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Abstract—Tuberculosis is an infectious disease widely present in 
developing countries, which is largely motivated by the difficulty 
of a rapid and efficient diagnosis. In order to reduce the number 
of patients suspected of having TB unnecessarily isolated in 
hospitals, thus optimize the use of health resources, we propose a 
systematic procedure for developing a decision support system 
based on specialized MLP network committee. The system based 
on 3 MLP models, which response to input data clusters inferred 
by the k-means technique, exhibits a better classification 
performance than a single network in terms of the number of 
false positives, achieving a sensitivity of 83.3% and specificity of
94.3%.  

Keywords— Decision Support Systems, Expert Networks, 
Artificial Neural Networks, Tuberculosis Diagnosis 

I. INTRODUCTION

Tuberculosis (TB) is one of the major infectious diseases 
that affect the world, particularly in developing countries. The 
causative agent of TB, Mycobacterium tuberculosis, infects the 
human body via the respiratory tract. Although it may causes 
disease in various organs of the human body, the lungs usually 
are the organ most affected, accounting for about 81% of the 
cases reported in Rio de Janeiro; 25% of them diagnosed in 
hospitals [1].

The diagnosis of Pulmonary Tuberculosis (PTB) is 
commonly based on a clinical analysis of patient’s signs and 
symptoms and through diagnostic tests such as baciloscopy and 
culture. Baciloscopy is a simple and reliable diagnostic test, but 
has low sensitivity, i.e. exhibits a reduced performance in
correctly identifying patients which have the disease. Culture is 
a more sensitive test, but it takes about 6 to 8 weeks to be 
concluded and is also restricted to reference or research 
laboratories. Therefore, since 2006, following the STOP TB 
Global plan, new diagnostic approaches were proposed by 
WHO [2]. 

Thus, fast and efficient TBP diagnosis is a challenge, 
particularly on the Brazilian National Health System (SUS), 
demanding an urgent development of new diagnosis 
approaches. Decision support systems (DSS) based on 
computational intelligence techniques can provide very useful 
support tools for tuberculosis diagnosis, especially those 

involving predictive mathematical models based on artificial 
neural networks (ANN).  

Considering the context of the respiratory isolation of 
patients suspected of having pulmonary tuberculosis in 
hospitals, DSS can help medical decision making, reduce the 
number of unnecessary patient isolations, allow a better 
management of hospital resources as well as reduce health 
operational costs [3]. Due to influence life-risk decisions, these 
systems should exhibit high accuracy and robustness to 
different epidemiological scenarios.  

Usually, classification systems employing multiple models 
[4] and following the strategy of divide to conquer tend to
perform better in complex problems than single models. Thus,
this work proposes a systematic procedure to develop a
classification system based on multiple models and input data
clustering to support pulmonary TB diagnosis. According to
this proposal, a reference model synergistically acts together
with specialized classifiers derived upon low performance
clusters to improve system specificity (number of TB negative
patients correctly identified by the system), i.e. to reduce the
number of false-positive cases.

The structure of the paper is as it follows: first, we discuss 
the architecture of specialized models, together with practical 
aspects related to its production. In the sequence, the dataset is 
presented and the results are discussed. Finally, we have the 
conclusions and future work. 

II. SPECIALIZED MODELS SYSTEM

The proposed system of specialized models is based on a
problem decomposition which follows the strategy of spacial 
data division [4,5,6], performed through a clustering technique 
[7]. Some advantages of this approach are: (i) it simplifies the 
process of obtaining a solution since problem is decomposed 
in several simpler and smaller ones, (ii) it allows a cluster-to-
cluster identification of relevant variables, which may be 
tuned according to cluster specificities and (iii) it usually 
results in more robust models, less prone to design issues and 
data errors. 

The proposed architecture is shown in Figure 1. Roughly,
for one or more clusters identified by clustering analysis, 
especially those which exhibit poor classification 
performance, are produced specialized models. Thus, for data 
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clustered into n groups, each one of the m models can be 
assigned to classify events belonging to one or more clusters. 
At the end, a supervisory system, based on the same input data 
clustering, selects the model output to be assigned to any 
arbitrary input. 

Fig. 1: Architecture of the classification system based on specialized models 

A. Development of the specialized models 

For the construction of specialized models, an iterative 
procedure is proposed. Its main objective is to evaluate the 
adequacy of model specialization, i.e. if the production of 
models to some input data clusters improves classification 
performance. Here, the specialization only considered low 
performance clusters. The procedure is illustrated on Figure 2. 

According to it, initially, data is split into clusters and the 
performance of the reference model is inferred for each group 
isolatedly. This evaluation can be based on different 
performance indices. Here, the shape of the ROC curve 
(qualitative analysis) and values of sensitivity and specificity 
(quantitative analysis) were considered. Then, specialized 
models are produced for lower performance clusters and 
compared to the reference model. If model specialization for a 
given cluster improves its classification performance, it is 
inserted into the classification system; otherwise, reference 
model is assigned to this cluster. 

Due to specialization, each new model may consider a 
different subset of variables to predict the outcome. This 
particular choice can result in more parsimonious [8] and 
accurate models. Moreover, the number of events of a 
problematic cluster must be considered to define if a
specialized model will be produced or not. Clearly, this number 
should permit a proper model deviation and is related to 
clustering granularity. Fusions of spatially close problematic 
clusters or involving them and neighbor ones may also be 
evaluated in these cases. 

B. Variables selection 

For the selection of input variables used in each neural 
model, the wrapper strategy [7] based on logistic regression 
model was used. Logistic model is commonly used in medical 
problems and relates a categorical variable (in this case, 

binary) with explanatory continuous and/or binary ones 
(usually considered independent) through a simple non-linear 
descriptive model, whose parameters are estimated by the EM 
algorithm [9].

Fig. 2: Illustration of the procedure proposed for the construction of 

specialized models

 

Considering the wrapper selection, the method of forward 
floating search [7] was adopted. This is an iterative procedure 
where the model initially has only a constant term, one 
variable is inserted at each step and this inclusion is defined 
according to statistical hypothesis tests considering an 
arbitrary significance level. For all steps, variables outside the 
current model are evaluated to inclusion and the one which 
achieves the lowest p-value (highest significance for
inclusion) is inserted. Additionally, after the inclusion of any 
variable, the exclusion of one of the current model variables is 
evaluated, again with basis on hypothesis tests, considering, 
however, another significance level. In this case, the variable 
showing highest p-value (lowest significance for maintenance) 
is selected for exclusion. This process continues until no 
variable can be included or excluded from the model. This 
selection was performed using  Statistical Package for Social 
Sciences (SPSS) software [10] and considered a significance 
level for variable inclusion of 25% and exclusion of 30%.  
  

C. Data mining

Mining procedures were realized upon dataset, aiming to
identify and eliminate events (patients) with inconsistent data 
which might compromise model learning. 

This process excluded patients whose data have gross 
padding errors or exhibited a percentage of missing values 
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greater than 25%.  Additionally, the exclusion of patients TB+
and TB- with same values for their descriptive variables was 
realized. These patients were evaluated by TB experts as 
atypical cases and require a more profound medical 
investigation to define their correct diagnosis, thus do not fit 
into the application scope of the proposed system.  

Subsequently, aiming to produce better training and test 
sets, TB+ and TB- patients were divided according to SAFE 
and DANGER criteria [11,12], which classify events 
according to their neighborhood. Following these criteria, an 
event is classified as DANGER if a given number of his 
nearest neighbors is labeled as belonging to a distinct class 
and SAFE, otherwise. These strategies are commonly used to 
identify errors on event labeling or those critical, i.e. which 
belong to different classes but exhibit high similarity.   

D. Dataset 

The dataset used in model design consists of clinical 
information regarding patients admitted to the 
IDT/HUCFF/UFRJ that were allocated to respiratory isolation 
rooms due to suspect of pulmonary tuberculosis. These data 
cover the period of 2001 to 2008. 

The database consists of 972 events, with 36 variables 
related to clinical and symptomatic information. The estimated 
TB prevalence is of 21.6% (210/972). 

III. RESULTS
  

All neural models were developed using Multilayer 
Perceptron (MLP) [13] networks having 3 layers, one neuron 
at the output layer and employing a number of hidden layer 
neurons defined through cross-validation. All neurons 
considered the hyperbolic tangent as the activation function 
[14]. The input variables, except age, were coded as: +1, 
signaling the presence of the sign or symptom; -1, the absence, 
and 0 when missing. The presence of tuberculosis was coded as 
+1 and its absence as -1. Patient’s ages were normalized to be 
in -1 to +1 range. Network training used Resilient 
Backpropagation (RPROP) [14] technique. 
 Hold-out technique was employed to infer model 
performance with basis on training and test sets formed using 
SAFE and DANGER subsets. The distribution of SAFE and 
DANGER events between these sets were defined through 
some trials guided by cross-validation. Additionally, given the 
identification of problems concerning dataset class coverage, 
especially for the more critical patients, the definition of design 
parameters, including the number of neurons at the hidden 
layer, also employed the test set. 

A. Reference Model 
For the construction of the reference model, a selection of 

variables based on the method described earlier resulted on the 
following 19 variables: age, sex, sputum production, 
hemoptysis, hemoptoic, night sweats, dyspnea, fever, 

malnutrition, X-ray report (active TB, sequel or another 
disease), cough, chest pain, HIV, alcoholism, malignancy, 
smoking and sore throat. 

The amount of SAFE and DANGER events distributed 
into training and test sets are summarized in Table 1. Note that 
17 patients DANGER TB- were excluded after TB expert’s
criticism (again patients outside the application scope of the 
score). 
  

TABLE I. NUMBER OF TRAINING AND TEST SETS EVENTS CONSIDERING 
THE REFERENCE MODEL

Networks having from 1 to 25 neurons in the hidden layer 
were built. For each network, 100 trainings with random initial 
parameters were generated, aiming to avoid the local minima 
problem [13]. Early stop criterion was also adopted to mitigate 
the overtraining phenomena [13].

The selection of the best model was based on the mean 
value of the areas between the sensitivity and specificity 
curves and the thresholds axis for a range of values between -1 
and 1. Additionally, the selected model should exhibit a higher 
value of this performance index for training set than for the 
test one. The best model had 13 neurons at the hidden layer 
and its ROC curve is shown in Figure 3. In this plot, the areas 
under ROC curve (AUC) related to training and test are 
0.9807 and 0.9345, respectively. 

Fig. 3: ROC curves for the reference model (inferred upon training and test 
sets) 

B. Reference model analysis 

For reference model performance analysis, clusters were 
produced by global k-means algorithm [15], considering the 

Events Training set Test set

TB+ SAFE 40 - 40 (100%)
DANGER 121 119 (99%) 2 (1%)

TB- SAFE 640 376 (60%) 264 (40%)
DANGER 17 - -

Total 818 495 306
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Euclidean distance to measure the similarity between events 
and clusters centers. 

Clustering was produced considering all events from 
dataset, regardless of the outcome (TB+ or TB-) and sets to 
which they were allocated (training or test). The algorithm k-
means extracted 15 clusters, since k was chosen 15, a value 
defined empirically. 

Empirical cumulative distribution function (CDF) from 
reference model output is shown in Figure 4 for low 
performance clusters (8, 9 and 12). This analysis focused only 
on TB- patients, since the main goal was to improve model 
specificity, i.e. reduce the number of false-positive cases. It 
should be mentioned that CDF curves point out specificity 
values related to different decision threshold choices, thus 
permit the identification of critical clusters. 

Figure 4 shows the existence of several flat regions on the 
specificity curve, especially for cluster 9 events and decision 
threshold chosen in the range from -0.8 to 0.8. Thus, improve 
specificity by tuning this threshold is not possible, which 
strongly indicates the production of specialized models for 
these critical clusters. 

Fig. 4. Cumulated distribution function (CDF) curves of reference model 
outputs considering low performance clusters. 

C. Identification of  clusters candidates to fusion during the 
production of specialized models 

In order to allow the construction of specialized models 
involving a larger number of events, thus based on better 
statistics, the fusion of clusters previously identified as 
problematic with their neighbors (in spatial sense) was 
evaluated. The identification of clusters candidates to fusion 
was guided by a hierarchical clustering derived upon clusters 
centers. This clustering employed Euclidean distance to 
measure the similarity between events and mean-linkage 
criterion to define clusters [16]. Hierarchical cluster 
dendrogram [16] is shown in Figure 5. 

Fig. 5. Hierarchical cluster of k-means clusters prototypes 

Figure 5 shows higher similarities between the clusters 5-
11, 3-8, 1-12 and 4-15-13. Thus, we first evaluated the fusion 
of clusters 3 and 8. Regarding cluster 9, hierarchical analysis 
showed no other cluster with a reasonable level of similarity to 
be fused with it, thus it was kept alone. Other suggested fusions 
were also evaluated. 

D. Specialized models production and evaluation

Issues related to the construction and evaluation of
specialized models will be described below: 

1) Specialized model for the clusters 3 and 8 

Logistic model identified 12 relevant variables: age, sex, 
cough, sputum production, hemoptysis, night sweats, fever, 
malignancy, HIV, alcoholism and X-ray report (active TB or 
other disease). Training and test sets considered the same split 
performed during reference classifier design, but restricted to 
groups 3 and 8 events. In Table II, the amount of events 
destined to each set is shown. 

TABLE II. NUMBER OF TRAINING AND TEST SET EVENTS FOR THE 
SPECIALIZED MODEL DERIVED UPON CLUSTERS 3 AND 8 

Clusters 3 and 8
Events Training set Test set

TB+ 33 22 11
TB- 105 61 44

Total 138 83 55

The production of specialized models followed the same 
framework employed during reference model development.
This resulted in a network with two hidden layer neurons. 

Figure 6 shows ROC curves for reference and specialized 
models considering cluster 8 and 9 events (test set). Specialized 
model achieved higher values of sensitivity when operating 
with specificity higher than 90%. 
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Fig. 6. ROC curves for reference and specialized models considering 
cluster 8 and 3 events (inferred upon test set).

2) Specialized model for cluster 9 

The following 10 variables were selected by logistic 
method: age, headache, weight loss, anorexia, liver disease, 
diabetes, IRC, malnutrition, transplant and RX report 
(normal).
 Table III shows the amount of events used in training and 
test sets. The network with better performance had two 
neurons at the hidden layer. Comparative ROC curves for both 
reference and specialized model are shown in Figure 7. Again, 
specialized model achieved better sensitivity values if 
specificity is set higher than 60%. 

TABLE III. NUMBER OF TRAINING AND TEST SET EVENTS FOR THE 
SPECIALIZED MODEL DERIVED UPON CLUSTERS 9 

Cluster 9
Events Training set Test set

TB+ 27 14 13
TB- 37 19 18

Total 64 33 31

Fig. 7: ROC curves for reference and specialized models considering 
cluster 9 events (inferred upon test set).

3) Other clusters 

Another fusions suggested by hierarchical clustering were 
evaluated, but none improvement on system performance was 
observed. 

E. Integration of specialized and reference models 

The final architecture for the classification system is shown 
in Figure 8. During the operational phase, for an arbitrary input 
event, the cluster to which it belongs is identified. If this cluster 
is other than 3, 8 and 9, the classification is provided by the 
reference model, otherwise, the output of the corresponding 
specialized model is considered. ROC curves comparing this 
classification system with the reference model are shown in 
Figure 9. It can be observed that the system based on multiple 
models can achieve better values for sensitivity if specificity is 
higher than 90%. This fact allows this score to be used as a
medical decision support tool with respect to the isolation of 
patients suspected of having pulmonary TB. 

Fig. 8: Final architecture of the classification system based on specialized 
models  

Fig. 9: ROC curves for both reference model and the classification system 
based on specialized models (inferred upon test set).
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IV. CONCLUSION

This work proposes a classification system based on 
specialized models to support the isolation of patients 
suspected of having pulmonary tuberculosis. 

Exploring the concept of divide to conquer, we propose a 
systematic procedure which clusters input data and identify 
more critical ones in terms of performance. Specialized 
models are proposed for critical clusters to act in synergistic 
fashion with the reference model. An interesting aspect is that 
classifiers can be individually tuned according to specific 
cluster issues, involving subgroups of the reference model 
predictive variables, which may result in higher classification 
performance. 

Following the proposed approach, a classification system 
using 3 neural models (one involving 13 neurons, while others 
2 neurons) and 15 clusters achieved a sensitivity of 83.3% to 
specificity of 94.3%. This represents a gain of almost 10 
percentage points on sensitivity when specialized system is 
compared to reference classifier. 

As future work, we intend to explore other computational 
intelligence algorithms as support vector machines to develop 
the reference and specialized classifiers as well as to produce 
classifiers committee. Produced models also will be validated 
with other datasets. 
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