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Abstract—Cryptographically-Curated File System (CCFS)
proposed in this work supports the adoption of Information-
Centric Networking. CCFS utilizes content names that span trust
boundaries, verify integrity, tolerate disruption, authenticate
content, and provide non-repudiation. Irrespective of the ability
to reach an authoritative host, CCFS provides secure access by
binding a chain of trust into the content name itself. Curators
cryptographically bind content to a name, which is a path
through a series of objects that map human meaningful names
to cryptographically strong content identifiers. CCFS serves as
a network layer for storage systems unifying currently disparate
storage technologies. The power of CCFS derives from file hashes
and public keys used as a name with which to retrieve content
and as a method of verifying that content. We present results
from our prototype implementation. Our results show that the
overhead associated with CCFS is not negligible, but also is not
prohibitive.

Index Terms—Inter-operable Heterogeneous Storage, Content
Centric Networking (CCN), Delay Tolerant Networking (DTN),
Information Centric Networks (ICN), Name Orientated Network-
ing (NON), Cryptographically Curated File System (CCFS), Self
Certifying File Systems

I. INTRODUCTION

The traditional Internet was designed to accommodate a
body of users who desired to visit specific network locations.
Today, the majority of users are more interested in obtaining
a specific content of knowledge than in visiting a specific
website. This demand for information has led to a proliferation
of proposed alternative network architectures that emphasize
content on the network, as opposed to the location of that
content [1], [2]. In the literature, this work is variably referred
to as information-centric, name-oriented, content-centric, and
other similar names. Although irrefutable advantages have
been soundly defended by the researchers of Information-
Centric Networks (ICNs), there has been relatively slow
movement toward any mass adoption of ICNs. We believe
this resistance rises from a combination of concerns about
security, interoperability with legacy networks, and difficulty
of implementation.

In this paper, we propose a secure, inter-operable, easily
implementable first-step toward adopting ICNs in the form
of a Cryptographically Curated File System (CCFS.) In this
file system, any individual or entity serves as a curator, or
collector of content objects. The curator of content binds a
name to the content by means of a cryptographic signature.
This content name is the path through a series of Content

Objects that map human readable names to cryptographically
strong content identifiers (CID). The names are based on cryp-
tographic operations to enable multiple independent, but inter-
operable, namespaces. By relying on cryptographic properties
of content, rather than location-relative identifiers, the content
can be moved between systems without the need to translate
content names from one naming model to another. The dual
usage of cryptographic hashes and public keys, as both a
name with which to retrieve content, as well as, a method
of verifying that content, adds security to the system. CCFS
serves as a network layer for storage systems and can be used
with any ICN or Content Delivery Network (CDN). CCFS
can unify currently disparate storage technologies into one
universal storage pool. CCFS is, therefore, a system of file
hierarchies that is both storage-method and delivery-method
agnostic, making it inter-operable and easily implementable.
Additionally, CCFS can be readily used by consumers of con-
tent because of its familiar file system interface. Furthermore,
Global adoption is not required for local use of CCFS. Any
local community can adopt CCFS protocols and immediately
reap the benefits of ICN.

Moreover, CCFS simplifies the current dominant network-
ing paradigm which includes three distinct hierarchies for
naming, trust, and retrieval into only one naming hierarchy.
The dominant naming model is the DNS; the trust model is
the X.509 certificate chain; and the retrieval model is CDN
(content delivery networks). In CCFS, the naming convention
serves as all three: a unique identifier to reference content,
as a trust model to verify the integrity of the content and its
inclusion in a curated collection, and as a sequence to be used
to retrieve the content.

CCFS maps between two types of names. One is the hi-
erarchical arbitrarily-chosen name that is required by humans
and by many applications. The other is a flat self-certifying
unique name that is capable of being used by a name oriented
network. CCFS provides this mapping in a cryptographically
secure way by using hashes and signatures. This mapping will
cause name oriented networks to be compatible with existing
file-systems as well as with the DNS paradigm. This will
allow for wide adoption, making the benefit of name oriented
networking economically leverageable.

Finally, under the current Internet paradigm, content is
trusted because the receiver trusts the deliverer of the con-
tent, the content host. Consider the X.509 for the name

39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 142
Authorized licensed use limited to: IEEE Xplore. Downloaded on November 27,2024 at 15:52:47 UTC from IEEE Xplore.  Restrictions apply. 



”mail.google.com”. The name ”mail.google.com” is signed by
”Google Internet Authority G2”, which is signed by ”GeoTrust
Global CA”, which is signed by ”Equifax Secure CA”. This
X.509 chain of trust is then used to bind the DNS name to
Google’s CDN servers. The end user trusts the front-end server
and that server authenticates the back-end servers. This creates
a large number of sources of authority. The compromise of any
one of these sources of authority will lead to content integrity
becoming vulnerable. If any Certificate Authority (CA) in the
X.509 chain, or any domain along the dotted URL path, or
any front end server is compromised, then the whole system
fails. Even when these systems are working, moving content
or services between domain names or certificate authorities
can be difficult and costly.

The necessity of highly trusted CA’s and content hosts,
however, is a construct of the current architectural design, not
a fundamental necessity. With CCFS, only one hierarchy is
necessary. A curator, an individual or entity that has the private
key to a collection of content, can add or remove content to the
collection. The curator adds content to the collection by nam-
ing the content and signing the new version of the collection.
The content name is a consistent pseudonym, capable of being
associated with a level of trust. The receiver of content can
verify that the content is identical to the content of interest and
was named by the claimed curator. Curation is accomplished
by using cryptographically strong hashes and signatures. The
hashes and signatures are references connecting component
parts of a human readable name. Under CCFS, anyone who
possesses specific content can deliver that content. The content
is trusted because the receiver trusts the curator. Any specific
content could be contained within any number of collections,
under any number of names. The content host does not have
to be the content curator.

With CCFS, the trust hierarchy is inherent in the naming
hierarchy. Whereas, in the dominant public key infrastructure,
certificate chains certify connections, as described above; in
CCFS, object chains certify content. With CCFS a chain of
trust persists within the content name, rather than with the
chain of Certificate Authorities. The content is independently
verifiable, irrespective of the host that provides the content.
Content durability, therefore, is no longer limited by the
longevity of authoritative hosting. This limitation is a problem
colloquially referred to as link rot.

In Section II of this paper, we discuss the related work.
Section III includes a description of the CCFS model. An
evaluation of the prototype implementation along with the
results is presented in Section IV. Lastly, Section V presents
our conclusions.

II. RELATED WORK

The pioneer efforts in information centric networking can
be found in Van Jacobson’s work [2]. Other models have
taken a variety of approaches to ICN, but none have been
widely embraced. In this section, we briefly discuss the related
work in this domain of research and suggest how CCFS offers
advantages or compliments other approaches. CCNx [1], [2]

uses hierarchical naming that includes the publisher and a
content identifier along with other information. Consumers
of content make requests for content based on the content
identifier and the publisher directly, and the request is routed
to the closest host that has the content. There is no conversion
from the content identifier to a location address, and there
is no use of cryptography. DONA [1], [3] uses names that
contain a cryptographic hash of the publisher’s public key and
a content identifier. The content names are registered along
with a location address with a Name Resolution Handler,
which relates content to the authorized points that store the
content. The Resolution Handler must be available and con-
tacted before deliveries can be made. Net-Inf [1] does not use
cryptographic keys directly as identities, but can be included
in an identification object. This is similar to DONA in that it
registers content that it calls Information Objects along with
their location addresses to a Name Resolution Service (NRS).
The system is not dynamic and the NRS must be updated as
providers, and often consumers, move to new locations. Juno
[1], [4] uses flat self-certifying names that identify content and
utilizes a Juno Content Discovery Service (JCDF), as well
as, other third party indexing services. Location Addresses
are used for routing as in Net-Inf and DONA. Juno also
allows for choosing content hosts by multiple criteria, as
opposed to simply looking for the nearest location of the
content. The JCDF must be updated to show changes in
provider locations. LANES, Logical Address space Network
[5], uses cryptographic naming for Name Identifiers and Scope
Identifiers (SI). Subscribers use Application Identifiers, which
are human readable and are mapped to Rendezvous Identifiers
(RI). A number of Distributed Rendezvous Services translate
the RI into a Forwarding Identifier (FI) which leads the
consumer to the location address of the content. The SI is
used to restrict certain access to content. Note that the local
Rendezvous point and service must be accessible to retrieve
the content. Mobility First [6], [7] is a multiphase, significant,
joint effort of multiple universities, that is taking a more
comprehensive approach to developing a clean slate content-
centric network architecture from a ground up perspective.
This project utilizes many of the concepts examined by others,
such as cryptographic self-certifying names, Global Naming
Conventions with Human Readable Names that are converted
to Globally Unique Identifiers with a Global Name Resolution
Service (GNRS), and converted into Network Addresses. The
Mobility First project is a work in process, however, the system
will require cooperation in the adoption of a global common
naming convention and the use of a GNRS.

The other area of research that relates to CCFS is work done
on self-certifying file systems. Two examples that are similar
to our work are the Least Authority File System (Tahoe-LAFS)
[8] and Content-Addressable Multi-Layer Indexed Storage
(Camlistore) [9]. Although similar to the authors’ proposal,
Tahoe-LAFS has different goals from our work. Its reliance
on cryptographic capabilities is effective for maintaining the
principle of least privilege. In contrast, our focus is on curation
aspects such as authenticity, and non-repudiation, as well as
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on human readable names. LAFS has chosen to include the
global and secure aspects of Zooko’s triangle [10], which
holds that no naming system can be global, secure, and
memorable (human-meaningful.) CCFS adds the aspect of
human recognizable names translated to global and secure
names. By remembering only her own globally secure ID,
and using the tool of curation, the user can collect the global
IDs of others and assign them memorable names within
the curator’s own collection. Camlistore is another content-
addressable storage which incorporates indexing and searching
for content. Although Camlistore is content-centric, CCFS
differs from this model in its architecture and protocols.

III. CRYPTOGRAPHICALLY CURATED FILE SYSTEM
(CCFS)

CCFS is a trust model based on a distributed system of
content objects that can be cryptographically referenced and
authenticated by their hashes and signatures in a hierarchy
defined by chains of trust. The chain of trust in CCFS results
from the curator choosing which other curators to include in
their namespace as opposed to X.509 where content hosts
choose the authority that will certify their site. Currently,
validating a message means authenticating the channel. Under
CCFS to validate a message means to authenticate the content
and the curator.

CCFS is a system of file hierarchies that is both storage-
method and delivery-method agnostic. In the strictest sense,
CCFS is an abstraction on top of storage, just as IP is an
abstraction on top of the existing packet forwarding system.
Just as IP has revolutionized packet-switched networks, CCFS
could revolutionize storage and delivery. The value derived
from the adoption of IP was due to the ability of developers to
build both above and below the IP layer. As with IP, the value
of CCFS derives from the ability to build upon the layer, both
from above and from below. In CCFS, the upper layer consists
of interfaces to the content that is stored in CCFS, such as
filesystems or URIs. The lower layer contains technologies
that provide for the storage and retrieval of the content objects.
This layered approach led to the explosion of innovation that
followed IP adoption, and could have a similar effect following
the adoption of CCFS.

A. Components of CCFS

The CCFS model requires the use of two cryptographic
primitives, four types of content objects, and two lookup
services. The construction of these components is described
below. The first primitive is a cryptographic hash function
which converts binary data of any length to a fixed length
binary string (Hash) such that the following three conditions
hold:

• Given a Hash h it should be difficult to find any message m
such that h = Hash(m).

• Given an input m1 it should be difficult to find another input
m2 such that m1 6= m2 and Hash(m1) = Hash(m2).

• It should be difficult to find two different messages m1 and m2
such that m1 6= m2 and such that Hash(m1) = Hash(m2).

Because of these properties, a resultant hash can be unequiv-
ocally used to identify the initial data. Collision avoidance is
inherent because the identifier keys are uniformly randomly
generated. The probability that any two will be identical
for a 256 bit number is infinitesimally small, sometimes
approximated at 2−128, a well known calculation referred to
as the birthday problem. The second primitive is a digital
signature used to sign data, for which two conditions must
hold:

• The signature requires knowledge of the data and a private key
in order to be generated.

• The signature requires knowledge of the data and the corre-
sponding public key to be verified.

In this way, the digital signature is proof that the signed
content was signed by the holder of the private key.

TABLE I
CCFS CONTENT OBJECT TYPES

TYPE PURPOSE CONTENT FORMAT

Blob Static; contains data {ByteArray}

List
Static; Exclusive
map from: next name segment
to: HID, Type

{ [ NameSegment,
ObjectHash,
ObjectType ] }

Commit
Versioned; Exclusive map
from:HKID
to:List’s HCID

{ListHCID,
Version Number,
ParentHCID,
Signature, HKID}

Tag
Versioned; Non-exclusive map
from:HKID, next name segment
to: HID,Type

{ObjectHash, ObjectType,
NameSegment,
Version Number,
ParentHCID,
Signature, HKID}

1) Content Object Types: CCFS utilizes four types of
Content Objects, as described in Table I. The ”BLOB” object
is a data container with no inherent structure. The BLOB
is the content of interest requested by the user. A BLOB is
referred to by the hash of its content, HCID (Hash of Content
IDentifier). The ”LIST” object is a table used to look up
a human readable name to obtain the type and hash (HID)
of the content to which it refers. A LIST is a flat text file,
each line of which contains a name (Name Segment), a type
(Object Type), and an HID (Object Hash). The first field
is the next Name Segment in the name path. The second
field indicates the Type of content object to which the Name
Segment refers. The HID is the cryptographic name of the
Content Object. A LIST is therefore a specific type of blob
and, like other blobs, can be referred to by its Hash of Content
Identifier (HCID). The exclusive use of the BLOB and LIST
types, would allow users of CCFS to identify static content
only. Any modification of the BLOB or LIST creates a new
HCID and requires updating all references to the content.
To accommodate identifying collections of dynamic content
(content that changes over time) we define two additional
Content Objects. A ”COMMIT” is used to indicate a specific
version of the dynamic content of a Repository, a collection
that explicitly versions all items in the collection as a whole.
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Fig. 1. CCFS Retrieval Flow Chart

A COMMIT is a flat text file, containing the Hash of a List
object (HCID), a Version Number, a Parent Hash (HCID),
a Signature, and the Hash of the public Key that verifies
the signature (HKID). The first field in the COMMIT is the
HCID which always points to a LIST. The next field indicates
the version number used to determine the latest version of
the dynamic content. The Parent Hash HCID indicates the
ancestor content that was used to create a new version of
the content. The Parent HCID allows the merger of versions
when two or more users are making modifications to the
content independently. This represents the exception where a
COMMIT is referenced by an HCID, as opposed to an HKID.
The Signature is created by signing the previous fields in
the COMMIT with the Curator’s private key. The last field
in the COMMIT contains the Hash of the public key that
verifies the signature (HKID). The identifier in this field is
the HKID that is used to identify this COMMIT, along with
all of its previous and future versions. A TAG is similar to
a COMMIT, but is used to indicate a specific version of a
single item within a Domain, a collection that versions items
in the collection independent of other items in the collection.
A COMMIT points to a LIST, whereas a TAG includes the
Name Segment, Object Type, and Object Hash directly within
the Tag, allowing for items to be version-ed independently.
A ”TAG” is a flat text file containing the Hash of a Content
Object (HID), an Object Type, a Name Segment, a Version
Number, a Parent HCID, a Signature, and also the Hash of
the public key that verifies the signature (HKID).

2) Lookup Services: CCFS requires that the underlying
storage system provide two data lookup services. The Hash
of Content Identifier (HCID) lookup service uses HCIDs as
inputs, and outputs BLOBs, LISTs, or Keys. The Hash of
Public-Key Identifier (HKID) lookup service uses HKIDs as
inputs, and outputs COMMITs or TAGs. These services can
be provided by a combination of underlying systems that are
as simple as a classical file system, or as complicated as a
global scale information centric network. An example folder
structure implementation is as follows:

\blobs\<HCID>

\commits\<HKID>\<Version>

\tags\<HKID>\<Name Segment>\<Version>

B. CCFS Procedures

The main operations performed with CCFS are to retrieve
and verify content and to curate content. The steps to perform
these operations are in Figure 1 and listed below:
R1 START: Input HKID and Human Readable Path to Content
R2 PUBLIC KEY VERIFICATION: Obtain public key for HKID;

If key hashes to HKID, then key is valid
R3 LOOK UP COMMIT/TAG: Retrieve latest version Commit and

Tag that contains HKID
R4 VERSION CHECK: Verify signature on most recent version
R5 LOOK UP LIST: Extract HCID from the Commit or Tag;

Retrieve List for HCID
R6 NAME SEGMENT MATCH: From List, extract HID and Type

associated with next Name Segment
R7 TYPE CHECK: If Type is Commit, use HKID to find next

Commit; Check version
If Type is Tag, use HKID to find Tag with next Name Segment;
Check Version
If Type is List, use HCID to find List, then if HCID verifies
Content Object, go to next Name Segment
If Type is Blob, use HCID to find Blob, then if HCID verifies
Content Object, return content

R8 END: If verification has succeeded, return data with successful
status code

The curation process is an extension of the retrieval process
and the associated procedures are listed below:
C1 Curator selects content and chooses a Human Readable Name,

for example, path\to\file.txt
C2 Follow the Name path as if retrieving the content
C3 Keep track of Commits and Tags to determine last Commit or

Tag (closest to the end of the name), and the Lists that follow
the Commit or Tag

C4 Publish the content as a Blob to storage
C5 Generate or Update List Object with HCID of the new Blob
C6 Repeat step 5 until a Commit or Tag precedes the revised list
C7 Update Commit or Tag with the new List, signing with Private

Key associated with the HKID
C8 Publish the Commit or Tag Object to storage
C9 Perform a Retrieve operation to obtain Content to verify suc-

cessful curation

The power of CCFS derives from the dual usage of the
file hashes and the public keys, as both a name with which
to retrieve the content, as well as, a method of verifying the
content.
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Content retrieval under CCFS assumes four conditions.
First, CCFS software is present on users’ devices. Second,
users have stored the HKID of a curator that they trust. Third,
there exists a communication path from the requesting node
to some node containing the content and the content objects
leading to it. Fourth, the retriever knows a human readable
path from the curator root to the desired content, for example,
<HKID>/path/to/file.txt. HCIDs (Hashes of Content Objects)
and HKIDs (Hashes of Curator’s Public key) will be used to
retrieve the Content Object, and also to insure its validity. The
HCID checks the validity of a Blob or List. The HKID verifies
the public key, which in turn, is used to verify the Signature
on Commits and Tags. To retrieve the requested content, the
system follows the iterative steps as shown in Figure 1. and
simplified in Figure 2.

Fig. 2. CCFS Iterative Retrieval Process

IV. PERFORMANCE EVALUATION

In this section, we present CCFS performance evaluation
results. We include empirical results of the prototype imple-
mentation, a discussion of the enhancements that CCFS adds
to previous proposals for ICN, and finally, a comparison of the
security advantages of CCFS over X.509 + SSL, the currently
dominant on-line architecture for secure content delivery.

A. Proof-of-Concept Implementation

To prove the viability of CCFS, we built a prototype. We
developed an implementation of CCFS that used FUSE (File
System in Userspace [11]) in order to export CCFS to a Linux
operating system as a file system. The cryptographic hash
function that we used is SHA256 and the digital signature
algorithm is ECDSA over Nist’s curve P521. This implemen-
tation was benchmarked on a laptop with an Intel Core i7 CPU
and 8 GB of RAM running Ubuntu 13.10.

In Figure 3, we show the time to access files stored in the
form of each of the following content object types: a blob
that is accessed directly (blob), a commit that points to a blob
(commit → blob), a tag that points to a blob (tag → blob),
and a list that points to a blob (list → blob). Each type
of retrieve takes approximately the same amount of time.
This similarity is evidence that the cryptographic overhead is
dwarfed by the other overhead in the system. Therefore, there
is not a high price paid for the cryptographic security. The
FUSE overhead dwarfs the cryptographic overhead which is
significantly different for each content type. For comparison,
access time is shown for Ext4, the native file system in Ubuntu
kernel. The difference between these two measures is the
overhead of CCFS and is approximately one millisecond which
is non-negligible, but not prohibitive.

Fig. 3. File read times in microseconds

The second item we measured is the time that the core
logic of CCFS takes to perform its main functions of storage,
retrieval, and verification under a variety of conditions. These
times are shown in Figure 4. The experiment was set up as
follows: a web server was run on the local host for serving
the Content Objects. In addition, Content Objects were stored
in Google Drive and accessed through the Google Drive
web API. Of the operations performed in the benchmark,
the most common time for the completion of operations was
approximately 150ms. This is a 682 fold increase over the
220µs use of the local file system. The local-only bar graphs
refer to CCFS, running with only the local hard-drive as a
content source, whereas, the multi-source bars indicate that
Google Drive was also available as a content source. The
multi-source outperformed the local-only in all operations.
This outcome is consistent with theory: As the number of
sources are increased, the multi-source performance (i.e. the
performance of CCFS) will also continue to increase. The
broader the adoption of CCFS, the better CCFS will perform.
Adding more sources will not degrade performance as shown
in Equation 1 below:

mean(min(σi, νi)) ≤ min(mean(σ),mean(ν)) (1)

where σ and ν are vectors of the latencies of requests for
content and where σ ∪ ν ∈ R and |σ| = |ν|.

The CCFS measurements are comparable to a sam-
ple of measurements of Web performance. These mea-
surements are included here to provide anecdotal evidence
of a rough order of magnitude of latency on the In-
ternet today for purposes of comparison. The sample of
Web times include the following: 217ms average ping
time to www.com.au in Australia, 48.667ms average ping
time to googleapis.com, and 359ms average wget time to
googleapis.com. The code for these observations is publicly
available at github.com/AaronGoldman/ccfs [12].
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Fig. 4. Time per operation in Milliseconds

B. Enhancements to Information-Centric Networking

CCFS possesses unique attributes that can leverage the
advantages of previously proposed ICN models.

1) Delegatable Namespace: CCFS introduces a unique
distributed naming model in which each curator has control
over her own namespace, independent of a central namespace
arbiter. A curator can delegate a segment of that namespace
to any other curator, who in turn can delegate a segment of
his namespace to yet another curator. This creates a nesting
doll type of embedding that allows the consumer who trusts
one curator to trust a series of subsequent curators, each
included within an earlier curator’s namespace. The CCFS
software would be distributed with a default list of HKIDs
of trusted curators. The users would add those they choose to
their own curated space. They would also add lists of curators
they know and trust through personal connections. Through
CCFS, curators that are trusted would then point to additional
curators that once discovered could be added to their own
collection. Once a users collection is populated, he only needs
to remember his own HKID to use the system.

2) Independent Control: Other proposed content-centric
models [1] rely on a central authority, on global adoption
of an explicit name structure, or some other variety of name
resolution arbitrator. This reliance on a third party is subject
to external control with the potential of undesired filtering
or interference with the free flow of information. CCFS does
not depend on any central arbiter because each curator has
control over her own namespace and each name is relative
to the curator. There is no global namespace to be arbitrated,
therefore CCFS offers arbitration-free content distribution.

3) Durable Content: CCFS creates content permanence by
separating the retrieval of content from the ability to reach the

original curator, eliminating the problem of link rot. CCFS
certifies that the content returned is exactly identical to the
content when it was named (added to the collection) by the
curator. Since cryptographic names are tied forever to the
content, the trust model is inherent in the name of the content,
itself, and does not rely upon contacting the curator or any
other trusted authority. The content persists long after the
curator may no longer exist. In addition to this content object
permanence, CCFS is disruption tolerant. Content remains
available from any host that has the content even when central
authorities are disrupted by natural, technical, or malicious
disasters.

4) Inter-operable: As previously stated, CCFS is an overlay
network layer that can be built upon from above or below. It
will operate with any ICN and any Content Delivery Network
(CDN). CCFS provides a system of file hierarchies that is both
storage-method and delivery-method agnostic, making it inter-
operable with legacy technologies. The familiar file system
interface adds to the ease of usability by all consumers.

5) Implementable: CCFS is a convenient first step to take
towards the introduction of ICN. The building blocks of the
architecture and elements of technology are simple and have
already been tested and applied in other contexts. Moreover,
CCFS does not require a global adoption nor a major clean
slate restructuring of the Internet. A local community such as
a university, an organization, or a geographic neighborhood
can implement CCFS and have a functional ICN with little
investment of resources. CCFS can be easily implemented on
a local community basis and then as communities interact with
each other, CCFS will be applied on a more global basis. This
in essence is the roadmap that can lead to widespread adoption
of CCFS.
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6) Secure: Through the use of well-established crypto-
graphic principles to create hashes of content and signatures,
CCFS protects privacy and provides a method of verifying
the identity of both curators and content. For a discussion of
CCFS and its role in establishing the fundamental attributes
of security, see the discussion comparing CCFS to traditional
Internet technology.

C. Security Attributes of CCFS

CCFS offers positive contributions in all areas of in-
formation security: availability, integrity, authenticity, non-
repudiation, and confidentiality. Each of these is included in
Table II and discussed below, and comparisons are drawn with
the currently dominant X.509 and SSL systems.

1) Availability and Scalability: With CCFS, multiple con-
tent sources offer improvements in availability and scalability.
Currently, content is retrieved from a single authoritative
source, for example, a Web server with an X.509 certificate.
CCFS retrieves content from any source where it resides and it
derives the authoritative certification from the chain of objects
in its name. Anyone can store and forward content without
loss of authenticity. Caching content closer to the requester
will reduce the load for the delivery of popular content. Many
techniques that improve availability and scalability require the
content publisher to coordinate with the content delivery net-
work (CDN), often at great cost. Under CCFS, these services
can be provided by anyone who has the means and motivation
to cache and re-host the content. Rational actors choosing to
host content may include subscribers wanting to support a
publisher, ISPs trying to redu ce their peering costs, members
of a peer-to-peer community sharing the costs of hosting,
Internet archives such as archive.org, or for-profit content
hosting services. All stakeholders contribute to availability and
scalability.

The availability of content from any location where it
resides mitigates the chance of the content becoming irretriev-
able upon disruption to any one source location. The content
continues to exist and can be accessed without reliance upon
either a centralized authority or the original host. Disruption
to these entities will not necessarily hinder the accessibility
of the content. Content can also be retrieved if either the
authoritative host or the content consumer is mobile. With
CCFS, as content consumers move across geographic or
domain boundaries, they can continue to access content from
the nearest source. The content host can be mobile without
eliminating access to the content. CCFS will not only scale to
accommodate proliferation of base stations and mobile hosts,
but will actually improve performance with densification due
to cooperative caching.

2) Integrity, Authenticity, Non-repudiation: Integrity, au-
thenticity, and non-repudiation, under the current paradigm,
are handled by a chain of custody. The channel, and not the
content, is authenticated under the currently dominant X.509
+ SSL system. The creator provides the content to the content
host through an SSL channel and the host provides the content
to the CDN through a subsequent SSL channel. The subscriber

retrieves the content from the CDN using a third SSL channel.
If the CDN and the host can not be reached, no alternative host
can deliver the content because the chain of custody can not
be verified. Currently, caching is subject to time-to-live issues,
as well as, to accidental or intentional cache poisoning.

In stark contrast, the CCFS model allows for content to
be identified by a Name that serves as the chain of trust.
The CCFS Content Objects are certified by the content, itself,
as opposed to the delivery channels. Under CCFS, as long
as a single hash (HID) can be stored securely, this seed of
trust can be used to verify the content being delivered. Once
verified, the delivered content can be used to retrieve and
verify subsequent content. The integrity under CCFS is assured
by the content hashes (HCIDs). The authenticity and non-
repudiation are provided by Signatures that associate content
with curators.

3) Confidentiality, Privacy: With CCFS, requests for con-
tent will reach a greater audience as a broader network
is searched. This increases the probability of successfully
retrieving content in spite of network disruptions, but results
in less privacy. In practice, however, CCFS increases the
inconvenience of tracking who is accessing content. This
provides a level of increased privacy to the retriever of the
content data. In exchange for performance, trade-offs can be
made that will diminish the loss of privacy. Two techniques
for this purpose are onion-routing and compartmentalization
[13]. Onion-routing helps disguise the identity of the requester
of content by using multiple layers of encryption and will
operate easily with a CCFS network. Compartmentalization,
which allows the requester to break the request into multiple
segments which improves privacy, can be used with CCFS,
but not with current content delivery networks.

V. CONCLUSION AND FUTURE WORK

The Cryptographically-Curated File System, which we pro-
pose in this paper, offers a secure, inter-operable, and easily
implementable first step toward Information Centric Network-
ing. The benefits of CCFS include improvements in avail-
ability, authenticity, integrity, non-repudiation, and scalability.
The advantages of CCFS, extend not only to content con-
sumers, but also to content producers. Content consumers will
seamlessly access content from the closest source, even as
the closest source continues to vary. CCFS allows content
producers to share the burden of hosting and distributing
content with others who also host the content. It allows the
producer to leverage others content distribution infrastructure
to distribute content. CCFS performance will continue to
improve with the proliferation of mobile hosts, base stations,
content hosts, and software optimizations. The CCFS user will
experience greater performance, and with greater privacy, than
is now experienced under current networks.

In this work, we presented the conceptual groundwork
and fundamental elements of CCFS. We also implemented a
prototype of the CCFS design on real systems using Google
Drive. Results show the feasibility of CCFS. We evaluated
its performance with respect to the timing of file operations
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TABLE II
EVALUATION OF CCFS

LEGACY X.509 + SSL PROPOSED CCFS

Confidentiality (privacy) Interactive communications
Key exchange and on public key cryptography(PKC)

store/forward communication
Public key cryptography(PKC)

Integrity Cyclical Redundancy Check (CRC)
Error resistant but easily attacked

Hash is tamper proof
Integrity built into system

Availability (reliability) URL & Cache (identical URL)
Cache content expires
Synonyms - no cache hit
Local caching

Cache (by Content Hash)
Content never expires
No synonyms, No homonyms, one to one Hash
Distributed caching

Authenticity Authoritative source trusted
Chain of custody required
Server authenticated

Content self authenticating
Custody is irrelevant
Content authenticated

Non-Repudiation Uses public key cryptography (PKC)
and symmetric key cryptography
Non-repudiation is not imposed

Uses public key cryptography (PKC)
and cryptographic hashing
Imposes non-repudiation

Scalability Scales at great cost
Large scale CDNs
High cost bandwidth
High cost for popular content
Fragile for rare content
Limited by central authority

Scales with popularity
Distributed resources
Proximity related queries
Maximizes local retrieval
Low cost
Unlimited distributed authority

and network operations. In both cases the results revealed
that the overhead associated with CCFS was not negligible,
but also was not prohibitive. In future work, we will expand
evaluation of efficiency and scalability, for both local and
global networks, as well as focus on the development of self-
assembling networks to use in conjunction with CCFS. CCFS
can unify currently disparate storage technologies into one
universal storage pool. CCFS is a welcome direction for the
developing Internet, leveraging the benefits of ICN, changing
the query for information from ”what host to reach” to the
simplified, ”what data to fetch” [2].
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