDel
PIEupdate
PIEthresh

HRED
HRED (aggressive)

SFQ CoDel

Fig. 2: Cumulative Distribution Function for queuing delay

with 4+4 TCP flows (over 100 replications)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1+1 flows 2+2 flows 4+4 flows 6+6 flows

M
a
x
im

u
m

 o
f
q
u
e
u
in

g
 d

e
la

y
 (

s
e
c
s
)

CoDel
PIEupdate
PIEthresh
HRED
HRED (aggressive)
SFQ CoDel

Fig. 3: The median and quartiles of maximum queuing delay

with different AQM algorithms (over 100 replications)

relationship to the current load, CoDel dropping is not affected

by the heaviness of the load until through secondary effects

of the slowly growing count. However, the secondary effects

occur too late to be effective against common-mode slow start.

Our first impression with PIE was all but encouraging.

We found out that with default parameters PIE does not

do anything. After careful analysis, we discovered that PIE

fails to operate when the link rate is low enough because it

cannot measure the departure rate. When the link rate is low,

the update timer of PIE always expires before departure rate

threshold amount of packets can be transferred. As a result,

PIE remains in the burst allowance mode throughout the whole

test. The continuous burst allowance effectively makes the

behavior equal to FIFO which is why we decided to omit

the PIE with default parameters from the results discussion.

This contradicts with the claim that ”threshold is not crucial

for the system’s stability” [36]. In order to solve this problem,

we had two options: either to make the update timeout longer

or to reduce the threshold which both have downsides. We

decided to include both variants in our experiments because no

clear guidelines exist on reparametrizing PIE. We show results

separately for both PIE variants (PIEupdate and PIEthresh)

but refer to them together as PIE. In addition, we ignore

the tradeoffs related to setting these two parameters and the

diverging results with the different parameter values as we

want to focus on comparing different AQMs with each other.

PIE has notably higher high-end delays compared to CoDel,

but when the load increases it retains the performance level

better compared to CoDel. Even though the drop probability

in PIE is affected by the load, the response is too slow due

to several reasons. PIE implements burst allowance up to 100

msecs bursts by default which delays its response. Response is

further delayed as update to the drop probability is done only

periodically and the load is accounted only on the next update.

In addition, PIE applies a correction based on the delay trend

which helps when the queue is increasing. However, a draining

transient queue is detected as downwards trend and it works

against PIE until slow start has reached a window size that

overloads the bottleneck (i.e., causes persistent queue). Any

downward trend during slow start is a transient because the

packets and the corresponding load remain on the end-to-end

path even when they are not instrumentable in the bottleneck

router queue. Therefore, PIE misdetects the early clues of the

slow start which only show up as transient queuing delay

spikes.

Not to our big surprise, HRED performs the best among

the single-queue configurations because it was designed to

ensure rapid response with hard deadline for dropping. The

slightly more aggressive setup with HRED is even better.

With 1+1 flows, the high-end delays are slightly higher with

HRED and roughly equal with aggressive HRED compared

to CoDel. However, HRED is able to retain the performance

level significantly better than Codel when the number of

simultaneous TCP flows increases. With CoDel the high-end

delay more than doubles for 6+6 flows while with HRED

the high-end delays stay roughly at the same level which

makes HRED even more stable than PIE with increasing load.

The inter-quartile range for maximum delay with HRED (see

Figure 3) is small up to 4+4 flows indicating that HRED

response is relatively similar in most of the cases.

Similar to HRED, the high-end delays remain roughly at

the same level with SFQ CoDel regardless the number of TCP

flows. With SFQ CoDel the 95th percentiles of the delay are

lower and the medians of the maximum delay are roughly at

the same level compared to HRED. This indicates that the flow

isolation using SFQ works reasonably well. Table III shows the

maximum queuing delay out of 100 replications, that is, the

worst-case delay, in each test case. These worst-case delays

follow mostly the same pattern as the other high-end delay

statistics. While the median of the maximum delay with SFQ

CoDel is roughly equal to that of the single-queue CoDel in

the case of 1+1 TCP flows, the worst-case delay for SFQ

CoDel with 1+1 TCP flows is not as good as with single-queue

CoDel because two separate CoDel queues respond slower to

163
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1+1 flows 2+2 flows 4+4 flows 6+6 flows

D
e
la

y
 s

p
ik

e
 d

u
ra

ti
o
n
 f
o
r

6
0
 m

s
e
c
s
 (

1
5
0
0
0
 b

y
te

s
)

th
re

s
h
o
ld

 (
s
e
c
s
)

CoDel
PIEupdate
PIEthresh
HRED
HRED (aggressive)

Fig. 4: The median and quartiles of delay spike duration with

more than 60 msecs threshold worth of queue in the router

queue for different AQM algorithms (over 100 replications)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1+1 flows 2+2 flows 4+4 flows 6+6 flows

D
e
la

y
 s

p
ik

e
 d

u
ra

ti
o
n
 f
o
r

1
0
0
 m

s
e
c
s
 (

2
5
0
0
0
 b

y
te

s
)

th
re

s
h
o
ld

 (
s
e
c
s
)

CoDel
PIEupdate
PIEthresh
HRED
HRED (aggressive)

Fig. 5: The median and quartiles of delay spike duration with

more than 100 msecs threshold worth of queue in the router

queue for different AQM algorithms (over 100 replications)

TABLE III: Maximum queuing delay (secs)

Flows
1+1 2+2 4+4 6+6

CoDel 0.150 0.186 0.234 0.296

PIEupdate 0.336 0.342 0.378 0.402

PIEthresh 0.276 0.294 0.324 0.366

HRED 0.150 0.168 0.174 0.216

HRED (aggressive) 0.156 0.134 0.152 0.192

SFQ CoDel 0.180 0.180 0.174 0.222

a load transient than a single-queue CoDel that shares the

state for these TCP flows. With 2+2 TCP flows the worst-case

delay is roughly equal to that of single-queue CoDel. Only

when the number of flows increases beyond 2+2, SFQ CoDel

clearly lowers the worst-case delay compared with CoDel.

Moreover, HRED provides lower worst-case delay compared

to SFQ CoDel in most cases but obviously SFQ would make

the worst case less likely to occur because of hashing the flows

usually places them into different SFQ buckets. Only when an

interactive flow unluckily would share a queue, the worst-case

delay affects also it.

When we took a closer look into the traces, we made

an interesting additional observation related to the packets

from the TCP initial windows [4]. The packets in the HRED

router queue during the highest delay spikes with 6+6 flows

included a significant fraction of packets belonging to the

initial windows of the flows, while with the other single-queue

AQMs a negligible fraction of initial window packets were

present during the highest delay spikes. This confirms our

observation that other AQMs except HRED react too slowly

and allow highest delay spikes to arise after the initial round

trip of TCP slow start, while the highest delays with HRED

are heavily intensified by the not congestion controlled packets

in the TCP initial window.

Figures 4 and 5 show the delay spike duration during which

the queue length remains continuously above 60 and 100

msecs threshold (15000 and 25000 bytes), respectively. SFQ

CoDel is omitted because there is no single queue where to

calculate this metric from. The delay spike duration indicates

the longest continuous period where the queue remains above

the given value during a test run. In practice there was usually

just one major delay spike per test run. The trends are similar

to those seen with the maximum queuing delay in Figure 3.

This is as expected because longer delay implies more packets

to drain until the delay returns to a low level again. Here,

the interesting metric is the duration of the delay spike that

interactive traffic would experience as a period of harmful

jitter, because codecs used for interactive media can typically

only conceal a limited amount of jitter for short periods of

time. Therefore, long-lasting spikes are likely to cause quality

reduction or even gaps to the interactive media playback. In the

Figures 4 and 5, we see that the delay spikes are rather long-

lasting regardless of AQM technique used. Typically the delay

spikes exceeding 60 msecs threshold last clearly for more than

200 msecs and the delay spikes exceeding 100 msecs threshold

last for around 130 msecs or longer except with aggressive

HRED that encounters notably shorter delay spike durations.

With a larger number of simultaneous TCP flows PIE and

CoDel encounter delay spikes that last a significantly longer

duration compared to HRED.

Figures 6 and 7 show the response times for the first and

second group of TCP flows, respectively. The response time

for a group is defined as the time between sending the first

TCP SYN and receiving the last ACK packet for the flow

completing last within the group. The response times are

generally slightly longer in the second group because the later

starting flows are likely to get more affected by the earlier

starting flows as expected. Within each group the response

times remain roughly at the same level regardless of the AQM

technique in use. This also means that little or no harm is

caused by any of the AQM techniques on the response times

for the TCP flows.

Figure 8 shows the Jain’s fairness index [25] calculated

164
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

 0

 1

 2

 3

 4

 5

 6

 7

1+1 flows 2+2 flows 4+4 flows 6+6 flows

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

CoDel
PIEupdate
PIEthresh

HRED
HRED (aggressive)

SFQ CoDel

Fig. 6: The median and quartiles of response time for the

first group of flows (over 100 replications)

 0

 1

 2

 3

 4

 5

 6

 7

1+1 flows 2+2 flows 4+4 flows 6+6 flows

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

CoDel
PIEupdate
PIEthresh

HRED
HRED (aggressive)

SFQ CoDel

Fig. 7: The median and quartiles of response time for the

second group of flows (over 100 replications)

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

1+1 flows 2+2 flows 4+4 flows 6+6 flows

J
a

in
’s

 f
a

ir
n

e
s
s
 i
n

d
e

x
 f

o
r

re
s
p

o
n

s
e

 t
im

e
s

CoDel
PIEupdate
PIEthresh

HRED
HRED (aggressive)

SFQ CoDel

Fig. 8: The median and quartiles of Jain’s Fairness index

between the response times of the first and second group of

flows (over 100 replications)

for the response times of the first and second group of

flows. In general, the fairness is very good regardless of the

AQM technique. Somewhat surprisingly, SFQ CoDel does not

provide the best fairness for the response times even though

it has flow isolation.

We also experiments with larger delays for the rest of the

path delay in order to validate that our results hold for a larger

set of parameters. Figure 9 shows the median and quartiles of

the maximum queuing delays with different AQM algorithms

when the rest of the path delay was set to 101 msecs. A

quick comparison to Figure 3 reveals that the relative order for

the AQM techniques remain the same and even the numerical

values for the delays are roughly on the same level regardless

of the rest of the path delay. Similarly with the delay spike

duration shown in Figure 10 compared to Figure 4, the relative

order between AQM techniques and trends are retained, and

there are only small changes in the numerical values mainly

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1+1 flows 2+2 flows 4+4 flows 6+6 flows

M
a

x
im

u
m

 o
f

q
u

e
u

in
g

 d
e

la
y
 (

s
e

c
s
)

CoDel
PIEupdate
PIEthresh
HRED
HRED (aggressive)
SFQ CoDel

Fig. 9: The median and quartiles of maximum queuing delay

with longer rest of the path delay (101 msecs) using different

AQM algorithms (over 100 replications)

in favor to CoDel and HRED.

VI. DISCUSSION

While HRED performed reasonably well in our study

compared with CoDel or PIE it would be challenging to

parametrize it correctly for the case where the link rate is

expected to vary. HRED depends on proper calibration of

the time-constant for the low-pass filter in RED exponentially

weighted moving average of queue length and it would need

to be tuned on-the-fly if the link rate is changing constantly.

In order to have even better behavior, the effective end-to-end

delay that is combination of all flows through the router would

be needed but it is closely related to measuring the current link

load which remains an open challenge [38].

We believe it would be possible to make PIE more respon-

sive than what was seen in our results. However, even though

parameter tweaking is encouraged [37], no guidelines exist

165
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1+1 flows 2+2 flows 4+4 flows 6+6 flows

D
e

la
y
 s

p
ik

e
 d

u
ra

ti
o

n
 f

o
r

6
0

 m
s
e

c
s
 (

1
5

0
0

0
 b

y
te

s
)

th
re

s
h

o
ld

 (
s
e

c
s
)

CoDel
PIEupdate
PIEthresh
HRED
HRED (aggressive)

Fig. 10: The median and quartiles of delay spike duration with

more than 60 msecs threshold worth of queue in the router

queue for different AQM algorithms when the rest of the path

delay was 101 msecs (over 100 replications)

on how to do it. Besides, the key point with both CoDel

and PIE was to lower the bar for deployment by removing

complex AQM configuration step, which has long seen to be

a disincentive for RED deployment.

CoDel count recall has seen multiple revisions. In all, the

duration during which previous value is used is in relation

to interval. The default value with ns2 and Linux kernel

CoDel implementation is 16 times interval (1.6 seconds with

100 msecs default interval) which makes it unlikely that next

Web user transaction would reuse the previous state because

end user usually processes the information for some time

before issuing the next action that triggers more Web requests.

In addition, many variants exist on which formula is used

to calculate the count value that is recalled. However, for

this particular workload we are using, it is likely that larger

count is always better than smaller one because slow start

requires a response from router. The response needs to be

sufficiently heavy compared with the number of flows that

are slow starting at the same time. We also implemented the

recall variant that matches what CoDel Linux implementation

is using, but there was no noticeable change in the delay

results. If we would have modelled full Web transaction with

DNS lookups and dependencies within the Web page, the

recall variant might have had some effect. However, it is

still questionable whether using the recalled count from the

previous state for the new flows that are slow starting would be

any better than selecting a big initial count directly regardless

of history. Studying the effects of the count recall in CoDel

would be an interesting topic on its own.

AQM deployment faces a significant challenge because

some link layers lack necessary interfaces. The interface might

not provide any way to control the queuing below the IP layer

but instead buffers large amount of packets at link layer leaving

zero or meaningless queue size to the IP-layer queue. As AQM

operates at the IP layer, this is likely to impact the deployment

of most AQM techniques on networks which are based on

such link technologies. Also, fair queuing together with AQM

cannot schedule packets to allow low latency for some traffic if

the packets share a long queue at the lower layer. Occasionally

rate shaping is attempted in order to circumvent the lack of

link-layer support which moves the bottleneck to the shaper.

However, it cannot work correctly when the link rate of the

actual bottleneck varies, which is typical, for example, with

wireless links. As such, it is not true nor elegant solution.

Hashing flows to buckets used in SFQ is know to be subject

to collisions due to limited number of buckets. In case of

a collision, an interactive flow is subject to similar delay

as another flow that is hashed to the same bucket. Thus,

the number of buckets used by [20] and chosen for Linux

FQ CoDel implementation is large (by default 1024 buckets).

However, a large number of queues causes problems because

even if a link-layer support is provided for AQM, SFQ on

top of link-layer technologies where lower layer implements

multiple queues becomes complex. With such link-layer tech-

nologies, each link-layer queue requires a separate set of SFQ

queues, leading to a very large total number of queues at

the IP layer. A real world example with excessive number

of queues is discussed in [48] where 32 service classes would

require 32k queues in total (with the 1024 default) and even

total of 1024 queues with only 32 queues per service class

was considered not justified. Sharing queues between classes,

while possible, would have increased complexity too much.

An alternative approach to reduce collision probabilities is to

combine hashing with multiple buckets per hash similar to

approaches used in caching [11].

VII. CONCLUSIONS

In this paper we simulated the behavior of CoDel and

PIE AQM proposals during load transients that occur because

of TCP slow start and compared them against the slow-

start optimized HRED. The results show that latency-wise

CoDel performance will not scale when the number of flows

increases. PIE performed worst regardless of the number of

flows but scales better than CoDel when the number of flows

increases. Therefore, PIE would likely provide better response

in case of extreme overload compared with CoDel but our

study only covered up to 6+6 TCP flows. Among the single-

queue controllers, HRED provides the best performance except

with 1+1 flows where CoDel performance is equal to or

slightly better than with HRED. In addition, with HRED the

high-end queuing delay is not affected by the number of flows

almost at all. SFQ CoDel also provides good results. However,

its deployment is subject to additional challenges.

We also discovered that PIE with default parameters does

not work with low-rate links because PIE fails to measure

departure rate within a single update interval. Without suc-

cessful departure rate measurement, PIE assumes the link

to be uncongested all the time. We believe that this burst

allowance problem with PIE may affect measurements also

in other studies if the link rate in use is low enough. This is

especially problematic if the link rate varies because then PIE

166
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

would work intermittently which is hard to notice compared

with our case where PIE did not do anything.

REFERENCES

[1] “Active Queue Management and Packet Scheduling (aqm).” [Online].
Available: https://datatracker.ietf.org/wg/aqm/charter

[2] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. SIGCOMM

’10, Aug. 2010.
[3] M. Allman, “Comments on Bufferbloat,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 1, pp. 30–37, Jan. 2012.
[4] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial

Window,” RFC 3390, Oct. 2002.
[5] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC

5681, Sep. 2009.
[6] T. Bonald, L. Muscariello, and N. Ostallo, “Self-Prioritization of Audio

and Video Traffic,” in Proc. IEEE International Conference on Commu-

nications (ICC 2011), Jun. 2011.
[7] B. Braden et al., “Recommendations on Queue Management and Con-

gestion Avoidance in the Internet,” RFC 2309, Apr. 1998.
[8] Browserscope. [Online]. Available: http://www.browserscope.org/

?category=network&v=1
[9] CableLabs, “MAC and Upper Layer Protocols Interface Specification,”

Data-Over-Cable Service Interface Specifications DOCSIS 3.1, Oct.
2013.

[10] D. Clark, “Window and Acknowledgement Strategy in TCP,” RFC 813,
Jul. 1982.

[11] T. Cloonan, J. Allen, T. Cotter, and B. Widrevitz, “Minimizing
Bufferbloat and Optimizing Packet Stream Performance in DOCSIS 3.0
CMs and CMTSs,” in SCTE Cable-tec EXPO ’13, Oct. 2013.

[12] W. Feng, D. Kandlur, D. Saha, and K. Shin, “A Self-Configuring RED
Gateway,” in Proc. INFOCOM ’99, Mar. 1999.

[13] S. Floyd, “RED: Discussions of Setting Parameters,” Nov. 1997.
[Online]. Available: http://www.icir.org/floyd/REDparameters.txt

[14] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, Aug. 1993.

[15] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management,”
ICSI, Tech. Rep., Aug. 2001.

[16] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, no. 11, Nov. 2011.

[17] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Taht, “Fighting the
bufferbloat: On the coexistence of AQM and low priority congestion
control,” in Proc. 5th IEEE International Traffic Monitoring and Analysis

Workshop (TMA’13), Apr. 2013.
[18] E. Grigorescu, C. Kulatunga, and G. Fairhurst, “Evaluation of the Impact

of Packet Drops due to AQM over Capacity Limited Paths,” in Proc.

Capacity Sharing Workshop (CSWS ’13), Oct. 2013.
[19] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed

TCP variant,” SIGOPS Operating Systems Review, vol. 42, no. 5, pp.
64–74, Jul. 2008.

[20] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Du-
mazet, “FlowQueue-CoDel,” Internet Draft, Mar. 2014, Work in
progress.

[21] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On Designing
Improved Controllers for AQM Routers Supporting TCP Flows,” in
Proc. INFOCOM 2001, Apr. 2001.

[22] J. Huang et al., “An In-depth Study of LTE: Effect of Network Protocol
and Application Behavior on Performance,” in Proc. SIGCOMM ’13,
Aug. 2013.

[23] ISI at University of South California, “The network simulator – ns-2.”
[Online]. Available: http://www.isi.edu/nsnam/ns

[24] V. Jacobson, “Congestion Avoidance and Control,” in Proc. SIGCOMM

’88, Aug. 1988, pp. 314–329.
[25] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and

Discrimination for Resource Allocation in Shared Computer Systems,”
Tech. Rep. DEC TR-301, Sep. 1984.

[26] I. Järvinen, Y. Ding, A. Nyrhinen, and M. Kojo, “Harsh RED: Improving
RED for Limited Aggregate Traffic,” in Proc. 26th IEEE International

Conference on Advanced Information Networking and Applications

(AINA-2012), Mar. 2012.

[27] H. Jiang, Z. Liu, Y. Wang, K. Lee, and I. Rhee, “Understanding
Bufferbloat in Cellular Networks,” in Proc. Workshop on Cellular

Networks: Operations, Challenges, and Future Design (CellNet), Aug.
2012.

[28] N. Khademi, D. Ros, and M. Welzl, “The New AQM Kids on the
Block: Much Ado About Nothing?” University of Oslo, Department
of Informatics, Tech. Rep. 434, Oct. 2013.

[29] M. Kojo, I. Järvinen, H. Tschofenig, and A. Y. Ding, “Supporting
Low Latency near the Network Edge and with Challenging Link
Technologies,” in Workshop on Reducing Internet Latency, Sep. 2013.

[30] P. McKenney, “Stochastic Fairness Queueing,” in Proc. INFOCOM ’90,
vol. 2, Jun. 1990, pp. 733–740.

[31] P. Natarajan, R. Pan, and C. Piglione, “Proportional Integral Controller
- Enhanced (PIE) AQM Implementation,” 2013. [Online]. Available:
ftp://ftpeng.cisco.com/fred/ropan

[32] K. Nichols, “CoDel ns2 code,” 2012. [Online]. Available: http:
//www.pollere.net/CoDel-ns-2.35.patch

[33] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, May 2012.

[34] ——, “SFQ CoDel ns2 code,” 2012. [Online]. Available: https:
//github.com/dtaht/ns2.git

[35] ——, “Controlled Delay Active Queue Management,” Internet Draft,
Mar. 2014, Work in progress.

[36] R. Pan et al., “PIE: A Lightweight Control Scheme To Address the
Bufferbloat Problem,” in Proc. 2013 IEEE Conference on High Perfor-

mance Switching and Routing, Jul. 2013.
[37] ——, “PIE: A Lightweight Control Scheme To Address the Bufferbloat

Problem,” Internet Draft, Feb. 2014, Work in progress.
[38] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe, “Open Research

Issues in Internet Congestion Control,” RFC 6077, Feb. 2011.
[39] R. Peon and W. Chan, “SPDY Essentials,” Google Tech Talk, Dec. 2011.
[40] J. Postel, “Transmission Control Protocol,” RFC 793, Sep. 1981.
[41] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit

Congestion Notification (ECN) to IP,” RFC 3168, Sep. 2001.
[42] I. Rhee, L. Xu, and S. Ha, “CUBIC for Fast Long-Distance Networks,”

Internet Society, Internet Draft, Aug. 2008, Work in progress.
[43] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low Extra

Delay Background Transport (LEDBAT),” RFC 6817, Dec. 2012.
[44] S. Souders, “Roundup on Parallel Connections,” Mar. 2008.

[Online]. Available: http://www.stevesouders.com/blog/2008/03/20/
roundup-on-parallel-connections/

[45] D. Täht, “Inside Codel and Fq Codel,” in Standford University Network-

ing Seminar, Jan. 2013.
[46] G. White, “Active Queue Management Algorithms for DOCSIS 3.0,”

CableLabs, Tech. Rep., Apr. 2013.
[47] G. White and J. Padden, “Preliminary Study of CoDel AQM in a

DOCSIS Network,” CableLabs, Tech. Rep., Nov. 2012.
[48] G. White, “Active Queue Management in DOCSIS 3.x Cable Modems,”

CableLabs, White paper, May 2014.

167
Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2024 at 02:00:23 UTC from IEEE Xplore. Restrictions apply.

