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Abstract—This work investigates the maximization of topic
propagation jointly driven by multiple user nodes in micro-
blogging. In this paper, we propose a new method to find a set of
user nodes that jointly propagate topics approximately the most
widely. First, we obtain multiple nodes with strong influence;
Second, we exactly compute the breadth of information spread
driven by a single node based on probabilistic models; Finally, we
analyze the information propagation jointly driven by multiple
nodes and derive an approximately optimal set of driving nodes.
We find that the breadth of information propagation jointly
driven by multiple nodes is approximately linear with both the
breadth of information propagation of single driving nodes and
the strength of tie among them, which indicates that selecting
the optimal driving nodes needs to consider the link information
among them as well as the ability of each node. Experimental
results demonstrate the effectiveness of our method.

I. INTRODUCTION

In recent years, online social networks (OSNs) play a

fundamental role as a medium for the spread of information,

ideas, and influence among its members. As a popular type

of OSNs, micro-blogging, such as Twitter, encourages fast

updating by limiting post size.

The research of OSNs mainly focuses on network structures,

users’ behaviors, information diffusion mechanisms and mod-

els, etc [1], [2]. Steeg and Galstyan [3] investigated the patterns

of information transferring in OSN, and Yang and Counts[4]

analyzed the difference of information diffusion structures

between micro-bloggings and weblogs. Tang et al.[5] found

that the user’s ability of information propagation depends on

the specific information topics. Several representative infor-

mation diffusion models for OSNs have been proposed in

the past research, including the linear threshold model [6],

independent cascade (IC) model [7], and the SIR epidemic

model [8]. Based on these models, some other extended

models have also been studied. For example, Rodriguez and

Leskovec[9] proposed a cascade transmission model based on

IC model, and Cheng et al. [10] introduced the strength of

ties among users into SIR model. These research also helps

significantly improve some applications such as information

recommendation[11].

In this paper, we propose a new method for finding a

set of driving nodes which can approximately maximize the

propagation of a certain topic in micro-blogging. This method

includes three steps: First, we efficiently obtain multiple

nodes with strong influence; Second, we exactly compute the

breadth of information spread driven by a single node based

on probabilistic models; Finally, we analyze the information

propagation jointly driven by multiple nodes, in which we find

that the breadth of information spread driven by multiple nodes

is linear with both the breadth of information spread driven

by each single node and the tie strength among the nodes.

Based on the three-phase method, we finally derive an almost

optimal set of driving nodes that can spread the given topics

approximately the most widely.

II. PROBLEM STATEMENT

We model a micro-blogging with graph G = (V, E),
where V denotes the user node, and E denotes the relation

including ”following” links and ”retweet” behaviors between

different nodes. A topic posted by a driving node will spread

on the micro-blogging network via retweet. In the paper, a

driving node is defined as a node that originally posts a topic

which will consequently be spread. The breadth of the spread

depends on the amount of followers, the interest to the topic,

and retweet frequency. The main task, finding a set of driving

nodes that can spread the given topic approximately the most

widely, thus can be formulated as follows:

QP = arg max
qp1 ,qp2 ,···,qpn

Ψ(tp, qp1 , qp2 , · · · , qpn
) (1)

where qi ∈ V denotes the driving nodes, QP is the optimal set

of n driving nodes that can spread the given topic tp the most

widely, and Ψ(·) denotes the breadth of topic spread. It is very

difficult to solve problem (1) exactly due to the large scale of

data and inexplicit expression of Ψ(·). This paper gives a new

method to obtain an almost optimal solution that can spread

topics approximately the most widely on micro-bloggings.

III. MODEL AND METHODOLOGY

A. Influence computation via extended PageRank algorithm

Inspired by [12], we introduce an extended PageRank

algorithm, called InfluentialRank (IR), which calculates the

influence of nodes based on not only following relationship

of users, but also retweet behaviors and users’ interests. Fig.1

shows the network on which the IR algorithm is implemented.

This network consists of two types of weighted edges that

represent the following relationship and retweet behavior,

respectively. qu, qv , qm and qn denote user nodes, solid-line

edges from qu to qv mean qv is the follower of qu, dashed-line

edges from qu to qv denote that qv retweets messages posted

by qu. IR algorithm assumes that the influence of each node
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Fig. 1. Graphical network representation of micro-bloggings that consists of
two types of weighted edges.

is evenly divided and transferred to the nodes of its outbound

links as follows:

tu,f=
α · IR(qu)
ODf (qu)

, tu,r=
(1−α) · IR(qu)

ODr(qu)
(2)

where IR(qu) is the influence of qu, ODf (qu) and ODr(qu)
denote the number of ”following” edges and ”retweet” edges

out from qu, respectively, α is a parameter. The weight of

”following” edges, denoted by wuv,f , is measured with the

qv’s interest to the given topic, and the weight of ”retweet”

edges wuv,r is measured with the probability that qv retweets

the posts from qu, i.e.,

wuv,f=Iv, wuv,r=
Muv

Mv
(3)

where Mv denotes the total number of posts of qv , Muv is the

number of the posts that qv retweets from qu, and the interest

Iv of qv to certain topic are calculated by Latent Dirichlet

Allocation (LDA) algorithm [13]. The influence of each node

can be computed as follows:

IR (qv) =
d

N
+(1−d)

⎡
⎣ ∑

qu∈Bf
v

tu,fwuv,f +
∑

qu∈Br
v

tu,rwuv,r

⎤
⎦

(4)

where d is jump probability and is generally set 0.15, N is

the total number of nodes in OSNs, Bf
v and Br

v are the set

of nodes that qv follows and retweets from, respectively. The

top C nodes with the largest influence score comprise the

candidate set QC .

B. The probabilistic model for topic propagation

To exactly compute the breadth of topic spread from one

driving node q ∈ QC , we model the users’ retweet behaviors

with probabilistic models. Fig.2a depicts the retweet process

in micro-blogging with a Directed Cyclic Graph (DCG). Each

node qi in the graph has two states: Xi = 1 means qi retweets

the topic from the nodes it follows, and Xi = 0 means not.

The retweet behavior can be represented by the conditional

probability Pr(Xi|F (Xi)), where F (Xi) denotes the state of

the nodes that qi retweets posts from.

Inspired by [14], we transform the DCG into a dynamic

Bayesian network (DBN) as shown in Fig.2b, and infer the

probability distribution of state Xi on the DBN. The inference
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Fig. 2. The retweet network for micro-blogging. (a) a static retweet network,
and (b) the dynamic Bayesian network constructed based on (a).

at the t-th time slice of the DBN equals the t-th iterative

computation on the DCG. At time t, the probability of state

set Xt = {Xt
1, · · · , Xt

N} is computed as follows:

Pr(Xt
i ) =

∑
pa(Xt

i
)

Pr(pa(Xt
i ))Pr(Xt

i |pa(Xt
i )) (5)

where pa(Xt
i ) is the parent nodes set of Xt

i in the DBN, and

they correspond to the user nodes in Fig.2a that qi retweets

topics from. The inference result Pr(Xt
i ) will converge to

Pr(Xi) as t increases, and the computation will be terminated

when maxi{Pr(Xt
i )−Pr(Xt−1

i )} < δ, where δ is a predefined

threshold. The size of conditional probability table (CPT)

Pr(Xt
i |pa(Xt

i )) increase exponentially with the number of

pa(Xt
i ). In general, pa(Xt

i ) consists of a large number of

elements due to one usually retweets posts from many user

nodes, which makes the computation intractable.

Based on the factorization introduced in [15], we simplify

the CPT Pr(Xt
i |pa(Xt

i )) as follows:

Pr(Xt
i |pa(Xt

i )) =
∑

Xt−1
j

∈pa(Xt
i
)

θj
i · Pr(Xt

i |Xt−1
j ) (6)

where θj
i is the parameter that needs learning. For simplicity,

we set all θj
i for qi to 1/|pa(Xt

i )|, where |pa(Xt
i )| denotes

the size of pa(Xt
i ). Pr(Xt

i |Xt−1
j ) is constant for different t,

and just equals Pr(Xi|Xj), where Xj ∈ F (Xi). Based on the

achieved data, we can estimate Pr(Xi|Xj) as follows:

Pr(Xi|Xj) =
Mji

Mi
(7)

where Mji is the number of posts retweeted by qi from qj ,

Mi is the total number of posts of qi.

Once qi retweets a post (i.e., Xi = 1), its followers will

receive it. In other words, the probability of the follower

qk receiving the message equals Pr(Xi = 1). When qk is

the common follower of a set of multiple nodes QF , the

probability that it receives the message is defined as

pk = max
i:qi∈QF

{Pr(Xi = 1)} (8)

C. Maximizing topic propagation driven by multiple nodes

In general, the breadth of information spread jointly driven

by multiple users doesn’t equal the summation of that driven

by each single node due to the overlap among the topic spread.
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Inspired by [10], we define the strength of tie between two

driving nodes qu and qv as:

w(qu, qv) =
ouv

ku − 1 + kv − 1 − ouv
(9)

where ku and kv are the out-degrees (i.e., the number of

followers) of qu and qv , respectively, ouv is the number of the

common followers of driving nodes qu and qv . The strength

of tie between a set of driving nodes Q and a single driving

node qv can be simply extended as follows:

w(Q, qv) =
1
|Q|

∑
qu∈Q

w(qu, qv) (10)

where |Q| is the size of Q.

A node is considered to be activated when it receives

the objective topic, and the probability that it receives the

topic is called activation probability. To measure the driving

ability of a single driving node qi, we introduce the concept

of activation expectation (AE), defined as the expectation of

activation probability on the micro-blogging:

Ea(qv) =
1
N

N∑
k=1

pv
k (11)

where pv
k denotes the activation probability of qk caused by

driving node qv which can be computed based on Eq.8, and N
is number of nodes in the network. Similarly, we can get the

joint activation expectation (JAE) of a set of driving nodes Q:

Ea(Q) =
∑N

k=1 pQ
k /N , where pQ

k is the activation probability

of qk given the set Q.

We find, in general, the joint driving ability of a given set of

driving nodes and another single driving node linearly depends

on both the driving ability of this single node and the strength

of tie between them, and can be formulated as:

Ea(Q) = Aw(Q′, qv) + BEa(qv) + b + ε (12)

where Q′ is the given set of driving nodes, Q = {Q′, qv}, A,

B and b are parameters, and ε is a random noise.

Based on the above analysis, we give the following algo-

rithm to derive an almost optimal set of driving nodes QP that

spread topics approximately the most widely. Initially we let

QP = Ø.

1) Calculate the driving ability of each node in QC , choose

qp ∈ QC with the largest driving ability and move it into

QP , i.e., QP ← QP ∪ qp, QC ← QC\ qp.

2) Calculate the strength of ties between QP and each node

in QC based on Eq.10, choose qp ∈ QC that maximizes

the Eq.12 and move it into QP , i.e., QP ← QP ∪ qp,

QC ← QC\ qp.

3) Repeat step 2 until the size of QP equals n.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental data set contains 29514 user nodes,

421140 following edges, and 3248734 posts including 776641

retweets crawled from the Sina micro-blogging. The average

degree in the data set is 29, and its properties of small-world

TABLE I
COMPARISON OF THREE METHODS IN MEASURING THE INFLUENCE AND

INFORMATION SPREAD ABILITY OF NODES.

PageRank IR
α = 0.4

IR
α = 0.6

IR
α = 0.8

Activation
Expectation

1664971205 10473 10473 10473 3004005

10473 79660 79660 79660 10473

10484 1015414785 1015414785 26063195 1664971205

10452 26063195 26063195 10514 104360

21110 10514 10514 31928289 79660

10392 31928289 31928289 10413 10413

104016 10413 10413 35364455 10514

10470 35364455 35364455 10484 10484

104629 10484 10484 104629 104629

104360 104629 104629 10392 34103

and scale-free are verified. In the experiment, we choose the

”fashion” topic as the target topic.

Table 1 compares the users’ influence computed with Influ-

encialRank and traditional PageRank. We set parameter α in

Eq.2 with three values: 0.4, 0.6 and 0.8. With the results, we

find that InfluencialRank algorithm encodes the users’ interests

and retweeting behaviors besides the following relationship

that considered in traditional PageRank algorithm, and is more

suitable in the analysis of micro-blogging. For example, the

user No.79660 has a relatively fewer followers, but its posts

are mostly related to the topic ”fashion”, and thus it has a high

rank according to IR algorithm, while node No.1664971205

is opposite.

In the last column of Table 1, we also list the top 10 nodes

based on the activation expectation of a single driving node.

From the table, we find that the rank based on activation

expectation has some difference with which based on the IR

algorithm. It is because that activation expectation accurately

measures the breath of topic spread on micro-bloggings, which

leads to a better solution. We also find that α = 0.6 leads to

a more reasonable results, and the following experiments will

use this setting.

As introduced in Eq.12, the joint activation expectation

linearly depends on both the activation expectation of the

single driving node and tie strength among the driving nodes.

Fig.3 illustrates this linear relationship. In Figs.3a and 3b, the

horizontal axis denotes the tie strength between two driving

nodes q1 and q2 and that between q3 and the set Q′ containing

q1 and q2, respectively, and the vertical axis denotes the joint

activation expectation. Fig.3a shows that the joint activation

expectation of two driving nodes are approximately linear

with the strength of tie between them, when the activation

expectation of each single driving node is constant (in the

experiment, we limit each activation expectation into a narrow

interval, e.g., [0.11, 0.12)). Similarly, as shown in Fig.3b, the

joint activation expectation of the set Q′ = {q1, q2} and the

third node q3 approximately follows the linear relationship

with the tie strength. Fig.3c shows the dependance of the joint

activation expectation of Q′ = {q1, q2} and the third node q3
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Fig. 3. The approximate linearity among the JAE of multiple driving nodes, the AE of a single node and the tie strength.
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Fig. 4. The comparison of the breadth of topic spread with three methods.

on the tie strength and activation expectation of q3. In the

figure, the points are distributed near the plane. The estimated

parameters of Eq.12 are A = −0.0973 and B = 0.8875, which

means that the joint activation expectation will increase as the

tie strength decreases and the activation expectation of the

single driving node increases.

Fig.4 compares the topic spread from the driving nodes

based on our method and two other related methods. Method

1 denotes selecting driving nodes randomly from QC , and

method 2 denotes selecting the driving node qp with Ea(qp) =
maxQC

Ea(qi). In the experiment, we first choose a candidates

set QC of top 50 nodes with the largest influence based

on InfluentialRank algorithm, and derive the optimal driving

nodes from QC . The choosing of optimal driving nodes from

QC begins with the node No.3004005 that has the largest

activation expectation. As shown in Fig.4, every method can

increase the breath of topic spread as the number of driving

nodes increases. Compared to method 1 and method 2, our

proposed method achieves significantly higher joint activation

expectation, which means that our method spreads topics on

micro-blogging more widely.

V. CONCLUSION

In this paper, we propose a new method to find a set of user

nodes that can jointly propagate topics approximately the most

widely. In the method, we first choose a initial set of nodes

that have large influence based on InfluentialRank algorithm,

and compute the breadth of topic spread jointly driven by the

driving nodes in the initial set for a given topic. We employ

activation expectation to measure the breadth of topic spread,

and find activation expectation in the case of multiple driving

nodes is linear with the activation expectation driven by each

single driving node and the strength of ties among them.

Experimental results demonstrate that our method can derive a

set of driving nodes that can spread topics significantly more

widely than two compared methods.
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