
Totally-Ordered, Reliable Multicast over Cognitive Radio Networks

Matthew R. Tolson, Clark V. Dalton, Mark D. Silvius, Ethan S. Hennessey,
Curtis C. Medve, Jared J. Thompson, Kenneth M. Hopkinson, Seif Azghandi

Department of Electrical and Computer Engineering
Air Force Institute of Technology (AFIT)

2950 Hobson Way, Wright-Patterson AFB, Ohio 43433, USA

{mrtolson6, clark.dalton01}@gmail.com, {mark.silvius, ethan.hennessey,
curtis.medve, jared.thompson.6}@us.af.mil, {kenneth.hopkinson, sazghand}@afit.edu

Abstract
This paper summarizes the evaluation of a totally-

ordered, reliable multicast protocol over a cognitive
radio (CR) network. Multicast enables a group of
nodes to subscribe to broadcast messages. Reliability
ensures that all nodes receive messages correctly;
totally-ordered ensures that all nodes receive messages
in sequential order. In the proposed architecture, CR
nodes employ multicast to exchange radio environment
maps and to perform dynamic spectrum access.
Emulation and wireless testbeds were constructed and
baseline unicast quality of service (QoS) measured.
The Spread open-source multicast software toolkit was
installed on all nodes and the resulting multicast QoS
measured. Channel effects were applied to the
emulation testbed, so that its QoS modeled that of the
wireless testbed. This paper demonstrates that it is
feasible to characterize multicast QoS over a CR
wireless network, through the use of an equivalent
emulated network.

1. Introduction

Cognitive radios (CR) have the ability to change
their frequencies and waveforms on-the-fly in a
process called dynamic spectrum access (DSA). CRs
also contain control logic which enable them to
observe the surrounding radio frequency (RF)
spectrum; orient themselves to the presence of
competing secondary users and sources of RF
interference; decide which frequencies, waveforms,
and protocols to use to avoid interference and optimize
network quality of service (QoS) metrics; and then act
by configuring their underlying software defined radio
(SDR) platform. This adaptation cycle is often referred
to as the OODA loop and forms the foundation for a
CR’s operation [1, 2].

In previous work [3-5], the authors presented a
more detailed OODA loop and introduced a new
architecture to support a network of frequency-hopping
(FH) CRs. The network is capable of co-existing with
primary users, competing secondary users, and sources
of interference in the band. The specific functions are
detailed in Figure 1.

Merge
spectrum

maps

Use
waveform

Share
spectrum

maps

Sense RF
spectrum

Sharing
complete

Waveform
unchanged

Waveform
expired

Possible spectrum
change detected

Send
waveform

Network
partitioning
complete

Spectrum
changed

Form
network
partitions

Waveform
changed

Waveform
sent

Spectrum
unchanged

Select
waveform

Maps
merged

Waveform
valid

O-1

O-2

O-3

O-4

O-5O-6

O-7
Merge

spectrum
maps

Use
waveform

Share
spectrum

maps

Sense RF
spectrum

Sharing
complete

Waveform
unchanged

Waveform
expired

Possible spectrum
change detected

Send
waveform

Network
partitioning
complete

Spectrum
changed

Form
network
partitions

Waveform
changed

Waveform
sent

Spectrum
unchanged

Select
waveform

Maps
merged

Waveform
valid

O-1

O-2

O-3

O-4

O-5O-6

O-7

Figure 1. FH-CR System Functions

In the observe phase, the radios sense the RF

spectrum (O-1). In the orient phase, radios form
network partitions and share spectrum maps (O-2, O-
3). In the decide phase, radios merge these spectrum
maps, also known as radio environment maps (REMs)
[6], and select a waveform (O-4, O-5). Finally, in the
act phase, radios distribute the waveform selection and
reconfigure their SDR platforms (O-6, O-7).

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HICSS.2014.632

5135

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

The authors’ proposed radio architecture needs a
network protocol which distributes REM data between
nodes in Function O-3 of Figure 1. The goal is for
nodes within the network to have an identical copy of
the REM. Specifically, the REM distribution protocol
has the following requirements:

1.1. Broadcast to Subscription Group

REM-update messages must be broadcast from the
source node, with copies being sent to all other
subscribed or participating receiver nodes. Nodes must
be able to subscribe or unsubscribe to these broadcasts
dynamically as cluster assignments change or nodes
join or depart the network.

1.2. Reliability

REM update message must be transmitted in a
reliable fashion from the source to all receiver nodes.
Each node which wishes to publish a REM-update
messages, must maintain knowledge of all the
subscribed receiver nodes. After a REM-update
broadcast, each subscribed receiver must acknowledge
its successful receipt. If an acknowledgement is not
received, a re-transmission must be sent to that receiver
node.

1.3. Totally-Ordered

The broadcast message must occur in a
synchronized fashion; specifically, only one source
node may broadcast an REM-update at time. All
subscribed nodes must acknowledge their receipt and
subsequent processing of the data. This must occur
before that source node is allowed to send out another
update, or before any other nodes within the network
are allowed to send updates.

Given all these requirements, the authors have

selected the Spread open-source multicast software
toolkit [7] as a candidate totally-ordered, reliable,
multicast protocol for use in their CR network.

This paper makes the following contributions: first,
it investigates suitability of the Spread totally-ordered
reliable multicast for exchanging REMs within a CR
network; second, it demonstrates feasibility of
characterizing multicast QoS over a CR wireless
network, by using an equivalent emulated network.

2. Previous Work

This section introduces the Spread open-source
multicast software toolkit and summarizes related work
using multicast over CR networks.

2.1. The Spread Toolkit

The Spread toolkit provides reliable, wide area
group communications. It does so using two low-layer
protocols—one for local area networks called Ring,
and one for the wide area network connecting them,
called Hop. It implements efficient reliability and
ordering of existing available wide area multicast
mechanisms. Spread is similar to existing protocols
that provide reliability over existing IP-multicast, but it
scales dissemination and flow control to wide-area
networks. Spread does not scale with the number of
nodes, but rather, scales with the number of
participating groups. Spread also decouples the
dissemination and local reliability mechanisms from
the group order and stability protocols, and it supports
the Extended Virtual Synchrony model [8].

Spread uses a daemon-client architecture. The

daemons manage group membership, keeping track of
the join and leave messages and processes from the
participating nodes. The daemons establish the basic
message dissemination network and provide basic
membership and ordering services. They connect local
area networks (LANs) over the wide area network
(WAN) using unicast traffic. Clients within a LAN
connect to the closest daemon to access the group
communication services. In this way, not every client
needs to provide member and order services; only a
limited number of daemons must do this. Each LAN
may have up to several tens of clients participating in
group communications and connected to daemons [9].

Within the LAN, Spread relies on local distribution

services such as IP-multicast, hardware multicast, or
hardware broadcast. Spread’s Ring protocol facilitates
multicast within each LAN, and it provides reliability
and flow control for packets. Spread’s Hop protocol
facilitates unicast point-to-point connections between
the LAN, across the WAN. It operates over an
unreliable datagram service such as UDP/IP. This
provides the least possible latency when transferring
packets across networks consisting of several hops.
Lost packets are handled on a hop-by-hop basis instead
of end-by-end basis, and packets are immediately

5136

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

forwarded, even if they are not in order [8]. Spread is
considered an overlay network, since it constructs a
virtual network, where each link connects two edge
nodes in an underlying physical network, such as the
Internet. Each virtual link in the overlay network may
consist of several hops in the underlying network [9].

Spread also provides an application program

interface (API) which allows developers to incorporate
the protocol into their network applications. The
toolkit can be downloaded on the Internet, and its
authors provide a substantial user’s manual which
explains its installation, configuration, and use [7, 10].

2.2. Multicast in CR Networks

Compared to legacy networks, less research has
been accomplished on the performance of multicast
protocols in wireless CR networks. CR networks,
designed to operate in DSA scenarios, are unique in
that the physical (PHY) and media access control
(MAC) layers of the protocol stack must be adaptable.
They may use a frequently changing center frequency,
waveform, symbol rate, coding, etc, in response to a
changing RF environment. Not only does the process
of dynamically adapting waveforms incur latencies, but
there may be instances where no available frequencies,
called whitespace, exist for transmission and reception.
The lower layers of the protocol stack in the CR may
simply place the higher layers on-hold, while they
search for available frequencies and coordinate new
waveforms. Multicast protocols, running at either the
network (NET) or application (APP) layers, typically
require connection setup and handshaking. This
overhead requires stability from the lower PHY/MAC
layers. Without this stability, the QoS provided by the
multicast protocol begins to break down.

In [11], the authors address the issue of QoS

multicast routing and transmission scheduling in multi-
hop CR networks. They propose a distributed protocol
which uses the shortest path tree as the multicast tree.
They design a protocol which sets up a multicast
connection, which minimizes the total multicast
bandwidth consumption, while satisfying the QoS
requirements. Their design takes advantage of the
broadcast nature of the wireless channel. They also
use a time-division multiple-access (TDMA) waveform
for their PHY/MAC layer, where each radio in the
network must use time slots and frequency channels in
the DSA environment, to maintain link connectivity
and to support multicast. This TDMA waveform, and
its enumeration of time slots and frequency channels,
closely parallels this paper’s authors desire to use
multicast over an adaptable FH-CR network.

In [12], the authors study QoS routing in wireless
mesh networks with CRs, and discuss route selection,
channel allocation, and scheduling. They present a
distributed routing protocol which can select a route
and allocate resources for a connection request to
satisfy end-to-end bandwidth requirements. In [13],
authors study the issue of enabling multicast video in
CR networks, and propose a cross-layer optimization
approach. They optimize the overall received video
quality, and achieve proportional fairness among
multicast users, while keeping the interference to
primary users below a subscribed level.

3. Evaluation Methodology

In their previous work [3-5], the authors proposed a
new architecture for an adaptable FH-CR. The system
contains novel design features, such as the use of a
distributed REM, a clustering algorithm to group nodes
into geographic regions of similar REM, as well as a
FPGA-based circuit for merging REM data on each
radio. The proposed system can best be viewed as a
middleware architecture. Many of the novel design
contributions implementing the FH-CR OODA loop
reside in middleware module, as represented by the
yellow-shaded block in Figure 2.

The architecture was originally targeted towards the

stand-alone Rice University Wireless Open-Access
Research Platform (WARP) [14]. The WARP uses the
PowerPC processor on the Virtex-IV FPGA for
communication processing. The PowerPC is also an
ideal processor to run embedded Linux and network
and transport layer protocols and applications. Rice
University has tested and verified the FPGAs and
PowerPC suitability on the WARP board in over-the-
air tests.

Middleware
Architecture

REM Database

FH Hardware MAC – Software on PPC
PHY – Hardware IP Cores

--OFDM Waveform

WARP – Frequency Hopping

APP – Embedded Linux
-- Multicast (“Spread”)

TL – Embedded Linux
NET – Embedded Linux

T,S

Node
192.168.x.x

Middleware
Architecture

REM Database

FH Hardware MAC – Software on PPC
PHY – Hardware IP Cores

--OFDM Waveform

WARP – Frequency Hopping
MAC – Software on PPC
PHY – Hardware IP Cores

--OFDM Waveform

WARP – Frequency Hopping

APP – Embedded Linux
-- Multicast (“Spread”)

TL – Embedded Linux
NET – Embedded Linux

APP – Embedded Linux
-- Multicast (“Spread”)

TL – Embedded Linux
NET – Embedded Linux

T,S

Node
192.168.x.x

T,ST,S

Node
192.168.x.x

Figure 2. Middleware Architecture

In this paper, by contrast, the network stack of the
wireless radio node is split, as show in Figure 2. The

5137

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

PHY and MAC layers are handled by the WARP
platform, and the APP, transport (TL), and NET layers
are handled by a stand-alone Linux OS instance. This
Linux is running within a virtual machine (VM), either
on a laboratory workstation or laptop. The Linux OS
runs the Spread multicast toolkit. The host computer,
running the VM, is connected to the WARP platform
via an Ethernet cable. The VM host, the Linux OS, the
Spread toolkit, and the WARP platform, all together
represent an entire network stack, and operate as a
single wireless node instance. After completing the
evaluation of Spread multicast and the WARP
platform’s QoS performance, the authors plan to
collapse the entire system, and its components, to
reside on a stand-alone WARP device.

In the following sections, we investigate the

suitability of the Spread totally-ordered reliable
multicast for exchanging REMs to satisfy the
architecture detailed in Figures 2-3. Emulation and
wireless testbeds are constructed and baseline QoS
measured. Channel effects are applied to the emulation
testbed, so that its QoS modeled that of the wireless
testbed. In this way, this paper demonstrates that it is
feasible to characterize multicast QoS over a CR
wireless network, through the use of an equivalent
emulated network.

4. Results: Emulation Network (EmuNet)

This section details the design and implementation
of the emulation network. It then details both unicast
and multicast baseline QoS results.

4.1. Architecture

The EmuNet emulation network resides on a Dell
Precision T7500 Workstation with Intel Xeon X5650,
6-core 2.66 GHz CPU, 24 GB DDR3 1333 MHz RAM,
with Windows 7 64-bit as the host operating system.
The workstation provides the high performance and
scalability that is needed to emulate the multicast over
a large virtual network. We installed VM Ware
Workstation 8.0 as our virtual machine host [15]. VM
Ware gives us full control of the networking of our
VM clients, which allows us to create a virtual network
with different subnets. We created five instances of a
Tiny Core Linux [16]. Tiny Core Linux is a small,
extremely fast, and highly modular operating system
with many useful built-in extensions. We are running
the Core Plus version of Tiny Core, which at only 64
MB could easily be installed on a compact flash and
used with an FPGA embedded system. A diagram of
the EmuNet is shown in Figure 3.

Each node in the EmuNet is assigned a hostname
and an internet protocol (IP). Node 5 performs the role
of a virtual network router, connecting two distant
subnets, via the Linux route command. To simulate
congestion, we use the Traffic Control (tc) and
Network Emulation (netem) utilities. Their operation
will be detailed in greater depth in Section 6. Within
the network, end-to-end QoS is measured using the
Iperf and Ping utilities. Iperf is a software tool,
written, in C++, that measures TCP and UDP
bandwidth performance and characteristics. It features
many ways to control the data sent and the frequency
at which these tests are performed [17]. Each node is
preloaded with the Spread Toolkit, and is able to
create, join, and publish messages to a multicast group.

T=Tiny Core Linux Instance
S=Spread

R=Router

T,RT,S

T,S

Node 1:
192.168.2.101

Node 2:
192.168.2.102

T,S

T,S

Node 3:
192.168.3.101

Node 4:
192.168.3.102

Node 5:

192.168.2.10 192.168.3.10

WAN

LAN LAN

T=Tiny Core Linux Instance
S=Spread

R=Router

T,RT,RT,ST,S

T,ST,S

Node 1:
192.168.2.101

Node 2:
192.168.2.102

T,ST,S

T,ST,S

Node 3:
192.168.3.101

Node 4:
192.168.3.102

Node 5:

192.168.2.10 192.168.3.10

WAN

LAN LAN

Figure 3. Emulation Network Testbed (EmuNet)

4.2. Unicast Performance

The system components are assembled in
accordance with Figure 3. We have five instances of
Tiny Core Linux running, each installed on the Dell
Precision T7500 workstation. Multiple startup scripts
are configured on each VM. On each machine running
Spread, we have scripts that set up the IP address, start
the Spread daemon, and start the Spread program that
allows communication between VMs. The VM that
represents our router has a startup script that sets up
both IP addresses for each virtual network adapter.
This script also enables packet forwarding. Without
Spread or any channel effects programs running, we
test the control QoS of our virtual networking using the
Iperf and Ping tools to calculate goodput, latency, and
packet loss. The results are summarized in Table 1.

Table 1. Unicast QoS: EmuNet

 Throughput
[Mbps]

Latency
[ms]

Packet Loss
[%]

Average 89.726 0.443 6.385

We then expanded our Iperf and Ping tests to

determine the QoS of Iperf with increasing offered
loads and no channel effects. Iperf offers different

5138

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

options to control the unicast tests. We ran the Iperf
program, starting with an offered load of 25 Mbps,
going up to 200 Mbps. One constraint that we had for
the EmuNet was to enforce a 100 Mbps bandwidth on
each of the Tiny Core virtual network adapters.

The results of these tests are given in Table 2. The

max average throughput peaked at the max bandwidth
set in each VM instance, 100 Mbps. The difference in
throughput between an 100 Mbps and 150 Mbps
offerered load is -3 Mbps. This 50% increase in the
offered load, significantly increases the packet loss,
and has no advantage in throughput.

Table 2. Unicast QoS: EmuNet

Offered
Load

[Mbps]

Average
Throughput

[Mbps]

Average
Packet Loss

[%]
25.0 23.837 0.000
50.0 47.782 0.004

100.0 89.726 6.373
150.0 86.843 38.683
200.0 82.332 55.367

Figure 4 depicts the graph of the data in Table 2.

This plot compares the average throughput and the
average packet loss over the same offered load tests.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

25 50 100 150 200

Pa
ck
et
�L
os
s�(
%
)

Th
ro
ug
hp

ut
�(M

bp
s)

Offered�Rate�(Mbps)

Figure 4. Average Throughput and Packet Loss

4.3. Multicast Performance

Multiple startup scripts are configured on each VM
running Spread. The scripts set up the IP address, start
the Spread daemon, and start the Spread program,
which allows communication between VMs. The VM
that represents our router also has a startup script that
sets up both IP addresses for each virtual network
adapter and packet forwarding. The Spread program
was modified to send files, including binary files.
Spread was also modified to send an acknowledge
message back once the file has been received. This
message is used to calculate throughput for messages
sent, as well as the round trip latency.

QoS data was calculated with each machine
running a modified Spread program which sends files
to the other VMs. Once a VM has received the file, it
sends a message to the sender stating that it had
received the file. With the use of timestamps, we are
able to calculate the throughput of the messages.

To determine the numbers for Table 3, a series of

Spread message tests were conducted. Each message
size was 1,472 bytes. Five messages were sent from
each node to all of the other nodes in the virtual
network with a total of 20 messages sent. When
gathering information, we only used data from nodes
that were across the subnet. An example of this would
be data that was sent from Tiny 1 to Tiny 2, Tiny 3,
and Tiny 4, would only be considered if the other
nodes were on a separate subnet. In this case it would
be Tiny 3 (x.x.3.101) and Tiny 4 (x.x.3.102) compared
to Tiny 1 (x.x.2.101) and Tiny 2 (x.x.2.102). We
chose to do this based on how Spread is implemented.
Since we use a virtual network the packets never travel
over a physical wire, which affects the data from nodes
on the same subnet. From the Spread literature and
data logs, we concluded that a message would be sent
to the first node of the subnet, and then re-broadcasted
to the rest of the subnet. Since Tiny 1 and Tiny 3 were
the first nodes on their respective subnets, their average
throughputs were measured to be much higher, since
they did not have to wait for the message to be re-
broadcasted from the first node of the subnet. The two
metrics computed were: throughput—this was
calculated by adding each throughput for a set of five
tests, and then dividing by five; latency—this was
calculated by adding each latency test, i.e. the raw
difference in time, for a set of five tests, and then
dividing by five. Package loss was not detected over
the EmuNet. Average values were calculated by
averaging all measurements between the combinations
of four nodes. These results are summarized in Table
3.

Table 3. Multicast QoS: EmuNet

Message

Size
[bits]

Throughput
[Mbps]

Latency
[ms]

Packet
Loss
[%]

Average 11,776 38.590 0.507 n/a

From Table 3, we can conclude that the Spread

protocol is working as expected. Messages are sent
from one node to the first node in the other subnet, and
then this first node re-broadcasts the message out to the
rest of the nodes on the subnet.

5139

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

5. Results: Wireless Network (WARPnet)

This section details the design and implementation
of the wireless network. It then details both unicast
and multicast baseline QoS results.

5.1. Architecture

The WARPnet wireless network consists of four
HP Compact 8510p laptops with Intel Core 2 Duo 2.4
GHz 2 GB DDR RAM with Windows XP 32-bit as the
host operating system. Currently, each laptop runs VM
Ware Workstation 8.0 with a single instance of Tiny
Core Linux. Although the laptop is capable of running
Tiny Core Linux natively, the use of a single
standardized Tiny Core Linux image in both EmuNet
and WARPnet greatly simplifies administration,
deployment, and scripting. A diagram of the
WARPnet is shown in Figure 5.

The WARPnet features four WARP boards. For

our implementation, we use the OFDM Reference
Design software available on the Rice software
repository [18]. The package implements a real-time
network stack and the ability to bridge the wired-to-
wireless abilities of the WARP board to an Ethernet-
connected PC. We also use the CSMA MAC Project
extension to the OFDM Reference Design. This design
creates a wired-to-wireless bridge while also
implementing a CSMA MAC protocol. It offers
support for only two nodes, but while doing so allows
for packets to transfer seamlessly over the WARP
board into the Ethernet-connected PC and vice versa.
We later redesigned the CSMA MAC to allow for
multiple wireless nodes. We refer to this updated
design as our Modified CSMA MAC Project. This
involved modifying the code to allow for the WARP
board to set its source MAC address according to the
header information contained in packets arriving from
its Ethernet connection. The WARP board’s wireless
interface then takes on the same MAC source address
as the laptop’s Ethernet interface.

In the WARPnet, the WARP boards perform a

similar function as an Ethernet bridge for the laptops.
They simply encapsulate each 802.3 Ethernet frame
received from the laptop into a wireless 802.11-like
frame and transmit it over the air. Conversely, they
take each received wireless 802.11-like frame, de-
encapsulate it to recover the 802.3 Ethernet frame, and
relay it to the laptop. The laptops are also not
controlling operations on the WARPs boards; the
boards run independently, controlled by the software

running on PowerPC core and the circuitry running
within the FPGA fabric.

T=Tiny Core VM
Linux Instance

S=Spread

Node 1:
192.168.1.2

Node 2:
192.168.1.3

Node 3:
192.168.1.4

Node 4:
192.168.1.5

T,S

T,S

T,S

T,S

T=Tiny Core VM
Linux Instance

S=Spread

Node 1:
192.168.1.2

Node 2:
192.168.1.3

Node 3:
192.168.1.4

Node 4:
192.168.1.5

T,ST,S

T,ST,S

T,ST,S

T,ST,S

Figure 5. Wireless Network Testbed (WARPnet)

To program the WARP boards, we employed the

Xilinx’s EDK, SDK, and Impact tools [19]. This suite
of software tools allows for easy development of
software for the WARP board and changes to
programmable hardware on the WARP board.
Specifically, SDK develops and uploads software to
the WARP board PowerPC processor. EDK develops
and flashes hardware configurations for the WARP
board FPGA. The Impact tool uploads and packages
hardware and software configurations for the WARP
Board. It can also create bootable compact Flash
images for the WARP board. As in EmuNet, end-to-
end QoS in WARPnet is measured using the Iperf and
Ping utilities. Each node is preloaded with the Spread
toolkit, and is able to create, join, and publish
messages to a multicast group.

5.2. Unicast Performance

The system components are assembled in
accordance with Figure 5. We start up the OFDM
Reference Design with our Modified CSMA MAC
Project running. Each board boots from its own
external compact flash memory using a board image
common to all four nodes. We test the steady-state
QoS of our radio network using the Iperf program to
calculate throughput, latency, and packet loss. We use
Iperf running in Tiny Linux, within VM Ware
Workstation, running on Windows XP on the laptops.
The results are summarized in Table 4.

Table 4. Unicast QoS: WARPnet

 Throughput
[Kbps]

Latency
[ms]

Packet Loss
[%]

Average 128.1 55.1 27.68

5140

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

Data was collected with Iperf and Ping scripts
running on Linux Tiny Core. Throughput and latency
values are averaged over five separate tests. Packets
lost and sent values are sums over five tests for each
pair of nodes. Iperf tests were run with an outgoing
UDP bandwidth of 200 Kbps. Both Iperf and Ping
tests ran with 1,470 byte packets.

5.3. Multicast Performance

Table 5 details the results of the Spread testing with
the WARPnet. These values were gathered using the
same methods that were used to gather Spread values
over the EmuNet in Section 4.3. System time across
the Tiny Cores was synchronized using NTP in Linux
over a LAN network, on a different subnet than the
WARP subnet. All nodes sync to Node 4
(192.168.6.4) with a daemon and ignored the time
values of the other nodes. The organization of the
results in Table 5 was similar to that of Table 3.

Table 5. Multicast QoS: WARPnet

Message

Size
[bits]

Throughput
[Kbps]

Latency
[ms]

Packet
Loss
[%]

Average 11,776 36.958 38.7 n/a

A summary of all QoS measures is shown in Table

6. For Unicast, the WARPnet had 89.598 Mbps
(-99.9%) slower throughput, 54.657 ms (+99.2%)
longer latency, and 21.30% (+76.93%) larger packet
loss rate than the EmuNet. This is expected given the
ideal network conditions of the emulated environment
compared to the relatively noisy lab environment of the
WARPnet.

Table 6. Summary of Average QoS Measurements

Experiment Throughput
[Kbps]

Latency
[ms]

Packet
Loss
[%]

EmuNet - Unicast 89,726 0.443 6.385

EmuNet - Multicast 38,590 0.507 n/a

WARPnet - Unicast 128.1 55.1 27.68

WARPnet - Multicast 36.958 38.7 n/a

6. Results: Environment Matching

In this section, we model the delay of the WAN and
make the emulation testbed model the wireless testbed.
This will enable us to scale the emulation testbed in the
future, so that it can approximate a larger wireless
testbed.

6.1. Spread Protocol Design: WAN vs. LAN

Spread is designed with two major components, the
WAN and LAN. During the operation of Spread, a
message can be sent from a node on the LAN to
another node in another LAN. Since the LANs are on
different subnets, the message must cross the WAN. In
the LAN, Spread uses rings to distribute the messages,
and in the WAN, it use hops. Figure 6 depicts the
setup of the EmuNet testbed. Node 5 is a router, and it
models the WAN for messages traveling to different
subnets. Nodes 1 through Node 4 are in their
respective LANs, and they communicate with the ring
implementation.

T=Tiny Core Linux Instance
S=Spread

R=Router

C=Channel Effects Delay

N=Multiple

T,R,NCT,S,C

T,S,C

Node 1:
192.168.2.101

Node 2:
192.168.2.102

T,S,C

T,S,C

Node 3:
192.168.3.101

Node 4:
192.168.3.102

Node 5:

192.168.2.10 192.168.3.10

WAN

LAN LAN

T=Tiny Core Linux Instance
S=Spread

R=Router

C=Channel Effects Delay

N=Multiple

T,R,NCT,R,NCT,S,CT,S,C

T,S,CT,S,C

Node 1:
192.168.2.101

Node 2:
192.168.2.102

T,S,CT,S,C

T,S,CT,S,C

Node 3:
192.168.3.101

Node 4:
192.168.3.102

Node 5:

192.168.2.10 192.168.3.10

WAN

LAN LAN

Figure 6. EmuNet with Channel Effects

6.2. Modeling the WARPnet Environment

To model the EmuNet as a WARPnet, we needed
to get a baseline for what the max multicast QoS was
for each testbed. Using the Multicast EmuNet and
WARPnet QoS results from Table 3 and Table 5, we
concluded that the max throughput for the EmuNet is
38.590 Mbps and the max throughput for the
WARpnet is 36.958 Kbps. Given this data, we used
the Linux programs tc and netem to throttle the
EmuNet to match the WARPnet.

Figure 6 describes the basic setup for the

experiment. At each Node 1 to Node 4, there is a
channel effect delay C, and at Node 5 there is a
channel effects delay N*C, where N is assumed to be a
multiple of delay that a message would encounter
across the WAN. We chose N to be 5 for our
experiments. For the QoS tests with channel effects,
we decided to use 1, 5, 10, and 100 ms delays.

In the following test, a Spread multicast message

was sent to the multicast group including Node 1,
Node 2, Node 3, and Node 4. Utilizing the channel
effects programs discussed above, time delays were

5141

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

added on each network adapter in the LANs. Also, a
time delay was added to Node 5 that was five times
larger than the delay specified for Nodes 1 through
Node 4. Table 7 shows that we were able to throttle
the EmuNet comparatively to the WARPnet’s max
QoS discussed in the control data section.

Table 7. Multicast Spread QoS: EmuNet

Delay, C,
[ms]

Total Ave
Throughput

[Kbps]
1 3,336.74
5 1,037.25

25 276.06
125 47.07
250 24.14
375 15.75

Figure 7 depicts the Table 7 in a more revealing

manner. From this graph, it is evident how increases in
the delays on each Tiny Core affect the average
throughput.

0

500

1000

1500

2000

2500

3000

3500

1 5 25 125 250 375

To
ta
l�A

ve
ra
ge
�T
hr
ou

gh
ou

t�
(k
bp

s)

Delay,�C (ms)

Figure 7. Spread with Channel Effects

7. Analysis and Conclusions

This paper shows that it is feasible to throttle down
the EmuNet testbed to resemble the Spread Multicast
QoS. Table 8 summarizes the throttled down EmuNet
compared to the base WARPnet QoS. The WARPnet
max QoS for the Spread protocol was 36.958 Kbps.
When the EmuNet was throttled down with 125 ms and
250 ms delays, the QoS was 47.07 Kbps and 24.14
Kbps, respectively. These two data points are on the
low and high sides of the WARPnet throughput. A
throttled EmuNet between these two delays would give
an even closer QoS match.

The EmuNet testbed was successful at achieving a

throughout that was similar to the throughput of the
WARPnet. From this conclusion, we know that the
EmuNet is capable of simulating the WARPnet. We

can now move forward and expand and combine our
EmuNet to simulate a much larger multicast radio
network.

Table 8. Summary of Spread QoS Throttling

Spread QoS
Experiment

Delay
[ms]

Throughput
[Kbps]

WARPnet 0 36.958
EmuNet 1 3,336.74
EmuNet 5 1,037.25
EmuNet 125 276.06
EmuNet 125 47.07
EmuNet 250 24.14
EmuNet 375 15.75

8. Future Work

The authors’ next goal is to continue to improve the
realism of CR network. Three routes include:

� Scale the EmuNet environment to tens or hundreds

of virtual nodes, and re-test the QoS.

� Create a mixed testbed that consists of both

WARP boards and virtual nodes, and re-test the
QoS.

� Port the Tiny Core Linux and Spread to run

natively on the PowerPC hardcore processor on
the WARP’s FPGA, so that each wireless node
operates as a stand-alone system.

The first of the two tracks given above would

provide QoS information on the scalability of the
Spread multicast message protocol. It also would
provide insight on whether this protocol would be
favorable for wireless radio networks. The second
option would be to incorporate both the WARP boards
and Tiny Core VMs to create a mixed wired and
wireless network. This option could be scaled to
include many nodes. In other words, the EmuNet and
WARPnet could be combined into a single,
consolidated Mixed Emulation-Wireless Network
Testbed (MEWiNet), as shown in Figure 8. The
MEWiNet would also receive emulated spectrum and
whitespace data through the Dynamic Spectrum
Emulator (DySE) system [3-5].

The third track would enable the authors to

measure the QoS performance of both the WARPnet
and the MEWiNet, by using complete, stand-alone
radio nodes running on the WARP device. This would
add greater realism to the measurements, would
provide the first step toward full system deployment
and field test and evaluation.

5142

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

[7] Spread Concepts LLC, “The Spread Toolkit,” March
2013, URL: http://www.spread.org.

DYSEDYSEDYSEDYSE

Emulated Spectrum (REM)

Ethernet Switch

Emulation Control
Terminals

DYSEDYSEDYSEDYSE

Emulated Spectrum (REM)

Ethernet Switch

Emulation Control
Terminals

Figure 8. Mixed Emulation-Wireless Network
Testbed (MEWiNet)

[8] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J.
Stanton, “The Spread Wide Area Group Communication
System,” Technical Report CNDS-98-4, The Johns Hopkins
University, Baltimore, MD, URL:
http://www.spread.org/SpreadResearch.html.

[9] Y. Amir, C. Danilov, and S. Stanton, “A Low Latency,
Loss Tolerant Architecture and Protocol for Wide Area group
Communication,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN),
New York, NY, June 25-28, 2000, pp. 327-336.

[10] J. R. Stanton, “A Users Guide to Spread Version 0.11,”
October 21, 2002, URL: http://www.spread.org/docs/
guide/users_guide.pdf.

9. Acknowledgement [11] X. Liming and J. Xiaohua, “QoS Multicast Routing and
transmission scheduling in Multi-hop Cognitive Radio
Networks,” in IEEE Global Communications Conference
(GLOBECOM), Workshop on Pervasive Group
Communications, Miami, FL, December 6-10, 2010, pp.
1487-1491.

The views expressed in this document are those of

the authors and do not reflect the official policy or
position of the United States Air Force, Department of
Defense, or the U.S. Government.

 [12] H. Donglin, M. Shiwen, and J. H. Reed, “On Video
Multicast in Cognitive Radio Networks,” in IEEE
International Conference on Computer Communications
(INFOCOM), Rio de Janeiro, Brazil, April 19-25, 2009, pp.
2222-2230.

The authors wish to thank AFRL/RYWE for their
sponsorship of this research.

10. References
 [13] H. Donglin, M. Shiwen, Y. T. Hou, and J. H. Reed,

“Scalable Video Multicast in Cognitive Radio Networks,”
IEEE Journal on Selected Areas in Communications, Vol.
28, Issue 3, April 2010, pp. 334-344.

[1] R. Coram, Boyd: The Fighter Pilot Who Changed the Art
of War. Boston: Back Bay Books, 2002.

 [2] B. A. Fette, Cognitive Radio Technology, 2nd Ed.,
Boston: Academic Press/Elsevier, 2009. [14] Rice University, “Wireless Open-Access Research

Platform (WARP),” February 2013, URL:
http://warp.rice.edu.

[3] R. K. McLean, B. N. Flatley, M. D. Silvius, and K. M.
Hopkinson, “FPGA-Based RF Spectrum Merging and
Adaptive Hopset Selection,” IEEE Aerospace Conference,
Big Sky, MT, March 2-9, 2013.

[15] VM Ware Workstation 8.0, February 2013, URL:
http://www.vmware.com/products/workstation/overview.htm
l.
 [4] R. K. McLean, M. D. Silvius, and K. M. Hopkinson,

“Method for Evaluating k-Means Clustering for Increased
Reliability in Cognitive Radio Networks,” IEEE Software
Security and Reliability (SERE), Washington, DC, June 18-
20, 2013.

[16] Tiny Core Linux Project, March 2013, URL:
http://tinycorelinux.net.

[17] Internet Protocol Performance (Iperf) Tool 2.0, March
2013, URL: http://iperf.sourceforge.net.
 [5] R. K. McLean, “An Architecture for Coexistence with

Multiple Users in Frequency Hopping Cognitive Radio
Networks,” M.S. Thesis, Department of Electrical and
Computer Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 5, 2013.

[18] Rice University, “OFDM Reference Design -
Wireless/Wired Bridge,” March 2010, URL:
http://warp.rice.edu/trac/wiki/OFDMReferenceDesign/Applic
ations/Bridge.

[19] Xilinx, Downloads, 2013, Multiple Versions URL:
http://www.xilinx.com/support/download/index.htm.

[6] Y. Zhao, “Enabling Cognitive Radios through Radio
Environment Maps,” Ph.D. Dissertation, Department of
Electrical and Computer Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA, 2007.

5143

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 30,2024 at 17:17:02 UTC from IEEE Xplore. Restrictions apply.

