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Abstract 
This paper summarizes the evaluation of a totally-

ordered, reliable multicast protocol over a cognitive 
radio (CR) network.  Multicast enables a group of 
nodes to subscribe to broadcast messages.  Reliability 
ensures that all nodes receive messages correctly; 
totally-ordered ensures that all nodes receive messages 
in sequential order.  In the proposed architecture, CR 
nodes employ multicast to exchange radio environment 
maps and to perform dynamic spectrum access.  
Emulation and wireless testbeds were constructed and 
baseline unicast quality of service (QoS) measured.  
The Spread open-source multicast software toolkit was 
installed on all nodes and the resulting multicast QoS 
measured.  Channel effects were applied to the 
emulation testbed, so that its QoS modeled that of the 
wireless testbed.  This paper demonstrates that it is 
feasible to characterize multicast QoS over a CR 
wireless network, through the use of an equivalent 
emulated network. 
 
 
1. Introduction  
 

Cognitive radios (CR) have the ability to change 
their frequencies and waveforms on-the-fly in a 
process called dynamic spectrum access (DSA).  CRs 
also contain control logic which enable them to 
observe the surrounding radio frequency (RF) 
spectrum; orient themselves to the presence of 
competing secondary users and sources of RF 
interference; decide which frequencies, waveforms, 
and protocols to use to avoid interference and optimize 
network quality of service (QoS) metrics; and then act 
by configuring their underlying software defined radio 
(SDR) platform.  This adaptation cycle is often referred 
to as the OODA loop and forms the foundation for a 
CR’s operation [1, 2]. 

 

In previous work [3-5], the authors presented a 
more detailed OODA loop and introduced a new 
architecture to support a network of frequency-hopping 
(FH) CRs.  The network is capable of co-existing with 
primary users, competing secondary users, and sources 
of interference in the band.  The specific functions are 
detailed in Figure 1. 
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Figure 1. FH-CR System Functions 
 
In the observe phase, the radios sense the RF 

spectrum (O-1).  In the orient phase, radios form 
network partitions and share spectrum maps (O-2, O-
3).  In the decide phase, radios merge these spectrum 
maps, also known as radio environment maps (REMs) 
[6], and select a waveform (O-4, O-5).  Finally, in the 
act phase, radios distribute the waveform selection and 
reconfigure their SDR platforms (O-6, O-7).  
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The authors’ proposed radio architecture needs a 
network protocol which distributes REM data between 
nodes in Function O-3 of Figure 1.  The goal is for 
nodes within the network to have an identical copy of 
the REM.  Specifically, the REM distribution protocol 
has the following requirements: 
 
1.1. Broadcast to Subscription Group 
 

REM-update messages must be broadcast from the 
source node, with copies being sent to all other 
subscribed or participating receiver nodes.  Nodes must 
be able to subscribe or unsubscribe to these broadcasts 
dynamically as cluster assignments change or nodes 
join or depart the network. 
 
1.2. Reliability 
 

REM update message must be transmitted in a 
reliable fashion from the source to all receiver nodes.  
Each node which wishes to publish a REM-update 
messages, must maintain knowledge of all the 
subscribed receiver nodes.  After a REM-update 
broadcast, each subscribed receiver must acknowledge 
its successful receipt.  If an acknowledgement is not 
received, a re-transmission must be sent to that receiver 
node.   
 
1.3. Totally-Ordered 
 

The broadcast message must occur in a 
synchronized fashion; specifically, only one source 
node may broadcast an REM-update at time.  All 
subscribed nodes must acknowledge their receipt and 
subsequent processing of the data.  This must occur 
before that source node is allowed to send out another 
update, or before any other nodes within the network 
are allowed to send updates.   

 
Given all these requirements, the authors have 

selected the Spread open-source multicast software 
toolkit [7] as a candidate totally-ordered, reliable, 
multicast protocol for use in their CR network.  
 

This paper makes the following contributions: first, 
it investigates suitability of the Spread totally-ordered 
reliable multicast for exchanging REMs within a CR 
network; second, it demonstrates feasibility of 
characterizing multicast QoS over a CR wireless 
network, by using an equivalent emulated network. 
 

2. Previous Work 
 

This section introduces the Spread open-source 
multicast software toolkit and summarizes related work 
using multicast over CR networks.   
 
2.1. The Spread Toolkit 
 

The Spread toolkit provides reliable, wide area 
group communications.  It does so using two low-layer 
protocols—one for local area networks called Ring, 
and one for the wide area network connecting them, 
called Hop.  It implements efficient reliability and 
ordering of existing available wide area multicast 
mechanisms.  Spread is similar to existing protocols 
that provide reliability over existing IP-multicast, but it 
scales dissemination and flow control to wide-area 
networks.  Spread does not scale with the number of 
nodes, but rather, scales with the number of 
participating groups. Spread also decouples the 
dissemination and local reliability mechanisms from 
the group order and stability protocols, and it supports 
the Extended Virtual Synchrony model [8]. 

 
Spread uses a daemon-client architecture.  The 

daemons manage group membership, keeping track of 
the join and leave messages and processes from the 
participating nodes.  The daemons establish the basic 
message dissemination network and provide basic 
membership and ordering services.  They connect local 
area networks (LANs) over the wide area network 
(WAN) using unicast traffic.  Clients within a LAN 
connect to the closest daemon to access the group 
communication services.  In this way, not every client 
needs to provide member and order services; only a 
limited number of daemons must do this.  Each LAN 
may have up to several tens of clients participating in 
group communications and connected to daemons [9].   

 
Within the LAN, Spread relies on local distribution 

services such as IP-multicast, hardware multicast, or 
hardware broadcast.  Spread’s Ring protocol facilitates 
multicast within each LAN, and it provides reliability 
and flow control for packets.  Spread’s Hop protocol 
facilitates unicast point-to-point connections between 
the LAN, across the WAN.  It operates over an 
unreliable datagram service such as UDP/IP.  This 
provides the least possible latency when transferring 
packets across networks consisting of several hops.  
Lost packets are handled on a hop-by-hop basis instead 
of end-by-end basis, and packets are immediately 
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forwarded, even if they are not in order [8].  Spread is 
considered an overlay network, since it constructs a 
virtual network, where each link connects two edge 
nodes in an underlying physical network, such as the 
Internet.  Each virtual link in the overlay network may 
consist of several hops in the underlying network [9].   

 
Spread also provides an application program 

interface (API) which allows developers to incorporate 
the protocol into their network applications.  The 
toolkit can be downloaded on the Internet, and its 
authors provide a substantial user’s manual which 
explains its installation, configuration, and use [7, 10]. 
 
2.2. Multicast in CR Networks 
 

Compared to legacy networks, less research has 
been accomplished on the performance of multicast 
protocols in wireless CR networks.  CR networks, 
designed to operate in DSA scenarios, are unique in 
that the physical (PHY) and media access control 
(MAC) layers of the protocol stack must be adaptable.  
They may use a frequently changing center frequency, 
waveform, symbol rate, coding, etc, in response to a 
changing RF environment.  Not only does the process 
of dynamically adapting waveforms incur latencies, but 
there may be instances where no available frequencies, 
called whitespace, exist for transmission and reception.  
The lower layers of the protocol stack in the CR may 
simply place the higher layers on-hold, while they 
search for available frequencies and coordinate new 
waveforms.  Multicast protocols, running at either the 
network (NET) or application (APP) layers, typically 
require connection setup and handshaking.  This 
overhead requires stability from the lower PHY/MAC 
layers.  Without this stability, the QoS provided by the 
multicast protocol begins to break down.   

 
In [11], the authors address the issue of QoS 

multicast routing and transmission scheduling in multi-
hop CR networks.  They propose a distributed protocol 
which uses the shortest path tree as the multicast tree.  
They design a protocol which sets up a multicast 
connection, which minimizes the total multicast 
bandwidth consumption, while satisfying the QoS 
requirements.  Their design takes advantage of the 
broadcast nature of the wireless channel.  They also 
use a time-division multiple-access (TDMA) waveform 
for their PHY/MAC layer, where each radio in the 
network must use time slots and frequency channels in 
the DSA environment, to maintain link connectivity 
and to support multicast.  This TDMA waveform, and 
its enumeration of time slots and frequency channels, 
closely parallels this paper’s authors desire to use 
multicast over an adaptable FH-CR network.  

In [12], the authors study QoS routing in wireless 
mesh networks with CRs, and discuss route selection, 
channel allocation, and scheduling.  They present a 
distributed routing protocol which can select a route 
and allocate resources for a connection request to 
satisfy end-to-end bandwidth requirements.  In [13], 
authors study the issue of enabling multicast video in 
CR networks, and propose a cross-layer optimization 
approach.  They optimize the overall received video 
quality, and achieve proportional fairness among 
multicast users, while keeping the interference to 
primary users below a subscribed level.   
 
3. Evaluation Methodology 
 

In their previous work [3-5], the authors proposed a 
new architecture for an adaptable FH-CR.  The system 
contains novel design features, such as the use of a 
distributed REM, a clustering algorithm to group nodes 
into geographic regions of similar REM, as well as a 
FPGA-based circuit for merging REM data on each 
radio.  The proposed system can best be viewed as a 
middleware architecture.  Many of the novel design 
contributions implementing the FH-CR OODA loop 
reside in middleware module, as represented by the 
yellow-shaded block in Figure 2.  

 
The architecture was originally targeted towards the 

stand-alone Rice University Wireless Open-Access 
Research Platform (WARP) [14].  The WARP uses the 
PowerPC processor on the Virtex-IV FPGA for 
communication processing.  The PowerPC is also an 
ideal processor to run embedded Linux and network 
and transport layer protocols and applications.  Rice 
University has tested and verified the FPGAs and 
PowerPC suitability on the WARP board in over-the-
air tests.  
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Figure 2. Middleware Architecture 
 

In this paper, by contrast, the network stack of the 
wireless radio node is split, as show in Figure 2.  The 
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PHY and MAC layers are handled by the WARP 
platform, and the APP, transport (TL), and NET layers 
are handled by a stand-alone Linux OS instance.  This 
Linux is running within a virtual machine (VM), either 
on a laboratory workstation or laptop.  The Linux OS 
runs the Spread multicast toolkit.  The host computer, 
running the VM, is connected to the WARP platform 
via an Ethernet cable.  The VM host, the Linux OS, the 
Spread toolkit, and the WARP platform, all together 
represent an entire network stack, and operate as a 
single wireless node instance.  After completing the 
evaluation of Spread multicast and the WARP 
platform’s QoS performance, the authors plan to 
collapse the entire system, and its components, to 
reside on a stand-alone WARP device.   

 
In the following sections, we investigate the 

suitability of the Spread totally-ordered reliable 
multicast for exchanging REMs to satisfy the 
architecture detailed in Figures 2-3.  Emulation and 
wireless testbeds are constructed and baseline QoS 
measured.  Channel effects are applied to the emulation 
testbed, so that its QoS modeled that of the wireless 
testbed.  In this way, this paper demonstrates that it is 
feasible to characterize multicast QoS over a CR 
wireless network, through the use of an equivalent 
emulated network. 
 
4. Results: Emulation Network (EmuNet) 
 

This section details the design and implementation 
of the emulation network.  It then details both unicast 
and multicast baseline QoS results. 
 
4.1. Architecture 
 

The EmuNet emulation network resides on a Dell 
Precision T7500 Workstation with Intel Xeon X5650, 
6-core 2.66 GHz CPU, 24 GB DDR3 1333 MHz RAM, 
with Windows 7 64-bit as the host operating system.  
The workstation provides the high performance and 
scalability that is needed to emulate the multicast over 
a large virtual network.  We installed VM Ware 
Workstation 8.0 as our virtual machine host [15].  VM 
Ware gives us full control of the networking of our 
VM clients, which allows us to create a virtual network 
with different subnets.  We created five instances of a 
Tiny Core Linux [16].  Tiny Core Linux is a small, 
extremely fast, and highly modular operating system 
with many useful built-in extensions.  We are running 
the Core Plus version of Tiny Core, which at only 64 
MB could easily be installed on a compact flash and 
used with an FPGA embedded system.  A diagram of 
the EmuNet is shown in Figure 3.  

Each node in the EmuNet is assigned a hostname 
and an internet protocol (IP).  Node 5 performs the role 
of a virtual network router, connecting two distant 
subnets, via the Linux route command.  To simulate 
congestion, we use the Traffic Control (tc) and 
Network Emulation (netem) utilities.  Their operation 
will be detailed in greater depth in Section 6.  Within 
the network, end-to-end QoS is measured using the 
Iperf and Ping utilities.  Iperf is a software tool, 
written, in C++, that measures TCP and UDP 
bandwidth performance and characteristics.  It features 
many ways to control the data sent and the frequency 
at which these tests are performed [17].  Each node is 
preloaded with the Spread Toolkit, and is able to 
create, join, and publish messages to a multicast group. 
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Figure 3. Emulation Network Testbed (EmuNet) 
 

 
4.2. Unicast Performance  
 

The system components are assembled in 
accordance with Figure 3.  We have five instances of 
Tiny Core Linux running, each installed on the Dell 
Precision T7500 workstation.  Multiple startup scripts 
are configured on each VM.  On each machine running 
Spread, we have scripts that set up the IP address, start 
the Spread daemon, and start the Spread program that 
allows communication between VMs.  The VM that 
represents our router has a startup script that sets up 
both IP addresses for each virtual network adapter.  
This script also enables packet forwarding.  Without 
Spread or any channel effects programs running, we 
test the control QoS of our virtual networking using the 
Iperf and Ping tools to calculate goodput, latency, and 
packet loss.  The results are summarized in Table 1. 
 

Table 1. Unicast QoS: EmuNet 
 

 Throughput
[Mbps] 

Latency 
[ms] 

Packet Loss
[%] 

Average 89.726 0.443 6.385 
 

 
We then expanded our Iperf and Ping tests to 

determine the QoS of Iperf with increasing offered 
loads and no channel effects.  Iperf offers different 
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options to control the unicast tests.  We ran the Iperf 
program, starting with an offered load of 25 Mbps, 
going up to 200 Mbps.  One constraint that we had for 
the EmuNet was to enforce a 100 Mbps bandwidth on 
each of the Tiny Core virtual network adapters.   

 
The results of these tests are given in Table 2.  The 

max average throughput peaked at the max bandwidth 
set in each VM instance, 100 Mbps.  The difference in 
throughput between an 100 Mbps and 150 Mbps 
offerered load is -3 Mbps.  This 50% increase in the 
offered load, significantly increases the packet loss, 
and has no advantage in throughput. 

 
Table 2. Unicast QoS: EmuNet 

 

Offered 
Load 

[Mbps] 

Average 
Throughput 

[Mbps] 

Average 
Packet Loss 

[%] 
25.0 23.837 0.000 
50.0 47.782 0.004 

100.0 89.726 6.373 
150.0 86.843 38.683 
200.0 82.332 55.367 

 
Figure 4 depicts the graph of the data in Table 2.  

This plot compares the average throughput and the 
average packet loss over the same offered load tests.  
 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

25 50 100 150 200

Pa
ck
et
�L
os
s�(
%
)

Th
ro
ug
hp

ut
�(M

bp
s)

Offered�Rate�(Mbps)
 

 

Figure 4. Average Throughput and Packet Loss 
 
4.3. Multicast Performance 
 

Multiple startup scripts are configured on each VM 
running Spread.  The scripts set up the IP address, start 
the Spread daemon, and start the Spread program, 
which allows communication between VMs.  The VM 
that represents our router also has a startup script that 
sets up both IP addresses for each virtual network  
adapter and  packet forwarding.  The Spread program 
was modified to send files, including binary files.  
Spread was also modified to send an acknowledge 
message back once the file has been received.  This 
message is used to calculate throughput for messages 
sent, as well as the round trip latency. 

 

QoS data was calculated with each machine 
running a modified Spread program which sends files 
to the other VMs.  Once a VM has received the file, it 
sends a message to the sender stating that it had 
received the file.  With the use of timestamps, we are 
able to calculate the throughput of the messages.   

 
To determine the numbers for Table 3, a series of 

Spread message tests were conducted.  Each message 
size was 1,472 bytes.  Five messages were sent from 
each node to all of the other nodes in the virtual 
network with a total of 20 messages sent.  When 
gathering information, we only used data from nodes 
that were across the subnet.  An example of this would 
be data that was sent from Tiny 1 to Tiny 2, Tiny 3, 
and Tiny 4, would only be considered if the other 
nodes were on a separate subnet.  In this case it would 
be Tiny 3 (x.x.3.101) and Tiny 4 (x.x.3.102) compared 
to Tiny 1 (x.x.2.101) and Tiny 2 (x.x.2.102).  We 
chose to do this based on how Spread is implemented.  
Since we use a virtual network the packets never travel 
over a physical wire, which affects the data from nodes 
on the same subnet.  From the Spread literature and 
data logs, we concluded that a message would be sent 
to the first node of the subnet, and then re-broadcasted 
to the rest of the subnet.  Since Tiny 1 and Tiny 3 were 
the first nodes on their respective subnets, their average 
throughputs were measured to be much higher, since 
they did not have to wait for the message to be re-
broadcasted from the first node of the subnet.  The two 
metrics computed were: throughput—this was 
calculated by adding each throughput for a set of five 
tests, and then dividing by five; latency—this was 
calculated by adding each latency test, i.e. the raw 
difference in time, for a set of five tests, and then 
dividing by five.  Package loss was not detected over 
the EmuNet.  Average values were calculated by 
averaging all measurements between the combinations 
of four nodes.  These results are summarized in Table 
3. 
 

Table 3. Multicast QoS: EmuNet 
 

 
Message

Size 
[bits] 

Throughput 
[Mbps] 

Latency 
[ms] 

Packet
Loss  
[%] 

Average 11,776 38.590 0.507 n/a 
 

 
From Table 3, we can conclude that the Spread 

protocol is working as expected.  Messages are sent 
from one node to the first node in the other subnet, and 
then this first node re-broadcasts the message out to the 
rest of the nodes on the subnet.   
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5. Results: Wireless Network (WARPnet) 
 

This section details the design and implementation 
of the wireless network.  It then details both unicast 
and multicast baseline QoS results. 
 
5.1. Architecture  
 

The WARPnet wireless network consists of four 
HP Compact 8510p laptops with Intel Core 2 Duo 2.4 
GHz 2 GB DDR RAM with Windows XP 32-bit as the 
host operating system.  Currently, each laptop runs VM 
Ware Workstation 8.0 with a single instance of Tiny 
Core Linux.  Although the laptop is capable of running 
Tiny Core Linux natively, the use of a single 
standardized Tiny Core Linux image in both EmuNet 
and WARPnet greatly simplifies administration, 
deployment, and scripting.  A diagram of the 
WARPnet is shown in Figure 5. 

 
The WARPnet features four WARP boards.  For 

our implementation, we use the OFDM Reference 
Design software available on the Rice software 
repository [18].  The package implements a real-time 
network stack and the ability to bridge the wired-to-
wireless abilities of the WARP board to an Ethernet-
connected PC.  We also use the CSMA MAC Project 
extension to the OFDM Reference Design.  This design 
creates a wired-to-wireless bridge while also 
implementing a CSMA MAC protocol.  It offers 
support for only two nodes, but while doing so allows 
for packets to transfer seamlessly over the WARP 
board into the Ethernet-connected PC and vice versa.  
We later redesigned the CSMA MAC to allow for 
multiple wireless nodes.  We refer to this updated 
design as our Modified CSMA MAC Project.  This 
involved modifying the code to allow for the WARP 
board to set its source MAC address according to the 
header information contained in packets arriving from 
its Ethernet connection.  The WARP board’s wireless 
interface then takes on the same MAC source address 
as the laptop’s Ethernet interface.  

 
In the WARPnet, the WARP boards perform a 

similar function as an Ethernet bridge for the laptops.  
They simply encapsulate each 802.3 Ethernet frame 
received from the laptop into a wireless 802.11-like 
frame and transmit it over the air.  Conversely, they 
take each received wireless 802.11-like frame, de-
encapsulate it to recover the 802.3 Ethernet frame, and 
relay it to the laptop.  The laptops are also not 
controlling operations on the WARPs boards; the 
boards run independently, controlled by the software 

running on PowerPC core and the circuitry running 
within the FPGA fabric.  
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Figure 5. Wireless Network Testbed (WARPnet) 
 

 
To program the WARP boards, we employed the 

Xilinx’s EDK, SDK, and Impact tools [19].  This suite 
of software tools allows for easy development of 
software for the WARP board and changes to 
programmable hardware on the WARP board. 
Specifically, SDK develops and uploads software to 
the WARP board PowerPC processor.  EDK develops 
and flashes hardware configurations for the WARP 
board FPGA.  The Impact tool uploads and packages 
hardware and software configurations for the WARP 
Board.  It can also create bootable compact Flash 
images for the WARP board.  As in EmuNet, end-to-
end QoS in WARPnet is measured using the Iperf and 
Ping utilities.  Each node is preloaded with the Spread 
toolkit, and is able to create, join, and publish 
messages to a multicast group. 
 
5.2. Unicast Performance 
 

The system components are assembled in 
accordance with Figure 5.  We start up the OFDM 
Reference Design with our Modified CSMA MAC 
Project running. Each board boots from its own 
external compact flash memory using a board image 
common to all four nodes.  We test the steady-state 
QoS of our radio network using the Iperf program to 
calculate throughput, latency, and packet loss.  We use 
Iperf running in Tiny Linux, within VM Ware 
Workstation, running on Windows XP on the laptops.  
The results are summarized in Table 4.  
 

Table 4. Unicast QoS: WARPnet 
 

 Throughput
[Kbps] 

Latency 
[ms] 

Packet Loss
[%] 

Average 128.1 55.1 27.68 
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Data was collected with Iperf and Ping scripts 
running on Linux Tiny Core.  Throughput and latency 
values are averaged over five separate tests.  Packets 
lost and sent values are sums over five tests for each 
pair of nodes.  Iperf tests were run with an outgoing 
UDP bandwidth of 200 Kbps.  Both Iperf and Ping 
tests ran with 1,470 byte packets. 
 
5.3. Multicast Performance 
 

Table 5 details the results of the Spread testing with 
the WARPnet.  These values were gathered using the 
same methods that were used to gather Spread values 
over the EmuNet in Section 4.3.  System time across 
the Tiny Cores was synchronized using NTP in Linux 
over a LAN network, on a different subnet than the 
WARP subnet.  All nodes sync to Node 4 
(192.168.6.4) with a daemon and ignored the time 
values of the other nodes.  The organization of the 
results in Table 5 was similar to that of Table 3.   

 
Table 5. Multicast QoS: WARPnet 

 

 
Message 

Size 
[bits] 

Throughput 
[Kbps] 

Latency 
[ms] 

Packet
Loss 
[%] 

Average 11,776 36.958 38.7 n/a 
 

 
A summary of all QoS measures is shown in Table 

6.  For Unicast, the WARPnet had 89.598 Mbps 
(-99.9%) slower throughput, 54.657 ms (+99.2%) 
longer latency, and 21.30% (+76.93%) larger packet 
loss rate than the EmuNet.  This is expected given the 
ideal network conditions of the emulated environment 
compared to the relatively noisy lab environment of the 
WARPnet. 
 
Table 6. Summary of Average QoS Measurements 

 

Experiment Throughput 
[Kbps] 

Latency 
[ms] 

Packet 
Loss 
[%] 

EmuNet - Unicast  89,726 0.443 6.385 

EmuNet - Multicast 38,590 0.507 n/a 

WARPnet - Unicast  128.1 55.1 27.68 

WARPnet - Multicast  36.958 38.7 n/a 
 

 
6. Results: Environment Matching 
 

In this section, we model the delay of the WAN and 
make the emulation testbed model the wireless testbed.  
This will enable us to scale the emulation testbed in the 
future, so that it can approximate a larger wireless 
testbed. 

6.1. Spread Protocol Design: WAN vs. LAN 
 

Spread is designed with two major components, the 
WAN and LAN.  During the operation of Spread, a 
message can be sent from a node on the LAN to 
another node in another LAN.  Since the LANs are on 
different subnets, the message must cross the WAN.  In 
the LAN, Spread uses rings to distribute the messages, 
and in the WAN, it use hops.  Figure 6 depicts the 
setup of the EmuNet testbed.  Node 5 is a router, and it 
models the WAN for messages traveling to different 
subnets.  Nodes 1 through Node 4 are in their 
respective LANs, and they communicate with the ring 
implementation. 
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Figure 6. EmuNet with Channel Effects 
 

 
6.2. Modeling the WARPnet Environment 
 

To model the EmuNet as a WARPnet, we needed 
to get a baseline for what the max multicast QoS was 
for each testbed.  Using the Multicast EmuNet and 
WARPnet QoS results from Table 3 and Table 5, we 
concluded that the max throughput for the EmuNet is 
38.590 Mbps and the max throughput for the 
WARpnet is 36.958 Kbps.  Given this data, we used 
the Linux programs tc and netem to throttle the 
EmuNet to match the WARPnet.   

 
Figure 6 describes the basic setup for the 

experiment.  At each Node 1 to Node 4, there is a 
channel effect delay C, and at Node 5 there is a 
channel effects delay N*C, where N is assumed to be a 
multiple of delay that a message would encounter 
across the WAN.  We chose N to be 5 for our 
experiments.  For the QoS tests with channel effects, 
we decided to use 1, 5, 10, and 100 ms delays. 

 
In the following test, a Spread multicast message 

was sent to the multicast group including Node 1, 
Node 2, Node 3, and Node 4.  Utilizing the channel 
effects programs discussed above, time delays were 
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added on each network adapter in the LANs.  Also, a 
time delay was added to Node 5 that was five times 
larger than the delay specified for Nodes 1 through 
Node 4.  Table 7 shows that we were able to throttle 
the EmuNet comparatively to the WARPnet’s max 
QoS discussed in the control data section. 
 

Table 7. Multicast Spread QoS: EmuNet 
 

Delay, C, 
[ms] 

Total Ave 
Throughput 

[Kbps] 
1 3,336.74 
5 1,037.25 

25 276.06 
125 47.07 
250 24.14 
375 15.75 

 

 
Figure 7 depicts the Table 7 in a more revealing 

manner.  From this graph, it is evident how increases in 
the delays on each Tiny Core affect the average 
throughput. 
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Figure 7. Spread with Channel Effects 
 

 
7. Analysis and Conclusions 
 

This paper shows that it is feasible to throttle down 
the EmuNet testbed to resemble the Spread Multicast 
QoS.  Table 8 summarizes the throttled down EmuNet 
compared to the base WARPnet QoS.  The WARPnet 
max QoS for the Spread protocol was 36.958 Kbps.  
When the EmuNet was throttled down with 125 ms and 
250 ms delays, the QoS was 47.07 Kbps and 24.14 
Kbps, respectively.  These two data points are on the 
low and high sides of the WARPnet throughput.  A 
throttled EmuNet between these two delays would give 
an even closer QoS match. 

  
The EmuNet testbed was successful at achieving a 

throughout that was similar to the throughput of the 
WARPnet.  From this conclusion, we know that the 
EmuNet is capable of simulating the WARPnet.  We 

can now move forward and expand and combine our 
EmuNet to simulate a much larger multicast radio 
network. 

 
Table 8. Summary of Spread QoS Throttling 

 

Spread QoS
Experiment 

Delay 
[ms] 

Throughput
[Kbps] 

WARPnet 0 36.958 
EmuNet 1 3,336.74 
EmuNet 5 1,037.25 
EmuNet 125 276.06 
EmuNet 125 47.07 
EmuNet 250 24.14 
EmuNet 375 15.75 

 
8. Future Work 
 

The authors’ next goal is to continue to improve the 
realism of CR network.  Three routes include:  

 
� Scale the EmuNet environment to tens or hundreds 

of virtual nodes, and re-test the QoS. 
 
� Create a mixed testbed that consists of both 

WARP boards and virtual nodes, and re-test the 
QoS.   

 
� Port the Tiny Core Linux and Spread to run 

natively on the PowerPC hardcore processor on 
the WARP’s FPGA, so that each wireless node 
operates as a stand-alone system. 

 
The first of the two tracks given above would 

provide QoS information on the scalability of the 
Spread multicast message protocol.  It also would 
provide insight on whether this protocol would be 
favorable for wireless radio networks.  The second 
option would be to incorporate both the WARP boards 
and Tiny Core VMs to create a mixed wired and 
wireless network.  This option could be scaled to 
include many nodes.  In other words, the EmuNet and 
WARPnet could be combined into a single, 
consolidated Mixed Emulation-Wireless Network 
Testbed (MEWiNet), as shown in Figure 8.  The 
MEWiNet would also receive emulated spectrum and 
whitespace data through the Dynamic Spectrum 
Emulator (DySE) system [3-5]. 

 
The third track would enable the authors to 

measure the QoS performance of both the WARPnet 
and the MEWiNet, by using complete, stand-alone 
radio nodes running on the WARP device.  This would 
add greater realism to the measurements, would 
provide the first step toward full system deployment 
and field test and evaluation. 
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