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Abstract—Practical shared bottleneck detection has proved to
be a difficult problem. We present a novel passive approach
using efficient estimates of time and frequency domain summary
statistics. The approach is not CPU nor network intensive, and
has numerous potential applications in the Internet. Simulations
and tests over the Internet and 3G cellular network show its
efficacy in grouping flows correctly.

Index Terms—Shared bottleneck detection

I. INTRODUCTION

In the Internet, it is not normally known if flows (e.g.,
TCP connections or UDP data streams) traverse the same
bottlenecks. Even flows that have the same sender and receiver
may take different paths and share a bottleneck or not. This
plays a major role in performance; for example, a congestion
control mechanism for scavenger-type traffic like LEDBAT
[19] tries to not get in the way of a user’s other traffic, but
if it does not share a bottleneck with this other traffic, it may
well only step out of the way of traffic from other network
users, with no benefit whatsoever to the user who utilizes this
form of congestion control.

Flows that share a bottleneck link usually compete with
one another for their share of the capacity. This competition
has the potential to increase packet loss and delays. This is
especially relevant for interactive applications that communi-
cate simultaneously with multiple peers (such as multi-party
video). Combining the congestion controllers of such flows
can not only reduce packet loss and delay [24] but also allow
precise honoring of priorities that may be associated with
particular flows (cf. [18]). A mechanism for doing this with
flows in the new WebRTC standard for inter-browser real-
time communication is being proposed for standardization in
the RMCAT Working Group of the IETF [24]. Since this
mechanism will rely on shared bottleneck detection, it is also
planned to propose the shared bottleneck detection method
described in this paper for standardization in RMCAT.

Other potential applications of shared bottleneck detection
include the ability to better predict the duration of file transfers
for the sake of better scheduling in distributed processing [26],
better peer selection when downloading from multiple sources
in parallel [7], and applying the right form of congestion con-
trol for multi-path transfers [6]. To the best of our knowledge,
the latter application was also the first context in which shared
bottleneck detection was proposed for the Internet in the IETF
(for the SCTP protocol), but up to now, such methods have

been regarded as being too unreliable and/or computationally
intensive for practical use.

This paper presents a novel passive method of detecting
if flows share a common bottleneck using packet delay dis-
tribution summary statistics, particularly shape. Because the
calculations in our method are simple, the amount of feedback
required is small, and the accuracy and responsiveness in
detecting shared bottlenecks high, it may have the potential
to be a practical scheme for online application in the Internet.
After a discussion of related work in Section II, we will
then discus the signals that can be used for share bottleneck
detection in Section III, the reasoning behind our design
using summary statistics in Section IV and our mechanism in
Section V. We then evaluate our design experimentally through
simulation and real network tests in Section VI and conclude
in Section VII.

II. RELATED WORK

Early work on SBD by [17] suggests host and network
locality schemes, but the authors acknowledge that the gran-
ularity is not fine enough to be useful for their proposal of
informed transport protocols. Balakrishnan et al. [2] cluster
nearby Internet hosts based on similar long term throughput
distributions in their analysis of web servers for the Atlanta
Summer Olympics. This work is relevant to our work in that it
uses a summary statistic, to group flows sharing a bottleneck.

Rubenstein et al. [16] conducted the first thorough inves-
tigation of the problem, proposing both delay and loss based
correlation techniques. Rubenstein et al. propose measuring
the correlation between pairs of packets within flows, and
between flows. If the cross-correlation of packet pairs between
flows is greater than the auto-correlation of pairs within each
flow, it is concluded that the two flows share a common
bottleneck. Although they use Poisson probes, they suggest
that in many cases the probes can be incorporated into the
underlying data stream. Rubenstein et al. find that there are
often not enough samples for the loss-correlation technique to
be able to conclude one way or the other.

A number of other techniques adopt the delay-based cor-
relation method of Rubenstein et al. These include Round
Trip Time (RTT) based methods such as Wang et al. [22]
and Younis and Fahmy [25]. The method in [10] uses One
Way Delay (OWD), but applies a wavelet transform to filter
the noise by suppressing smaller wavelet coefficients in the
signal. Although delay is measured at the receiver, it requires
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each packet’s measurement to be sent back to the sender.
However, it should be noted that the Pearson correlation
coefficient used by Rubenstein et al. [16] and the other papers
assumes normally distributed samples, which is not the case
during congestion, where the delay distribution can be highly
skewed (see Section IV-A), reducing the effectiveness of the
correlation coefficient as an estimator of correlation [12].

Yousaf [26] uses a covariance matrix of average OWDs.
Singular Value Decomposition (SVD) of the matrix filters
the noise. The resulting factors, one per flow, are considered
to indicate path sharing if they are similar. Unfortunately
the grouping algorithm presumes that there will always be
more than one group, which will not always be the case.
Also, like the aforementioned correlation techniques it is
computationally intensive.

Katabi and Blake [9] investigate shared bottleneck detection
using the Rèyis entropy of the packet inter-arrival times.
Varga [21] further investigates the work of Katabi and Blake,
but limits bottleneck detection to bottlenecks that experience
continuous sever queueing. This work investigates the higher
order moments of skewness and kurtosis of the packet inter-
arrival times. The use of higher order statistics is relevant
to our work, however, the use of packet inter-arrival times
as a base measure limits its usefulness for our purposes.
This requires measurement of a significant proportion of the
bottleneck traffic, and the existence of significant bottleneck
back-to-back pair measurements that are not overly perturbed
by the remaining hops along the path.

All of the above correlation techniques presume that there
are no significant differences in lag for the different paths
sharing a common bottleneck. In other words, the path samples
being compared are presumed to be synchronised. It is not
uncommon for different paths that share a common bottleneck
to have significantly different end-to-end delays. Under these
circumstances the cross correlation techniques will not work
well.

Three additional techniques deserve mention. Kanuparthy et
al. [8] use an active probing method which sends a specially
patterned probing packet sequence, which characteristically
perturbs other sample traffic that shares a common bottleneck
with the probe traffic. Hassayoun et al. [6] look at the problem
in relation to dynamic window coupling for Multipath TCP or
SCTP, but without evaluating the accuracy of the underlying
shared bottleneck detection technique, where flows with simi-
lar temporal congestion control dynamics are grouped together.
Zhu [27] uses the frequency spectrum of active probe packet
inter-arrival times to detect TCP path sharing.

In general the works have some common shortcomings:
1) simulation tests have been conducted with scenarios that
make shared bottleneck detection easy; 2) real network tests
often do not have a proper ground truth with which to
compare; and 3) quantitative statistics, although valuable, often
hide the dynamics of bottlenecks carrying real traffic. Apart
from proposing a novel mechanism for detecting shared bot-
tlenecks, this paper attempts to overcome these shortcomings.

III. SIGNALS

Unless the network directly signals that flows share a
common link, say by marking packets, end hosts need to infer
this from the packets they receive. The raw information that
Internet end-hosts have is: packet delay, packet loss, and ECN
(Explicit Congestion Notification) marking. Both packet loss
and traditional ECN marks are relatively rare, representing a
small percentage of packets. The rarity makes it difficult to
use for shared bottleneck detection, though it can be used as
a supplement. Packet delay is then the primary signal.

A. Packet Delay

Packet delay tends to be a very noisy signal. The delay
a packet experiences along an end-to-end path can be sum-
marised as:

Tpath =
∑
l

T (l)
prop +

∑
l

T (l)
queue +

∑
l

T
(l)
misc , ∀l ∈ L, (1)

where T (l)
prop is the propagation delay along link l, T (l)

queue is the
queueing delay at link l, and T

(l)
misc are miscellaneous other

delays experienced on link l, such as switching delays and
media access delays, and L is the set of links along the path.
If a Round Trip Time (RTT) measurement is used the reverse
path delay is added to this as well.

For detecting shared bottlenecks the delay characteristics of
the bottleneck link Tb signal (at link l = b) are the key elements,
but they are masked by other sources of delay along the path:

Tb signal = T (b)
queue + T

(b)
misc (2)

and the rest of the delay is noise

Tpath noise =
∑
l

T (l)
prop +

∑
l 6=b

T (l)
queue +

∑
l 6=b

T
(l)
misc , ∀l ∈ L, (3)

For wired bottleneck links this is dominated by T
(b)
queue; for

wireless bottleneck links the media access component of T (b)
misc,

in some sense also a form of queueing delay, is also of interest
and may even dominate the delay measurement.

B. Dealing with Noise

For the delay signal to be useful in determining shared bot-
tlenecks, the delay characteristics of the bottleneck, Tb signal,
must be able to be distinguished from the path noise, Tpath noise.
However, without special knowledge of the path characteris-
tics, we require Tb signal � Tpath noise.

If One Way Delay (OWD) rather than RTT is used, up
to half of the potential sources of noise are removed, pro-
viding a much cleaner signal. For this reason we measure
the delay signal at the receiver. In the simplest scenario
coupled congestion control will be implemented in the sender,
requiring a mechanism to provide the necessary feedback. This
mechanism is an important element in a coupled congestion
control system, but is beyond the scope of this paper and an
item for further study.

Even if we can perfectly measure Tb signal, it in itself
is a difficult signal to deal with. Queueing delay is very
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dynamic, for example, two flows sharing the same queue will
have packets that experience widely different and seemingly
uncorrelated delays at similar epochs in time (see [4]). As a
result, some sort of filtering is still required, as well as some
means of coping with the differing lags of each path.

C. Unsynchronised sender and receiver clocks

Lack of synchronisation between different senders’ and
receivers’ clocks means that raw OWD measurements cannot
be directly compared. However, provided both sender and
receiver use the same clock resolution and the offset between
the clocks remains constant over the time window used for
calculations, statistics that are based on differences in OWD
remove the constant offset, C:

T1 = t
(rx)
1 − t(tx)

1 + C and T2 = t
(rx)
2 − t(tx)

2 + C (4)

∆T1,2 = t
(rx)
1 − t(rx)

2 + t
(tx)
2 − t(tx)

1 (5)

This means that although T path cannot be directly compared,
higher order central moments can – as their difference oper-
ation removes the constant offset. This is also how OWD is
applied in some delay-based congestion controls, e.g. LED-
BAT [19]. Clock drift and corrections to clocks made by NTP
still add noise to the delay measurement. However, over the
relatively small measurement intervals, the clock drift can be
considered to be negligible [19] and provided corrections to
clocks made by NTP perturb a minority of measurements they
too can be ignored.

IV. SUMMARY STATISTICS

A key contribution of this paper is the use of summary
statistics1 to group flows sharing a bottleneck. Summary
statistics filter the delay signal to make it more manageable.
They also help cope with path lag, provided the period of
time over which the summary is made is significantly longer
than the lag. A summary statistic is smaller than the original
data, and only needs to be fed back to the senders at intervals
equivalent to the summary period.

Higher order summary statistics describe the shape of the
data, in this case Tpath. We observe that the shape of the delay
signal often differs according to the load at the bottleneck and
the dynamics of the traffic traversing it. In this respect we base
our mechanism on the second and third central moments of
the Tpath. We also observe that the delay signal has a shape
in time. We use the key frequency of the delay signal as a
summary statistic to describe this shape.

A. Insight from an M/M/1/K queue

The mechanism is based on the observation that the shape of
the one way delay distribution is dominated by the bottleneck
queue. We use a simple M/M/1/K queue to gain insight into the
value of the time based summary statistics we use to describe
the shape. We postulate that the shape is usually distinct
enough to distinguish between flows sharing small numbers

1descriptive statistics that summarise a set of observations

of different bottlenecks. Although the M/M/1/K queue is a
simplistic model for Internet traffic, it suffices for this purpose.

We investigate the second and third central moment of the
delays introduced by the queue. The ith central moment can
be calculated from the response time density as follows [20]:

mi =

∫ ∞
−∞

fr(t)(t− T )idt (6)

where

fr(t) =

K−1∑
k=0

pk
1− pK

fEk+1
(t) (7)

and fEk
(t), the Erlang density function, is

fEk
(t) =

(µt)k

tk!
e−µt (8)

where k is the number of packets in the queue, pk is the
probability of having k packets in the queue, and fEk

(t), the
k packet Erlang density function where µ is the service rate
of the queue.

Fig. 1a shows the normalised second, and third central
moments of the response time of an M/M/1/50 queue versus
load. If different bottlenecks experience different loads at
different times, then grouping flows according to differences
in their summary statistics should be feasible (in practice the
different bottlenecks can also have different queue sizes).

Attempting to group flows that are not experiencing conges-
tion is impractical, since the delay signal is small relative to
the noise. Without prior knowledge of maximum queue depths
along the path, the magnitude of max(Tpath)−min(Tpath)
cannot robustly be used for this. Fig. 1a shows that the
skewness, m3, changes from positive to negative near 100%
load. This makes it a very good metric for this purpose, as
congestion occurs when the load exceeds 100% during the
measurement period. However, the skewness does become
positive again at extreme sustained loads of above 125%,
where the loss rate exceeds 25%. Therefore flows can be
grouped into the Fcong group if their skewness is negative,
or their loss rate is very high.

The variance, m2, is a monotonically decreasing function
for flows experiencing congestion, making it a useful candidate
for distinguishing between flows based on relative bottleneck
load. Unfortunately it changes the least for load levels close
to 100%. The skewness, m3, changes most when the variance,
m2, is flat, hence it can help group flows in this area. Skewness
on its own is not a good metric for two reasons: it is hard to
measure with precision due to its susceptibility to extreme
sample values, and it is not either monotonically increasing
or decreasing at congestion loads, meaning two identical
skewness values can result from two very different loads.

B. Making it practical

Variance and skewness can be difficult to calculate. Skew-
ness, m3, is particularly difficult to estimate accurately without
a large sample size. With errors in estimation being magnified
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ance (v̂) – PDV1, PDV2, and PDV3.

Fig. 1. Graphs of normalised delay moment versus load for the response time of the M/M/1/50 queue

by its cubic nature—which also makes it CPU intensive, it is
sensitive to extreme values. However, for the purposes of this
algorithm, we are most concerned as to whether m3 is positive
or negative, and its shape when m2 is flat. An estimate of m3

can be made by counting the proportion of samples above and
below the mean. This type of shape estimate is not influenced
by extreme values in Tpath measurement since extreme values
carry no more weight than non-extreme values:

γ̂i =

∑
n∈Ni

(Tn < T i)−
∑
n∈Ni

(Tn > T i)

Ni
(9)

where N is the number of samples and −1 ≤ γ̂ ≤ 1. Fig. 1b
compares m3 with its estimate γ̂, showing that it still has the
properties we require. If the mean from the previous sample
interval, T i−1, is used to proportion delay samples there is
no need to store samples for the calculation. This also has
the effect of making the metric more sensitive to change,
potentially allowing earlier detection of bottlenecks.

The Packet Delay Variation (PDV) [13] can be used as an
estimate of the variance, v̂. There are three possible PDV
measures (see Fig. 1c):

PDV1 = T path −min(Tpath) , (10)

PDV2 = max(Tpath)− T path , and (11)
PDV3 = max(Tpath)−min(Tpath) . (12)

Note that min(Tpath) and max(Tpath) are time interval de-
pendent (Fig. 1c uses a 95% percentile of the probabilities).
Measurement with respect to min(Tpath) is more stable than
measurement with respect to max(Tpath) as min(Tpath) has a
hard limit of the propagation delay, and is generally the OWD
measure with the least noise. Unfortunately (10) is shifted to
the right of the true variance making it possible to have two
identical PDV measurements for two very different bottleneck
load conditions (for Fcong); the estimate of skewness, γ̂, is
unable to aid as it has a similar issue at the same loads.
max(Tpath) is the noisiest measurement, since it is due to not
simply the maximum queueing delay at the bottleneck link, but
is likely to include the maximum amount of noise from other
queues along the path. Despite this, it is better to measure with
respect to max(Tpath) to avoid the aforementioned problem. In

−pvv̂long

T
(long)
path

+pvv̂long

Fig. 2. Illustration of key frequency of bottleneck estimation (f̂ )

view of this (11) provides the best characteristics to use for v̂
in the proposed mechanism.

C. Estimating the key frequency of the bottleneck link

The key frequency of the bottleneck could be thought of as
its fundamental frequency2 of oscillation over a certain period
of time. This could be calculated from the Fourier transform
of Tpath, however, the mechanism only requires a consistent
measurement of a key frequency characteristic in order to
be able to make comparisons. We propose a measure of the
number of significant crossings (normalised by the number
of samples being considered), of the short term mean of the
OWD signal, T

(short)
path , about a longer term mean of the OWD

signal, T
(long)
path . We define significant crossings as those that

cross T
(long)
path ± pv v̂long, where 0 < pv ≤ 1. In practice a value

of 0.1 ≤ pv ≤ 0.2 works well.
Fig. 2 illustrates estimation of the key frequency of the

bottleneck link, f̂ . The blue dot points are T
(short)
path estimates,

with the red cross points indicating countable crossings. In
this example the normalised key bottleneck frequency is
f̂ = 10/100 = 0.1.

V. MECHANISM DESIGN

For practical purposes such as coupled congestion control
in RMCAT, the mechanism is designed to work with:
• a relatively small numbers of bottlenecks (up to about 10)

2lowest frequency of a periodic waveform
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Fig. 3. Grouping Algorithm. At each step, flows are placed in the same
group when the difference in their measured summary statistic ∆ exceeds a
threshold δ.

• a relatively small numbers of flows in the order of two
to tens

• provide grouping decisions in hundreds of milliseconds
to seconds, and

• work with multiple senders and receivers (though the
protocol to distribute summary statistics and grouping
decisions to the various senders and receivers is beyond
the scope of this paper).

The mechanism presented has two parts: summary statistic
generation and flow grouping. Both packet delay and loss are
used as base measures, however delay is the main measure
with loss only used when the bottleneck is under extreme loads
(see Section IV-A).

A. Summary statistics

We use estimates of three summary statistics of OWD at
the bottleneck link. Each has key attributes, which we exploit:
• An estimate of the skewness in OWD (3rd central

moment), γ̂. Estimated over Ti, and averaged over N
samples.

• An estimate of the variance in OWD (2nd central mo-
ment), v̂. Estimated over Ti, and averaged over N sam-
ples.

• An estimate of the key frequency component of OWD at
the bottleneck link, f̂ .

Bottlenecks can be very dynamic. The time interval that
these are gathered over depends on how an application wants
to deal with these dynamics. Generally, γ̂ and v̂ should not
be gathered over an interval less than the queue length of the
bottleneck queue. f̂ requires a longer time interval, as it is
especially looking at the lower frequency component of the
bottleneck (see Section VI for examples).

B. Grouping

Grouping flows that share a common bottleneck is a clus-
tering problem. In this case, we are trying to identify clusters
in the three dimensional space (γ̂/Ploss, v̂/[γ̂/Ploss], f̂).There
are many solutions to the clustering problem [3] which vary in
how they define clusters and in the processing power required

to determine them. We adopt a simple divide-and-conquer
approach, extending the technique in Yousaf [26].

The algorithm is shown diagrammatically in Fig. 3. The
steps are as follows:

1) First the flows are divided into flows experiencing no
congestion, Fno cong, and flows experiencing congestion,
Fcong. Generally, when the estimate of the skewness is
less than a threshold, γ̂n < γ̂cong, for flow n it is grouped
with the flows experiencing congestion, Fcong. During
extended periods of extreme congestion with high loss
this relationship does not hold, so loss is used instead.
Typically γ̂cong = 0, however this parameter can be
adjusted to tune how much congestion a flow must
experience to be grouped with Fcong. Really this is a
decision as to whether grouping should be attempted or
not, with grouping only attempted when γ̂n < γ̂cong.

2) Flows determined to be experiencing congestion (i.e.
flows traversing a bottleneck) from step 1, G(1)

2 are
further divided using the key frequency estimate, f̂ , of
the different flows. G(1)

2 is sorted in descending order by
f̂ . Flows that differ in f̂ by less than f̂th = δ2 are grouped
together.

3) Flows are then further divided using the estimated vari-
ance v̂. G(2) are sorted by v̂ in descending order. Flows
that differ in v̂ by less than v̂th = δ3 are grouped together.

4) The resulting groups from step 3,G(3), are now divided
using either γ̂, or Ploss if the loss rate is very high. G(3)

are sorted in descending order by γ̂. Flows that differ in
γ̂ by less than γ̂th = δ3 are grouped together. Steps 3 and
4 work together (see Section IV-A).

VI. EXPERIMENTAL VERIFICATION

Experimentally verifying SBD on a real network is difficult
as we need to know the “ground truth” concerning bottlenecks
to confirm correct grouping by the algorithm. Therefore we
have taken a twofold approach: verifying the algorithm’s
operation through NS2 simulations, and through a specially
constructed real network test using the NorNet test bed (https:
//www.nntb.no). Both tests use the same SBD mechanism
parameters (see Table I). This highlights the robustness of the
mechanism under very different network conditions.

A. Simulations

NS2 [14] simulations are conducted using the topology
depicted in Fig. 4. The potential bottlenecks are shown with a
thick blue line. Each of the first six (from the left) bottlenecks
carry traffic from a different set of two test sources, with the
last bottleneck carrying traffic from all four test sources. Bot-
tlenecks have variable buffer sizes (100–500 pkts, averaging
about 100 ms in length) and are instantiated by reducing the
capacity of the nominated link.

This topology allows a range of test scenarios, including
“worse than real” scenarios. The results included in this paper
use the parameters outlined in Table II. Link delays are fixed
for the duration of the experiment, but are generated randomly
according to a normal distribution.
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Fig. 4. Shared bottleneck detection NS2 simulation set up.

TABLE I
SHARED BOTTLENECK DETECTION MECHANISM

PARAMETERS (SEE V). THE MECHANISM MAKES GROUPING
DECISIONS EVERY TI MS.

TI N used in estimates Thresholds

(ms) µ, v̂ & γ̂ f̂ pv δv δγ δf γ̂cong

350 50 50 0.2 0.3 0.2 0.2 0.0

TABLE II
SIMULATION PARAMETERS (BN – BOTTLENECK, BG –

CONNECTING TMIX TRAFFIC GENERATORS,AND OTHER –
ALL OTHER LINKS)

Link rates 106bps Test src rates (pps) link delay

BN
BG Other 1 & 2 3 & 4

(ms)

high low µ σ

110† 30‡ 55 110 400 200 10 2.5

† 220×106bps for the last bottleneck
‡ 45×106bps for the last bottleneck

The majority of traffic (> 90%) traversing the bottlenecks is
the background traffic. It consists of thousands of TCP sessions
of varying lengths generated by Tmix [23] with standard TCP
using the TCP evaluation suite traces which were generated
from real traffic traces. (available at http://hosting.riteproject.
eu/tcpevaltmixtraces.tgz).

The simulations are run for 1200 s (20 min), with each test
source sending exponentially distributed 500 B packets. Test
sources 3 & 4 send packets at half the rate of test sources 1
& 2.

Fig. 5 shows the simulation results. Time is along the x-axis,
with the y-axis divided into three parts: the bottom showing
the queue sizes of the bottleneck links in 103 B, above this
the OWD (ms) measured at the sink, and on top the grouping
decisions made by the mechanism. The grouping part y-axis
tick labels show flows grouped for the point plotted. Grouping
decisions occur every 350 ms (with more than 3000 possible
decisions in this run), but only flows which have a γ̂ < 0
are grouped. The point size is large for visibility, but this
tends to magnify the significance of isolated points. The test
has three main sections: 1) a single bottleneck (0 < t ≤ 740s)
2) multiple bottlenecks – flows only share one bottleneck
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Fig. 5. Three part graph showing grouping decisions, OWD measurements,
and actual bottleneck queue sizes over a 1200 s simulation run. Bottleneck
queue sizes have been subsampled (1:350) and OWDs (1:20)

(750 < t ≤ 1040s) 3) multiple bottlenecks – flows can share
more than one bottleneck (t > 1050s).

1) single bottleneck: Bottleneck A is activated at t = 50s.
It is shared by links 1 & 2 and although the congestion level is
low, grouping is correct. At t = 150s bottleneck B is activated
with flows 1 & 3 grouped correctly during the congestion
episode. Similarly, bottlenecks C, D, E, and F are activated
in turn. At t = 650 bottleneck G carrying all 4 flows is
activated. The congestion level is quite high over the activation
period. Just before this, flows 2 & 3 are grouped due to a
small amount of congestion on bottleneck C. However once
congestion is strong on bottleneck G all 4 flows are grouped
together. The queueing delay starts to drop near the middle
of this congestion episode yielding γ̂ > 0, resulting in no
grouping decision being made and a gap on the graph.

2) multiple bottlenecks – flows only share one bottleneck:
This is a more interesting, but difficult test. It relies on the
statistical differences between the bottlenecks. At t = 750s
both bottlenecks A & D are activated at once. At first this
simultaneous onset of congestion for all flows causes them to

155
Authorized licensed use limited to: IEEE Xplore. Downloaded on July 17,2024 at 15:26:02 UTC from IEEE Xplore.  Restrictions apply. 



(A) Sweden 

Operator 
(I) 

Operator 
(II) 

(B) Spitsbergen 

(C) Kristiansand 

(D) Germany 

(E) Gjøvik (F)         (G) 

Internet 

Tbox%

Oslo 

NNE - I 

(I) 

(II) 
1, 5!

4, 8!
3, 7!2, 6!

U.K.!

Flows: 1,2,3,4 

Flows: 5,6,7,8 

Fig. 6. NorNet set up. Our sink is the multi-homed NNE-1 node. The main
bottlenecks are on the 3G wireless links, with a secondary bottleneck possible
at the Oslo Tunnel Box (TBox)

be grouped together, but as the statistical differences become
measurable they are grouped separately. Similarly, flows are
only very briefly wrongly grouped together as first B & E, and
then C & F are activated.

3) multiple bottlenecks – flows can share more than one
bottleneck: This is the most difficult problem for shared
bottleneck detection since a flow passing through more than
one bottleneck has the characteristics of both bottlenecks. At
t = 950s both bottlenecks A and B are simultaneously
activated. Unless the measured statistics of one bottleneck
are significantly larger than the other, it is difficult for the
mechanism to group flows. Reliably grouping flows that
share multiple bottlenecks is beyond the capabilities of this
mechanism.

B. Network tests

In order to justify the effectiveness and robustness of the
proposed algorithm in operational networks, we conduct real-
world experiments. The experiments are run on the NorNet
testbed, consisting of wire connected NorNet Core (NNC) [5]
and the wireless NorNet Edge (NNE) parts[11]. Having our
test traffic traverse the Internet and mobile wireless links has
the effect of making the delays on which the mechanism bases
its decisions realistic.

1) Test Setup: Fig. 6 illustrates the measurement setup
using both NNC and NNE nodes connected across the Internet.
On the right-hand side, we show the NNC sites and their
locations. The green solid lines indicate the NNC sites that
generate application traffic, while the red solid lines indicate
the NNC sites that generate the background traffic used to
create the bottlenecks. Note that all traffic generated at each
NNC site (except for (F) and (G)) will first go through the
Tbox in Oslo, before going out again on the Internet towards
the NNE node. NNE-1 is connected to the Internet via two
different 3rd Generation (3G) Universal Mobile Telecommu-
nications System (UMTS) UM (NNE) service providers.

The ground truth concerning bottlenecks is not 100% known
in a real operational network. However we use traceroute
and STAB [15] to identify the tight common links along the
paths from the NNC nodes to NNE-1 (the wireless links, and
on occasion the link through the Oslo Tbox). We then generate
background traffic from NNC nodes (A),(B) and (C) in order
to create realistic bottleneck conditions on the 3G links.

Operators (I) and (II) have very different 3G links each with
a different data rate. The queue on (I) appears to use some sort
of Active Queue Management (AQM), while the queue on (II)
appears to rarely drop packets.

Background and application modelling traffic are generated
with UDP using D-ITG [1] from all NNC sites to NNE-1 via
operators (I) and (II):
Background: (A) generates one exponentially distributed flow

with mean rate of 92 packets per second (pps) via (I),
and another 460 pps flow via (II). (B) and (C) generate
more complex long range dependent traffic (Hurst=0.8).
(B) and (C) each generate 8 exponentially distributed
flows with Pareto distributed on times, and exponentially
distributed off times: 4 by 2s/2s and 4 by 5s/5s on/off
intervals at 72 pps via (I), and 8 flows with 1s/1s, 2s/2s,
..., to 8s/8s on/off intervals at 90 pps via (II). Background
flows have variable packet sizes with an average 1000 B
per packet.

Application: (D),(E),(F) and (G) generate the traffic we mea-
sure in order to test our mechanism (flows labelled
1,2,. . . ,8 in Fig. 6) . In a real system, this will just
be the application traffic. For this test, we ensure that
it comprises of a minority of the traffic traversing the
bottlenecks, and that it does not have characteristics that
on its own would make it easy to group. Sites (D), (E),
and (F) generate an exponentially distributed flow of 100
pps with 50 B packets. (G) generates a constant rate of
100 pps with 50 B packets.

Using OWDs and packet loss observed at NNE-1, the
mechanism attempts to group flows according to the current
bottleneck conditions.

The experiments were run for 1200 s (20min), with the
mechanism using the same parameters that were used in the
simulation experiment (see Table I). This shows the robustness
of the mechanism’s operation as this network has very different
characteristics to the simulated network (see Fig. 4).

2) Results: Fig. 7 shows the results in a similar form
to those in Section VI-A with grouping decisions for flows
1,2,. . . ,8 made every 350 ms (more than 3000 possible de-
cisions in this experiment). The bottom half of the graph
shows the OWDs for each of the 8 application modelling flows
versus test time. Note that flows exhibit sizeable different clock
offsets, and clock drift is especially noticeable in the OWD
measurements of flows 2 and 6. The OWDs show a highly
fluctuating load. The top half shows the grouping decisions
with the y-axis tick labels showing flows grouped for the point
plotted.

There are 247 possible non-single grouping arrangements
with 8 flows. The mechanism is able to correctly group flows
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Fig. 7. Two part graph showing grouping decisions and OWD measurements for the NorNet tests. OWDs are sub-sampled (1:5)

1,2,3,4 (sharing 3G link (I)) and flows 5,6,7,8 (sharing 3G link
(II)) when there is significant shared congestion, for example
at times around t = 300 s.

Since both wireless links are in close proximity to each
other, they sometimes share common disturbances. An exam-
ple of this at t = 500s shows the mechanism grouping all 8
flows together.

Flows 1, 4, 5 & 8 pass through a common node in Oslo,
called a Tunnel box (Tbox – see Fig. 6). This at times is also a
minor bottleneck causing these flows to be sometimes grouped
separately often as 1 & 4 and 5 & 8 as they also share the
3G link. As discussed in Section VI-A3, multiple bottlenecks
make correct grouping very difficult.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel shared bottleneck detection
mechanism based on computationally simple estimates of time
and frequency domain summary statistics. It has been shown
to be robust in both simulation and real network tests. The
mechanism has a wide range of applications from WebRTC to
possible implementation in kernel protocol stacks.

In our continuing work, we plan to investigate thoroughly
the effect that changes to the different parameters have and
their robustness in different scenarios. In looking at different
scenarios we plan to define and generate useful quantitative
statistics concerning the mechanisms efficacy. The mechanism
has been designed to be practical, but this will be further tested
as we implement the mechanism, and as a first example, inte-
grate it with the coupled congestion control efforts proposed
for standardization in the RMCAT Working Group of the IETF.
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