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Abstract—As new mobile Wireless Sensor Networks (mWSNs)
for location-aware applications are emerging, trajectory privacy
invasion is becoming an indispensable issue. Many promising
techniques are under development. Considering the decentralized
network architecture, most of Trajectory Privacy Preservation
(TPP) techniques rely on the cooperation from peer nodes,
cluster headers, or a third party. However, only a few works
have addressed the issue of selfish behaviors in such cooperation
required techniques. Nevertheless, the problem of facing selfish
and compromised nodes in the noncooperative and hostile envi-
ronment is rarely touched.

In this paper, we apply Bayesian game theory to model co-
operative, selfish and malicious behaviors of autonomous mobile
nodes in decentralized mWSNs. We formulate and analyze the
TPP game among peer nodes in both strategic and dynamic
forms. The equilibrium strategies for users to evaluate the degree
of trust in participating in in-network TPP activities are provided
and analyzed in theoretical and simulation results.

I. INTRODUCTION

In recent years, there has been an explosive growth of

location-aware sensing devices. The age of combining sensing,

processing and communication in one device, gives rise to a

vast number of applications leading to endless possibilities and

a realization of mobile Wireless Sensor Network (mWSNs)

applications. As computing, sensing and communication be-

come more ubiquitous, trajectory becomes a critical piece of

information and an important factor for secure and private

communications.

While some researchers have addressed issues related to

Trajectory Privacy Preservation (TPP) in sensor networks

(readers may refer to [1], [2] for a brief survey), the autonomy

of sensor nodes in decentralized/distributed networks has

been generally overlooked. Many sensor network applications

consist of temporary, on the fly connections among typical-

ly autonomous sensing devices where each device decides

whether and to what extent it wishes to participate in the

network. In pursuit of their own interests, participating devices
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could therefore misbehave-either by being selfish or by being

malicious.

A. Motivating Applications

Let’s examine the following scenarios: a cardiopath patient

carries a wearable sensor for monitoring her heart rate. This

sensor sends measurements back to the hospital periodically

for the doctor to evaluate her health condition and respond with

corresponding diagnoses. In an emergency, the sensor sends

an alarm to the doctor for first aid assistance. In this case,

the doctor can locate the patient immediately based on the

sensors trajectory information. However, besides these positive

usages, invasion by unauthorized or malicious entities into the

private trajectory of a user, such as when and where she shops,

when and where she spends vacations, may seriously threaten

personal safety. Therefore, the user would like to be “invisible”

in privacy sensitive areas and opt out any TPP interactions with

other nodes in uncertain situations.

Trajectory information can reveal personal preferences and

habits, which can be used for consumer profiling. While

some sensors are embedded into vehicles for sensing traffic

and road conditions for better traffic management avoiding

traffic congestion, insurance companies can utilize trajectory

information to analyze frequent routes of clients. They might

charge higher premiums from the clients that often visit high

accident locations. In this case, clients would rather stay

“quiet” and not cooperate with other vehicles or the base

station in such locations.

The aforementioned scenarios necessitate the decentralized

control of the network in which sensor nodes make au-

tonomous decisions regarding their network usage and preserv-

ing their trajectory privacy, based on their individual needs.

B. Related Work

We have previously proposed a privacy-aware routing pro-

tocol to hide source’s trajectories in the presence of eavesdrop-

ping attacks [3]. It can effectively mislead the adversary by

masking the exact location where a particular packet started

its journey. This algorithm works relying on the cooperation

among sensor nodes. In decentralized mWSNs where nodes
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are autonomous entities, the cooperation among nodes is

not guaranteed. Furthermore, the internal attack is of great

importance to be considered into TPP in mWSNs due to the

risk of node compromise. In fact, any protocols or techniques

involving cooperation among autonomous nodes need to have

the mechanism to consider trust among nodes. In the context of

TPP, it is even more challenging to balance between resource

sharing for cooperation and privacy protection.

Game theory is an important tool to model behaviors and

strategies of interacting entities. It has been applied to study

the TPP related issues recently. Shokri et al. used Stackelberg

Bayesian game to formalize the mutual optimization of user-

adversary objectives [4]. They aimed to enable the system

administrator to find the optimal mechanism for trajectory

privacy preservation. Humbert et al. studied the problem of

designing mix zones in the presence of local eavesdroppers

[5]. The work proposed in [6], [7] mainly focused on the

incentive designs to provide the required trajectory privacy

level for individual users as well as the desired granularity

for service providers/mobile commerce companies. The above

works attempted to address the optimal strategies for two

competing entities, user-adversary or user-service provider. A

few other works have been proposed to study the interactions

between peer nodes. Researchers used game theory to model

the cooperation behaviors while taking the selfishness of

autonomous nodes into consideration in the noncooperative

network environment [2], [8], [9]. In such networks, each node

aims to maximize its own payoff while determining whether

it cooperates TPP activities to gain (or assist other nodes to

gain) trajectory privacy. To study the malice of compromised

nodes, researchers have presented comprehensive analysis in

intrusion detection games in mobile networks [10], [11]. These

previous works are of great inspiration in discussing the degree

of trust in cooperation among peer nodes. However, solely

considering selfishness or malice is insufficient for vulnerable

networks composed of autonomous nodes.

C. Paper Summary and the Outline

In this paper, we formulate in-network TPP activities by

applying the Bayesian game, named the TPP game, to model

the cooperation and trust behaviors of autonomous nodes with

taking both selfishness and malice of sensor nodes into account

in decentralized/distributed mWSNs. The selfishness is mod-

eled by deploying trajectory privacy sensitivity customization.

We analyze the TPP game from static and dynamic point of

view and provide the suggested equilibrium strategy for nodes

to trust neighbors to preserve their trajectory privacy.

The rest of the paper is organized as follows. An introduc-

tion to our TPP game model is provided in section II, followed

by the analysis details and simulation results in section III, IV

and V. Finally, we conclude this work in section VI.

II. TRAJECTORY PRIVACY PRESERVATION GAME

PRELIMINARIES

We aim to investigate the game theoretic approach to model

and analyze the cooperative, selfish and malicious behaviors of

autonomous nodes in TPP activities. Therefore, nodes seeking

TPP cooperations can evaluate the degree of trust and tolerate

node compromise attacks in mWSNs.

A. System and Attack Models

The system we consider is composed of mobile sensor nodes

and one or more base stations/sinks. Nodes are aware of their

locations and transmit sensing data (and spatio-temporal data

by needs) through one-hop or multi-hop communications with

the sink and other peer nodes. Access points/gateways, where

data are collected and primarily processed (e. g. basic data

cleaning and reduction) before they are forwarded to the sink,

are not restricted in the system. We assume access points (if

they exist) and sinks have adequate transmission and comput-

ing capabilities or necessary hardware units to counter security

and privacy attacks. Additionally, cryptographic techniques are

deployed to secure data transmissions.

The adversary is capable of launching an eavesdropping

attack. Although proper cryptographic techniques can prevent

such attacks from breaching nodes’ data privacy, they are

vulnerable when the adversary has certain background knowl-

edge of the target. Additionally, the adversary can compromise

nodes in the network and launch internal attacks. For instance,

compromised nodes are used to track the target or reveal

its trajectories to eavesdroppers or other compromised nodes.

This attack model is set up on top of the attack model in

[3]. We have solely addressed eavesdropping attacks in the

previous work. However, when node compromise attack is

considered among autonomous sensor nodes, the noncooper-

ative and malicious nodes behaviors must be studied to cope

with the noncooperative network environment, which is our

focus in this work.

B. Sensitivity Customization

The trajectory privacy sensitivity (noted as sensitivity

through this paper) represents the privacy requirement levels

of a node in the specific area at particular time. Sensitivity

is determined by two trajectory contexts, spatial and temporal

information.

The network area is divided into small subareas. We catego-

rize subareas into two types: open areas (OAs) and sensitive

areas (SAs) according to the sensitivity required by a node

in different subareas. When the node is traveling in its OAs,

trajectories are relatively open to other network entities and

there is no additional protections besides security techniques.

On the other hand, when the node is traveling in its SAs,

trajectories need to be highly protected from untrustworthy or

compromised nodes. For example, OAs can be users’ working

places since such information is easy to obtain from public

resources in most cases. SAs can be the restaurants or hospitals

that users occasionally visit. The above customization only

involves spatial information which is insufficient in practice.

For example, if a user goes to the office after working hours,

he/she may want to keep such information as privacy which

makes that office a SA. Therefore, the sensitivity of an area

needs to be assigned along with the specific time span.
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Sensitivity is a customized TPP parameter regarding in-

dividual nodes. In an autonomous network, before nodes

join/rejoin the network or while on the move, users can

determine the sensitivity and make the selection on OAs and

SAs that comply with a certain trajectory privacy level θ. θ is

defined as the ratio of the traveling time in SAs over the overall

traveling time of each node. The overall traveling time is the

life time or a refreshing period of a node. Individual nodes

can have different θ values. However, there is a maximum

requirement defined by the network administrator, denoted as

Θ. For example, node i’s trajectory privacy level θi ≤ Θ. From

the individual user’s point of view, greater θ value indicates

higher trajectory privacy. From the network’s point of view,

the user’s trajectory privacy level needs to be limited to Θ
since nodes in SAs prioritize their trajectory privacy and may

prefer hiding from any other node rather than cooperating in

TPP activities. It is worth noting that the trajectory privacy

level θ of a node does not involve any private trajectory

information. Therefore, neighboring nodes can easily retrieve

this information through queries to peers.

III. TRAJECTORY PRIVACY PRESERVATION GAME

The TPP game is conducted between two neighboring

nodes, node i and node j, in the network. Node i is in SAs

and needs cooperation from node j in preserving i’s trajectory

privacy during data transmissions. However, node i does not

know if node j will cooperate, defect, or even attack (node

j may be a compromised node) due to the unknown type

of node j. We use a Bayesian game formulation to model

the interactions between two nodes in TPP activities. The

set of players is N = {i, j}. i has one type which is a

regular node in SAs. That means ti ∈ Ti = {S}. i can

choose whether to trust j in cooperating in TPP activities.

Actions available to i are ai ∈ Ai ={Trust, Not Trust}. j

has three types which are regular nodes in OAs, denoted as

Open nodes; regular nodes in SAs, denoted as Selfish nodes,

and Malicious nodes. That means tj ∈ Tj = {O,S,M}.

We differentiate selfish nodes from open nodes to remark

that nodes in SAs prioritize their trajectory privacy. Actions

available to j are aj ∈ Aj ={Cooperate, Defect, Attack}.

Open nodes and selfish nodes can play either Cooperate or

Defect, while malicious can choose to play Cooperate, Defect,

or Attack.

The payoff matrices of the game is presented in table I. Gr

denotes the cooperation payoff of j (e.g. cooperative credit

gain) when it cooperates in TPP. Cp is the participation cost.

Gp is the trajectory privacy gain of i when j cooperates.Gθ

is the trajectory privacy leakage of j when tj = S and j

cooperates. CA is the cost of a malicious node to Attack.

We also denote β as the attack success rate. Except that the

type of j is uncertain to i, other information is known to each

player and both players know this fact.

Due to the high priority of trajectory privacy of selfish

nodes, we restrict that Gθ > Gr. Additionally, we focus on

discussing TPP issues in this project. Therefore, we assume

that Gp is relatively far greater than other payoff elements.Cp

TABLE I
PAYOFF MATRIX OF THE TPP GAME

i

j Trust Not Trust

Cooperate Gr − Cp, Gp − Cp Gr, 0
Defect 0,−Cp 0, 0

(a) node j is open, tj = O

i

j Trust Not Trust

Cooperate Gr − Cp −Gθ, Gp − Cp Gr −Gθ , 0
Defect 0,−Cp 0, 0

(b) node j is selfish, tj = S

i

j Trust Not Trust

Cooperate Gr − Cp, Gp − Cp Gr, 0
Defect 0,−Cp 0, 0
Attack Gp − CA,−Gp − Cp −CA, 0

(c) node j is malicious, tj = M

and CA are comparable and relatively less than other payoff

elements. In the next section, we present the equilibrium

analysis of the TPP game.

A. Equilibrium Analysis in the Strategic Form

We begin the equilibrium analysis with considering this

TPP game as a static Bayesian game. We assumed that both

players are rational. Their objectives are to maximize their own

expected payoffs. Bayesian Nash Equilibria (BNE) specify

actions or randomized strategies of each type of player, which

would be maximizing the expected payoffs for each player

in the strategic form [12]. Therefore, our equilibrium analysis

here is to find existing BNE. In the TPP game, the type of i

is certain to both players and i is uncertain about j’s type. i

has the initial belief about j’s type, which is the probability

distribution over all possible types of j. j is malicious with

the probability of (1−P ), selfish with the probability of Pθj
and open with the probability of P (1− θj).

From the payoff matrices of the game, it is not difficult to

eliminate some strategies from possible BNE by dominance.

Defect is dominated for tj = O and tj = M . Cooperate is

dominated for tj = S. Therefore, j has two possible pure-

strategy BNE: σj ∈ {(Cooperate if tj = O, Defect if tj = S,

Cooperate if tj =M ), (Cooperate if tj = O, Defect if tj = S,

Cooperate if tj =M )}.

• Case 1: σj = (Cooperate if tj = O, Defect if tj = S,

Cooperate if tj =M ).

In this case, the expected payoff of i if σi = Trust is

Ui(T ) = (Gp − Cp)P (1− θj) + (Gp − Cp)(1− P )

+(−Cp)Pθj . (1)

(Gp−Cp)P (1−θj)+(Gp−Cp)(1−P ) is the payoff of

obtaining cooperation from j to gain trajectory privacy.
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(−Cp)Pθj is the payoff when j is selfish and defects.

The expected payoff of i if σi = Not Trust is

Ui(NT ) = 0. (2)

Therefore, if (1) > (2), i. e. P <
Gp−Cp

Gpθj
, the best

response for i is always Trust. In this case, if tj =M , j

will deviate from Cooperate to Attack since j will breach

i’s privacy and get higher expected payoffs. Thus, there

is no pure-strategy BNE when P <
Gp−Cp

Gpθj
. If (1) < (2),

i. e. P >
Gp−Cp

Gpθj
, the best response for i is always Not

Trust. Correspondingly, j’s best response is Cooperate

if tj = M . Hence, (σj , σi) = {(Cooperate if tj = O,

Defect if tj = S, Cooperate if tj = M ), Not trust} is a

possible pure-strategy BNE if P >
Gp−Cp

Gpθj
.

• Case 2: σj = (Cooperate if tj = O, Defect if tj = S,

Attack if tj =M ).

In this case, the expected payoff of i if σi = Trust is

Ui(T ) = (Gp − Cp)P (1− θj) + (−Cp)Pθj

+(−Gp − Cp)(1 − P )β

+(−Cp)(1− P )(1 − β). (3)

(−Gp −Cp)(1−P )β is the payoff of being successfully

attacked by j. (−Cp)(1− P )(1− β) is the payoff when

j fails in attacking. The expected payoff of i if σi =Not

Trust is

Ui(NT ) = 0. (4)

So if (3) < (4), i. e. P <
Gpβ+Cp

Gp(1−θj)+Gpβ
, the best

response for i is always Not Trust. In this case, if

tj = M , j will deviate from Attack to Cooperate to get

higher expected payoffs. Thus, there is no pure-strategy

BNE when P <
Gpβ+Cp

Gp(1−θj)+Gpβ
. If (3) > (4), i. e.

P >
Gpβ+Cp

Gp(1−θj)+Gpβ
, the best response for i is always

Trust. Correspondingly, j’s best response is Attack if

tj =M . Hence (σj , σi) ={(Cooperate if tj = O, Defect

if tj = S, Attack if tj = M ), Trust} is a possible pure-

strategy BNE if P >
Gpβ+Cp

Gp(1−θj)+Gpβ
.

Now we further analyze the conditions under which the pure-

strategy BNE exists. Given 0 < P < 1 and 0 < θj < 1, the

condition that P >
Gp−Cp

Gpθj
can establish is 1− Cp

Gp
< θj < 1.

On the other hand, the condition that P >
Gpβ+Cp

Gp(1−θj)+Gpβ
can

establish is 0 < θj < 1 − Cp

Gp
. θj is retrieved by j through

sending queries to i if there is no previous local records.

From the above analysis, we can finally summarize the

existence of pure-strategy BNE: the TPP game has one pure-

strategy BNE when P is greater than a certain value P0 ∈
{Gp−Cp

Gpθj
,

Gpβ+Cp

Gp(1−θj)+Gpβ
}. That is to say if 1 − Cp

Gp
< θj < 1,

there exists a pure-strategy BNE (σj , σi) = {(Cooperate if

tj = O, Defect if tj = S, Cooperate if tj = M ), Not trust}
when P >

Gp−Cp

Gpθj
; if 0 < θj < 1 − Cp

Gp
, there exists a pure-

strategy BNE (σj , σi) = {(Cooperate if tj = O, Defect if

tj = S, Attack if tj = M ), Trust} when P >
Gpβ+Cp

Gp(1−θj)+Gpβ
.

This conclusion verifies that in order to have stable status

that encourages cooperation among nodes in TPP activities,

θj needs to be restricted to an upper bound of Θ.

We have analyzed the pure-strategy BNE of the TPP game.

However, under pure strategies, i either cannot gain trajectory

privacy by trusting other nodes or can frequently be attacked

by malicious nodes where high expected payoffs encourage

malicious nodes to attack. Therefore, we need to find the

mixed-strategy BNE of the TPP game. Such BNE exists when

P < P0. Let φ be the probability of σi = Trust. Let ψ be the

probability of σj = Attack when tj =M . The mixed-strategy

BNE is derived as follows. The expected payoffs of i when

σi = Trust and when σi = Not Trust are respectively:

Ui(T ) = (Gp − Cp)P (1− θj) + (−Cp)Pθj

+(1− ψ)(Gp − Cp)(1 − P )

+ψ(1− P )((−Gp − Cp)β

+(−Cp)(1 − β)). (5)

Ui(NT ) = 0. (6)

The expected payoffs of j when σj = Cooperate and when

σj = Attack are respectively:

Uj(C) = (Gr − Cp)φ+Gr(1 − φ). (7)

Uj(A) = (Gp − CA)φβ + (−CA)φ(1 − β)

+(−CA)(1 − φ). (8)

To derive a mixed-strategy BNE, j’s attacking rate needs to

satisfy Ui(T ) = Ui(NT ) if tj = M . Thus, j’s equilibrium

strategy is to attack with probability ψ∗ =
Gp(1−Pθj)−Cp

Gp(1−P )(1+β) .

Similarly, i’s equilibrium strategy is to trust with probability

φ∗ = Gr+CA

Gpβ+Cp
. Therefore, the static TPP game has a mixed-

strategy BNE when (σj , σi) ={(Cooperate if tj = O, Defect

if tj = S, Attack with probability ψ∗ if tj = M ), Trust with

probability φ∗}.

IV. DYNAMIC TPP GAME AND PERFECT BAYESIAN

EQUILIBRIUM

Thus far, we have analyzed the TPP game which is viewed

as a one-stage game. The challenge of applying such a game

model is assigning i a proper initial belief of j’s type. In

mWSNs, nodes are highly distributed. Relying on the cen-

tralized administrator to provide the regular nodes’ rate P is

costly. Therefore, i needs to dynamically update its belief of

j’s type in a distributed manner in the multi-stage TPP game.

A. Belief System

We consider a dynamic Bayesian game which is a repeated

one-stage TPP game with no discount factor to model the

multi-stage TPP game. The game is infinite since players

cannot predict when neighboring nodes leave the network.

The static TPP game is repeated in each time slot. We

continue to use notations in the static TPP game with minor

revisions. aj(t) denotes j’s action at stage t. ãj(t) denotes

i’s observation of j’s action. i observes j’s actions with the

observation rate αt, the action false active rate γt and the

attack false alarm rate βt. Additionally, let µi(tj |htj) be i’s

belief of j, where htj is the action history profile j at the
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beginning of stage t, i. e. htj = (aj(0), aj(1), ..., aj(t − 1)).
Given j’s action history profile htj and type tj , P (aj(t)|ti, htj)
is the probability that aj(t) is observed at stage t. Based on

Bayes’ rule, i’s posterior belief of j is calculated by:

µi(tj |(h
t
j , ãj(t))) =

µ(tj |(htj))P (ãj(t)|h
t
j , tj)

∑
t̃j∈Tj

µi(t̃j |htj)P (ãj(t)|h
t
j , t̃j)

. (9)

where µi(t̃j |htj) > 0.

In our game model, with an altering of notation, we have:

P (ãj(t) = Cooperate|tj = O) = αt(1− βt)

P (ãj(t) = Defect|tj = O) = 1− αt

P (ãj(t) = Attack|tj = O) = αtβt

P (ãj(t) = Cooperate|tj = S) = γt(1− βt)

P (ãj(t) = Defect|tj = S) = 1− γt

P (ãj(t) = Attack|tj = S) = γtβt

P (ãj(t) = Cooperate|tj =M) = αt(1− βt)(1− ψ)

P (ãj(t) = Defect|tj =M) = 1− αt

P (ãj(t) = Attack|tj =M) = αt(ψ + (1− ψ)βt).

(10)

Formulae (9) and (10) form the belief system [13] for i to

update its belief of j in each stage of the game as the game is

played sequentially. With both this belief system and the initial

belief that i holds, i is able to compute its updated belief. It

might be confusing that the action history has been omitted

in Formula (9). In fact, the observed actions contribute to the

belief update in each stage during the game sequentially. It

is worth noting that in applications requiring high trajectory

privacy levels, i can apply the Grim Trigger strategy once

an attack is observed. However, keeping the dynamic updated

belief on all types of nodes for further possible cooperation

is plausible in sparse networks. Details of how to apply the

Grim Trigger strategy are beyond the scope of this paper and

will be presented in our extension work.

B. Perfect Bayesian Equilibrium (PBE)

We have found BNE of the static TPP game in previous

sections. However, when the game involves sequential multiple

stages, Nash Equilibrium needs to be strengthened with the no-

tion of subgame perfection. The relevant notion of equilibrium

will be PBE. PBE requires each player’s strategy to specify

optimal actions, given the player’s beliefs and the strategies

of all other players, and the beliefs are consistent with Bayes’

Rule whenever it is applicable. It specifies a feasible strategy

profile for players to optimize the expected payoffs in the

multi-stage game. We now show that there exist PBE in the

dynamic TPP game.

We first prove that the proposed dynamic TPP game sat-

isfies the Bayesian condition B(i)-B(iv) and P [14]. Then we

determine the PBE in such games.

Lemma 4.1: The proposed dynamic TPP game satisfies

Bayesian conditions B(i)-B(iv) and P:

B(i): Posterior beliefs are independent, and all types of player

i have the same beliefs.

B(ii): Baye’s rule is used to update beliefs whenever possible.

B(iii): Players do not signal what they do not know.

B(iv): Posterior beliefs are consistent for all nodes with a

common joint distribution on the type of another player given

ht.

P: For each player i, type ti, player i’s alternative strategy σ′
i

and history ht,

Ui(σ|h
t, ti, µ(· |h

t)) ≥ Ui((σ
′
i, σ−i)|h

t, ti, µ(· |h
t)). (11)

Proof: B(i) is satisfied because i only has one type. The

proposed belief update system was derived according to Baye’s

rule. Thus, B(ii) is satisfied. B(iii) is satisfied because j’s

signal is j’s action which is observed by i, and B(iv) is satisfied

since this is a two-player game.

According to the rationality of the players, given i’s updated

belief of j, µi(tj |htj), and htj , i’s optimal behavior strategy

σ∗
i is to maximize his expected payoff based on i’s belief.

Therefore, σ∗
i satisfies:
Ui(σj , σ

∗
i )|h

t
j , ti, µi(tj |(h

t
j , aj(t)))

≥ Ui((σj , σ
′
i|h

t
j , ti, µi(tj |(h

t
j , aj(t))). (12)

Similarly, j’s optimal behavior strategy σ∗
j satisfies:

Uj(σ
∗
j , σi)|h

t
i, tj, µj(ti|(h

t
i, ai(t)))

≥ Uj((σ
′
j , σi|h

t
i, tj, µj(ti|(h

t
i, ai(t))). (13)

σ′ denotes the alternative strategy of the player. In this two-

player game, Formulae (12) and (13) show the sequential

rationality of each player, which satisfies P.

In this paragraph, we derive the PBE of the dynamic TPP

game. At stage t, recall φ denotes the probability of σi = Trust

and ψ denotes the probability of σj = Attack when tj =M .

Ui(ai(t) = T ) = (Gp − Cp)µi(tj = O|htj)

+(−Cp)µi(tj = S|htj)

+(1− ψ)(Gp − Cp)µi(tj =M |htj)

+ψ(µi(tj =M |htj)((−Gp − Cp)β

+(−Cp)(1− β)). (14)

Ui(ai(t) = NT ) = 0. (15)

Uj(aj(t) = C) = (Gr − Cp)φ+Gr(1− φ). (16)

Uj(aj(t) = A) = (Gp − CA)φβ + (−CA)φ(1 − β)

+(−CA)(1− φ). (17)

This mixed-strategy equilibrium needs to satisfy the condition

that different strategies cannot be differentiated by each player

from the expected payoffs. Therefore, we derive the PBE pair

based on the equivalence of Formulae (14) and (15), and the

equivalence of Formulae (16) and (17). Thus, we have:

ψ∗
t =

Gp(1− (1− µi(tj =M |htj))θj)− Cp

Gpµi(tj =M |htj)(1 + β)

φ∗t =
Gr + CA

Gpβ + Cp

. (18)

We now discuss the existence of pure-strategy PBE. In

the case that (14) > (15), i always plays Trust and
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j always plays Attack. In this case ψ∗
t satisfies ψ∗

t <
Gp(1−(1−µi(tj=M|ht

j))θj)−Cp

Gpµi(tj=M|ht
j)(1+β)

and ψ∗
t = 1. The condition for

such a case to exist is that µi(tj = M |htj) <
Gp(1−θj)−Cp

Gp(1+β−θj)

and θj < 1− Cp

Gp
. Similarly, the pure-strategy pair of i always

plays Not Trust and malicious j always plays Cooperate exists

under the condition that µi(tj = M |htj) <
Gp(θj−1)+Cp

Gpθj

and θj > 1 −
Cp

Gp
, which does not hold in this TPP game

model. Therefore, there exists one pure-strategy PBE pair

(ψ∗
t = 1, φ∗t = 1) when µi(tj = M |htj) <

Gp(1−θj)−Cp

Gp(1+β−θj)

and θj < 1 − Cp

Gp
. In sum, given the belief µi(tj |(htj , aj(t)))

which can be derived by Formula (9), the PBE pair for the

dynamic TPP game is (ψ∗
t , φ

∗
t ).

V. SIMULATION RESULTS AND ANALYSIS

In this section, we provide simulation results to illustrate

the properties of equilibrium strategies in the dynamic TPP

game. We implement PBE strategies in mobile nodes. Nodes

are moving in the 200X200 m2 area within DHDN/3-degree

Gauss-Kruger zone 2 (EPSG code: 31466). Nodes’ trajectories

are generated by using the Random Street model of BonnMo-

tion [15]. The maximum transmission range of each node is set

to be 40 m, referenced to the average maximum transmission

range in our real experiments on MEMSIC sensors equipped

with MTS420 boards. The default values of the payoff matrix

and system parameters are Gp = 50, Gr = 5, Cp = 1, CA =
2, P = 0.2, αt = 0.8, β = 0.9, βt = 0.2, γt = 0.2.

We first analyze the probability for a node to play Trust

in the two-node dynamic TPP game. Figure 1 shows that

when attackers have a higher successful attacking rate, users

need to decrease trust. The trajectory privacy gain Gp has

more obvious impact on trust. When Gp has greater values, it

indicates that the user weighs trajectory privacy more critically

and also encourages the attacker to attack more frequently.

Therefore, users’ trust of others dramatically decreases.

Figure 2 and Figure 3 show the node i’s belief update

and node j’s corresponding attacking rate when consecutive

Attacks are observed by i in each stage t. θj = 0.5. The

figures suggest that regardless of the initial belief that i holds,

observing consecutive Attacks gives a very fast convergence

of i’s belief that j is a malicious node. As a result, the

attacker has to reduce the attacking rate fast. These results are

obtained when we assume that two nodes are always one-hop

neighboring nodes. As a comparison, Figure 5 and Figure 6

show the belief update and attacking rate when the malicious

node plays Attack rationally according to its PBE strategy.

The data are collected from different scenarios where the

malicious nodes A and B have different trajectory similarities

with i. Trajectories of node i, A and B are illustrated in Figure

4. Node A is always closely following i and node B is i’s

one-hop neighbor in half of the time. The result is based on

the average value from 1,000 iterations. i’s belief of node A

converges slightly slower compared with the results in Figure 2

because node A also plays Cooperate and Attack is observed

less frequently. Node A’s attacking rate also reduces slower

in order to gain more payoffs by attacking in longer time.

i’s belief of node B converges much slower because at some

stages the TPP game cannot be conducted. In this case, the

belief remains the same as the previous stage.

Finally, we extend the two-node dynamic TPP game to a

multi-node game in simulations by allowing each node in the

network to play the TPP game with all the corresponding

neighboring nodes. We simulate a mWSN composed of 200

mobile nodes and analyze the network trajectory privacy gain

under different strategies of the nodes seeking TPP cooper-

ation. There are 40 malicious nodes and 160 regular nodes,

including selfish nodes and open nodes. Each regular node

randomizes its trajectory privacy level with the upper bound

of Θ = 0.7. Malicious nodes are programmed to play the

PBE strategy. Regular nodes are programmed to play one of

the following three strategies: the pure strategy–always Trust;

the mixed BNE strategy; and the PBE strategy respectively.

The results are presented in Figure 7 and Figure 8. We show

the average data based on 10 groups of trajectory data and

1,000 iterations for each group. When regular nodes playing

mixed BNE strategy, both regular nodes and attackers get

low average payoffs in the actual game within 20 stages.

This is because the mixed strategy suggests regular nodes

a fair probability to play Trust no matter how malicious

nodes act. This strategy neither encourages nor discourages

malicious nodes to Attack. On the other hand, if regular nodes

always play Trust, it greatly encourages malicious nodes to

Attack. Therefore, this pure strategy gives very high average

payoffs to the attacker. Although malicious nodes follow the

PBE strategy and reduce the attacking rate gradually, regular

nodes get high average payoffs by always getting cooperation

from open nodes. Finally, when both players follow the PBE

strategy pair, regular nodes get even higher average payoffs but

malicious nodes’ payoffs dramatically reduce along with the

belief convergence. This is because regular nodes take actions

according to the dynamically updated beliefs of other peer

nodes. The PBE strategy allows regular nodes to catch more

opportunities to Trust open nodes to gain trajectory privacy

while often playing Not Trust with malicious nodes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we apply Bayesian game theory to model

node behaviors in trajectory privacy preservation activities

in mWSNs. We formulate the characteristics of autonomous

nodes, including selfish, malicious and cooperative, in the TPP

game, and evaluate the trustworthiness of the unknown type

node. The equilibrium strategies of the game have been derived

and analyzed in both theoretical and simulation results.

Although this is a two-player game, it does not imply that

only two nodes can participate into TPP activities. Each node

can play the TPP game with any other node in the network.

Our simulation in the mWSN has considered possible TPP

interaction among all the nodes in the network. That being

said, developing the multi-player TPP game is still meaningful

in the sense that it is easier to model a multi-step TPP activity

and track the payoff using multi-player games. Moreover,
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Fig. 1. Users’ trust in the TPP game
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Fig. 2. Node i’s posterior belief given the obser-
vation of consecutive Attacks
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Fig. 3. Node j’s attacking rate given the obser-
vation of consecutive Attacks
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Fig. 4. The illustration of selected nodes’ trajec-
tories in the network
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Fig. 5. Node i’s belief update of the selected
malicious nodes
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Fig. 6. The attacking rate of the selected mali-
cious nodes
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Fig. 7. The actual average payoff of regular nodes in the network

the post detection strategy has not been discussed here. For

example, the regular node can take the Grim Trigger strategy

to cut off any cooperation once it observes an Attack from a

node or has 100 percent belief in a node’s malice. Another

direction to improve this work is to specify the landscape to

facilitate the sensitivity customization in specific applications.

We will consider these issues in the extension work.
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