
Malware Dynamic Recompilation

Sébastien Josse
DGA

sebastien.josse@polytechnique.edu

Abstract

Malware are more and more difficult to analyze,
using conventional static and dynamic analysis tools,
because they use commercially off-the-shelf
specialized tools to protect their code. We present in
this paper the bases of a multi-targets, generic and
automatic binary rewriting tool adapted to the
analysis of protected and potentially hostile binary
programs. It implements an emulator and several
specialized analysis functions to firstly observe the
target program and its execution environment, and
next extract and simplify its representation. This
simplification is done through the use of a new and
generic method of information extraction and de-
obfuscation.

1. Introduction

Malware are more and more difficult to analyze,
using conventional static and dynamic analysis tools.
Considering the compiled malware, and the many
targeted operating systems and underlying CPU
architectures, the analyst can observe a lack of multi-
target analysis software, sufficiently powerful to deal
with the current software protection mechanisms
(self-modifying code, virtual machine based
obfuscation transformations, etc.).

Malware authors target a wide range of operating
systems and take advantage of the advances in
software protection made available by commercial
off-the shelf specialized products. Moreover, due to
malware inherently hostile nature, analysts need a
safe and controlled analysis environment.

Current static and dynamic analysis tools suffer
from some limitations when dealing with malware.

There are nevertheless many interesting tools for
various types of code analysis, including binary code
analysis. Unfortunately, they often come with their
own intermediate representation (IR), non exportable,
sometimes proprietary, making difficult their
integration: VEX for Valgrind [16], VEX/Vine for
BitBlaze [20], IDA Pro IR for CodeSurfer [21,1],
REIL for BinNavi [7].

Moreover, many of them are not suitable for
analysis of hostile or protected code.

When they are adapted (tools such as TTAnalyze
[2], Argos [17] and Renovo [13], based on QEMU,
come with features to analyze malware, in a
controlled emulated environment), they do not
provide binary rewriting features, which are
nevertheless very useful when dealing with protected
executables.

We present in this paper the bases of a binary
rewriting tool designed for analysis of protected and
potentially hostile binary programs. This tool is
designed to extract dynamically an intermediate
representation of a binary and all the necessary
information to apply certain simplifications, making
its inner working easier to understand for the analyst.

One of the main motivations behind the design
and implementation choices of our tool is to
circumvent current limitations of existing malware
and binary programs analysis solutions. The goal is to
get as much information as possible from a binary
program that uses all available techniques and tools
to protect this information. The idea is to instrument
the virtual computer processing unit and the guest
operating system in a non intrusive way to get
dynamically information required to rebuild the
program and simplify its representation.

This tool is based on the dynamic binary
translator engine of QEMU and on the LLVM
compilation chain1.

LLVM (Low Level Virtual Machine, [14]) is a
compilation chain which comes with a consequent set
of optimizations, which can be applied across the
entire lifetime of a program. LLVM uses a strongly
typed RISC-like instruction set and a static single
assignment (SSA) representation (using this
representation, each temporary variable is assigned
only once). LLVM comes with many binary back-
ends (x86, x86-64, SPARC, PowerPC, ARM, MIPS,
CellSPU, XCore, MSP430, MicroBlaze, PTX) and
some source code back-ends (C, C++)2.

1 LLVM 3.1 with Clang 3.1 front-end for the C family of langages.
2 It should be noticed that the LLVM source code back-ends are
unlikely to be supported in the future.

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.624

5080

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

The QEMU (Quick EMUlator, [3]) Dynamic
Binary Translator (DBT) is used to dynamically
translate the binary code from the guest CPU
architecture to the host CPU architecture, through the
use of an intermediate representation (IR) called TCG
(Tiny Code Generator, [4]). This language consists of
simple RISC-like instructions, called micro-
operations. The binary translation consists of two
stages: the guest binary code is first translated in
sequences of TCG instructions, called translation
blocks (DBT front-end). Then, the translation blocks
are converted into code executable by the host CPU
(DBT back-end). QEMU's DBT comes with many
binary front-ends (x86, x86-64, ARM, ETRAX
CRIS, MIPS, Micro Blaze, PowerPC, SH4, SPARC).

Our tool inherits from QEMU the many binary
front-ends and from LLVM the many back-ends,
providing at reasonable cost a complete binary
rewriting framework. The rewriting functions are
implemented as LLVM passes.

Its current design builds upon works already done
to convert TCG IR to LLVM IR (LLVM-QEMU [19]
and S2E [6]), as well as upon design algorithms
presented in [10, 11] and [12]. This paper completes
this documentation by a description of new features
and main evolutions of this tool.

Our ambition is that this tool may be able to
collaborate with the many software analysis tools
based on the LLVM compilation chain, through an
“exported” representation of the malware program. In
particular, LLVM representation was besides the
object of works providing formal tools to reason on
transformations that operate on this intermediate
representation. Vellvm (Verified LLVM [23]) could
allow us eventually to extract formally verified
implementations of de-obfuscation passes
implemented in our tool.

These design choices lead us to the exploration of
new methods of information extraction and programs
dynamic analysis. Among the techniques which are
not described (to our knowledge) in the literature, we
find in particular:

• Dynamic extraction and reconstruction of the
relocation information from a binary
program, essential to the conversion of its
representation to the SSA form of LLVM.

• All the techniques used to "project" the
LLVM representation of translation blocks,
dynamically generated by the LLVM back-
end of TCG, towards the host CPU. In other
words, the method used to "extract" the
program intermediate representation from the
virtual machine and "project" it on the host
machine.

• Rewriting passes of the LLVM intermediate
representation used to strip the program from
its protection and simplify its representation.

On this last point, we notice that the joint
application of the partial evaluation inferred by the
dynamic translation of target code to LLVM
representation and the application of generic static
optimization transformations provided by this
compilation chain are enough to clear the program of
number of its obfuscations. This is in our opinion the
main new result of this paper, resulting in a new
generic hybrid dynamic / static method of automatic
de-obfuscation. Moreover, the first results concerning
effective normalization obtained with this method are
encouraging, and may be exploited to automatically
extract detection schemes to be stored in malware
detection engines databases.

This result encourages us to pursue the way of
study of generic methods of de-obfuscation, applying
automatically and without making any hypothesis
about (the) used protection(s) mechanism(s).

The rest of the paper is organized as follows:
section 2 presents the design of our tool, and its two
most important analysis modules (unpacking and
normalization modules). Section 3 presents the
strategy developed to validate the efficiency of our
tool, preliminary results and ways of improvement of
its design and implementation. Section 4 presents
future works and concludes this paper.

2. Design

2.1. QEMU DBT extension

Before presenting the architecture of our tool, let
us see the way we have modified the QEMU software
CPU to systematically invoke our instrumentation
function and translate the TCG intermediate
representation to the LLVM representation.

QEMU is a PC emulator using dynamic binary
translation: the code written for a CPU instruction set
is translated on the fly to a code for another CPU
instruction set. We obtain a quicker execution than
with simple emulation by using a cache: the idea is to
translate a chunk of code, to put it in a cache, and to
reuse it if necessary. To accelerate again the virtual
processor (VPU), these blocks are chained.

The main interest of a PC emulator based on
dynamic binary translation is its execution speed.

For each processor emulated by QEMU, the
following translation is done: the target instruction
set is translated to an intermediate representation
(TCG micro operations) which is itself translated to
the host instruction set. In QEMU, this intermediate

5081

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

representation is independent from the host
instruction set. The dynamic binary translation engine
is based on this representation. It is for this reason
said portable.

We have seen that the QEMU DBT engine
performs the dynamic translation of the binary code
from the guest processor architecture to the host
processor architecture by using the TCG intermediate
representation.

Let us see on a simple example what this
language looks like. Consider this instruction:

0x0040104c: push 0xa

This instruction is translated as follows in the
QEMU TCG representation:

(i) movi_i32 tmp0,$0xa
(ii) mov_i32 tmp2,esp
(iii) movi_i32 tmp13,$0xfffffffc
(iv) add_i32 tmp2,tmp2,tmp13
(v) qemu_st32 tmp0,tmp2,$0x1
(vi) mov_i32 esp,tmp2
(vii) movi_i32 tmp4,$0x40104e
(viii) st_i32 tmp4,env,$0x30
(ix) exit_tb $0x0

This TCG instructions block emulates the

execution of instruction push on the software CPU.
The performed operations are the following:

The integer 0xa is stored in the variable tmp0 (i).
This variable is then stored on the stack (ii-vi). The
address of the instruction following the current
instruction is stored in tmp4 (vii) then stored in the
QEMU VPU register cc_op. Instruction (ix)
indicates the end of the TCG block.

Our tool modifies the DBT mechanism in such a

way that the instrumentation function of the virtual
CPU is systematically invoked before the execution
of a translation block. To achieve this, we add an
extra micro operation that takes as operand the
address of the instrumentation function.

The resulting TCG code is as follows:

(i) op_callback @vpu_callback
(ii) movi_i32 tmp0,$0xa
(iii) mov_i32 tmp2,esp
(iv) movi_i32 tmp13,$0xfffffffc
(v) add_i32 tmp2,tmp2,tmp13
(vi) qemu_st32 tmp0,tmp2,$0x1
(vii) mov_i32 esp,tmp2
(viii) movi_i32 tmp4,$0x40104e
(ix) st_i32 tmp4,env,$0x30
(x) exit_tb $0x0

This mechanism enables us to execute our

instrumentation code at each execution cycle of the
virtual CPU. Having access to VPU registers and to

the virtual PC memory, we can acquire a process
context and extract information about its interactions
with the guest operating system.

By instrumenting also the load and store TCG
instructions, we can extract information about the
interactions of the target process with the memory of
the guest system. Thanks to this information, we can
recover the relocation information of the process.

Now that we have seen how to modify the QEMU
virtual CPU to enable the systematic invocation of
our instrumentation function, let us examine the
translation of TCG intermediate representation to
LLVM representation. The result of the translation of
the above TCG block is as follows:

(1) %esp_v.i = load i32* @esp_ptr
(2) %tmp2_v.i = add i32 %esp_v.i, -4
(3) %4 = inttoptr i32 %tmp2_v.i to i32*
(4) store i32 10, i32* %4
(5) store i32 %tmp2_v.i, i32* @esp_ptr
(6) store i32 4198478, i32* %next.i
(7) store i32 0, i32* %ret.i

The integer 0xa is stored at the address pointed

by the variable %4, which is equivalent to store it on
the stack (1-4). The address of the instruction
following the current instruction is stored in the
variable %next.i (6). The instruction (7) finishes the
LLVM block.

After the normalization process, this LLVM block
is compiled to the following assembly code:

401269 ! mov dword ptr [esp-14h], 0ah

Now that we have given an overview of main

modifications applied to the QEMU emulator,
presented in a schematic manner in the figure 1, let us
see the general architecture of the tool.

Figure 1: QEMU DBT extension

5082

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

2.2. Architecture of the tool

Our tool implements an extended DBT engine
and several specialized analysis functions (figure 2),
to observe the target program and its execution
environment.

Figure 2: Architecture

A module manager handles activation and

collaboration between these analysis functions,
implemented as plug-ins.

These analysis functions extract semantic
information from the target program. This
information can be the trace of its interactions with
APIs if the guest operating system, it can be the way
it handles objects and structures of the guest
operating system’s executive or kernel, or more
simply its machine code trace.

The extraction of this information rests on a
description of the guest operating system3, which can
be provided for example by a symbol server, as it is
the case for the Windows operating systems family.

Among the module already implemented, we find
notably:

• An API hooking module
• A forensics analysis module
• An unpacking module
• A normalization module

2.3. API hooking

The native and Windows API hooking module of
our tool is based on forensic analysis of the guest
operating system memory, without any interaction
with the guest operating system.

3 The ntoskrnl.exe program database file (PDB) provides debug
information used for example to locate and parse the linked list of
executive process structures (EPROCESS). This symbol
information can be downloaded from Microsoft Windows symbols
server.

The recovery of imported libraries and functions
is done by walking Windows executive structures
used to represent a process [10].

2.4. Forensics / root-kit analysis

The forensics module [11] of our tool comes with
additional features, to monitor and check the integrity
of many locations within the guest platform where a
hook can be installed. It walks through executive
structures of the operating system in order to identify
potential targets of a root-kit attack and monitor
hardware components that could be corrupted by a
root-kit. This information is crucial for the analyst to
understand low-level viral attacks.

For the purposes of this paper, we can consider

these features to be similar to those expected from a
kernel debugger. We can attach a process, have a
view of its CPU state and disassembled code, and
trace the interaction of the target program with the
operating system API. This inspection is done in a
safe and controlled environment, without any
intrusive interaction with the guest operating system.

Let us see in more details the working of its two
most important analysis modules: the unpacking
module and the normalization module.

2.5. Unpacking module

The unpacking module locates the original entry
point (OEP) of the target executable, gets information
relative to its interactions with the operating system
API and extracts the relocation information.

The underlying idea of the unpacking algorithm
[10] is a simple integrity check of the target program
executable code: for each translation block of the
program, a comparison between its value in virtual
memory and its value on the host file system is made.
As long as the values are identical, nothing is done.
As soon as a difference is identified, the current
translation block is written into the raw file in place
of the old translation block. The first instruction of
the newly generated translation block is identified as
the OEP of the protected program. At the end of the
analysis, data sections are written into the raw file in
place of original data sections.

The same monitoring algorithm is applied for
each translation block. The protection loader of the
packed executable can have several deciphering
layers.

As soon as the last deciphered translation block
has been reached, the only thing to be done is to
repair the target executable. In order to recover the

5083

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

PE (Portable Executable [15]) structure of an
unprotected executable, several tasks have to be
carried out: set the original entry point, rebuild the
imports and relocations tables and consistency check
the PE header.

The method used by our unpacking engine in

order to reconstruct the IAT and relocations is based
on Win32 and native API hooking. During the
unpacking process, all API calls are traced. A sorted
table4 of API functions is initialized at load-time, by
walking NT executive structures.

Next, after process execution has resumed, each
API call is traced. This table is updated regularly
during the target process execution, and is used to
dynamically resolve API functions' names. Finally,
after a dump of the target process memory space has
been done, this table is used to fix the IAT in the PE
executable.

Thanks to the load and store TCG instructions
instrumentation, we can extract dynamically the
relocation information of the program. This
information can also be added in a new section of the
executable.

As an example, here is the (useful) information
extracted during the unpacking stage of a program
that displays a dialog box (function MessageBoxA):

[INFO] eip=0x00401000
[RELOC] value=0x00403000 va=0x00401003
[RELOC] value=0x0040300f va=0x00401008
[RELOC] value=0x00402008 va=0x00401010
[APICALL] api_pc=0x77d8050b api_oep=0x77d8050b
 dll_name=C:\WINDOWS\system32\user32.dll
 func_name=MessageBoxA
 value=0x00402008 va=0x00401010

The relocation information is made of pairs (va,

value), giving respectively the virtual address and
the value to relocate. We can observe that for this
packer, the prologue of the function MessageBoxA is
not emulated by the protection. Otherwise, the
external address that is effectively called (api_pc) is
different from the entry point of the API function
(api_oep).

2.6. Normalization

4 This table, whose keys are virtual addresses, is sorted in order to
bypass some protections which emulate first bytes of API
functions and therefore do not jump to the original entry point of
API functions. By maintaining a sorted table of API functions, API
functions are not indexed by their entry point but by a memory
range in memory. We are now able to trace API calls even if their
first bytes are stolen (moved in the protection code area).

In most cases, after the unpacking stage, we are
able to get (automatically) a binary stripped from its
protection loader and without any rewritable code.
Unfortunately, some obfuscation mechanisms
(control flow flattening, virtual machine based
obfuscation transformations, etc.) have now to be
handled, in order to fully understand the inner
working of a malware.

A first attempt to provide a solution to these

problems has been implemented in our tool, through
the use of the LLVM intermediate representation.

Better than trying to work on the binary after its
memory image has been dumped, the idea is to work
on its intermediate representation and to increase the
amount of information (that has been dynamically
collected) by embedding this information into the
LLVM module. Such a representation is more
suitable for further analysis.

The normalization module uses the output of
previous analyses to generate the LLVM
representation of translation blocks, on which several
optimization transformations are applied. Let us
examine this in more details.

During the execution of the target program, the
LLVM backend of QEMU TCG outputs the LLVM
representation of translated blocks. This LLVM code
is linked with an initialization LLVM module (figure
3).

Figure 3: Normalization module

This initialization module implements load and

store callbacks, declares system API prototypes and
sets a virtual processor unit and its stack.

The normalization module uses the information
dynamically collected during the target program
execution to resolve imports, process relocations and
retrieve data sections. Import table information is
used to build LLVM API call instructions. The load /
store memory map is used to apply relocations and

5084

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

inject data from the target program into the LLVM
module.

When the LLVM module is rebuilt, some
additional optimization passes are applied to its
representation.

The LLVM can next be compiled to the chosen
architecture, by using one of available LLVM back-
ends. It can also be translated to C or C++ code.

3. Discussion and evaluation

We present in this section the strategy developed
to validate the efficiency of our tool, preliminary
results and we discuss limits of the current
implementation and ways of improvement of its
design and implementation.

3.1. Security requirements

The main security requirement for a malware
analysis tool is isolation (propagation containment).
Another requirement for such a tool is that searched
information can be obtained through analysis. In
particular, the analysis must be stealth because if
emulation is detected [18, 8], the target executable
will no longer provide expected information about its
inner working. The design of our tool is guided by
these two security requirements.

To reach these goals, the implementation of the
core emulation engine has been modified to make the
hardware emulation more accurate, and thus more
difficult to detect. It includes the behavior of several
CPU instructions (CPU identification, time stamp
counter reading, etc.) but also the way it handles
successive faults for example. Any imprecision with
regards to CPU architecture specifications can be
used to detect an emulated execution environment
and results in non accurate analysis of the target
program.

The QEMU emulator has been adapted in order to

implement the core emulation engine of our tool. In
its first version [10], the Windows guest operating
system embedded a kernel service which
communicated through a virtual network interface
with the monitor of our tool. This communication
channel was used to upload targets binaries into the
virtual machine, to start the execution of the main
target program and to get information from the kernel
which makes it possible to drive the execution of the
guest process from the host system.

The current implementation does not use an
embedded kernel service anymore. The target
program is directly written to the virtual disk, and the

process localization information is retrieved by
forensic analysis of the guest Windows operating
system memory, by using information provided by
the Microsoft symbol server. Such a method is
probably already used by some JTAG client sides and
some kernel debuggers. We can attach a target
process and acquire its context without any
interaction with the guest operating system. We can
then drive its execution through the virtual CPU.

An embedded service is nevertheless required to
start a target program. This action may be done
through stealth code injection, by writing the loader
invocation code in the TCG intermediate
representation, and then using the DBT backend of
QEMU to start (in suspended mode) and resume the
execution of a target process.

3.2. Performance considerations

Our tool can be used in batch or interactive
console modes, and optionally in graphic mode.

• The batch mode automatically uploads the
target executable into the virtual machine,
unpacks it and gets required information
about its interactions with the guest
operating system. The batch mode applies
default analysis options, given by a
parameters file.

• The interactive mode makes it possible for
the malware analyst to dynamically drive the
execution of the target executable and
interact with the virtual machine, by
controlling its states. It is mainly used when
the target executable forks one of its
components as a new process, in order to
acquire the new context and trace the new
process execution.

• The main program can also be used in
graphics mode. This mode is useful when
the analysis process requires interactions
between the user and the target program
through a graphical interface. The same
options as in console modes (default batch
or interactive) are available when using the
graphical mode.

Performances of our tool are related to the type

and number of analysis modules that are registered
through callbacks. When dealing with malware
protected by a secure loader implementing thousand
of decryption layers, the cost induced by the dynamic
TCG to LLVM IR translation becomes prohibitive.

This is the main reason for which unpacking and
normalization modules have to be executed

5085

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

separately. The unpacking module is executed with a
minimum number of information extraction call-
backs activated. The normalization module
registering and LLVM code generation begin only
after the supposed original entry point.

3.3. Tests

Tests are done on a standard PC (Intel Core 2 Duo
T6600, 4GB of RAM), executing the Windows 7
operating system. The test environment comprises
our software, a QEMU VM with the Windows XP
SP2 operating system, and the LLVM 3.1
compilation chain.

The test methodology consists to validate the
main functions of our tool, by providing a convenient
scenario. The following table presents the strategy
and the first obtained results. This tests set is
designed to be applied to executable for which we
know the entry point and the semantic of its
interaction with the operating system API.

When the malicious program is already packed,
we identify the packer with PEID and validate the
semantic of its interaction with the OS, by manually
analyzing the program resulting from the unpacking
module execution and by comparing the analysis
result with information made available by antivirus
software editors.

The evaluation of the functionalities of our tool
relies on several third party pieces of software,
developed to validate its efficiency and make easier
its development.

• A modular packer, based on y0da's Crypter
[22], able to selectively apply basic
protection mechanisms (including notably
anti-VM techniques and multi-layer
encryption) that can be found in the
commercial off-the shelf packers. This tool
shall be used to unitarily test some detection
and protection mechanisms, which are
described in the literature but not necessarily
implemented in commercial packers.

• A fixing tool which (on the basis of the
dynamically collected information) adds two
additional data sections containing
respectively the imports and relocations
information. To validate the correction of the
relocations information, it modifies the image
base and then applies relocations. This same
tool is used to display this information
(imports and relocations) after reconstruction.

• An obfuscator that proposes several
obfuscation transformations, implemented as
passes using the LLVM compilation chain

pass manager. These transformations are
currently mainly control flow obfuscation
(useless jump insertion, junk code insertion,
control flow flattening, control flow
flattening strengthened by using a hash
function [5]). This tool has been developed to
validate the efficiency of the normalization
module and make easier its development.

3.4. Unpacking module efficiency

����� ����	
��
�
�
���������� ���� ���	�
�	�
�
�� ���� ��	��
�� ��� 	����	�
�	���� �

�� ����

�����

���������� ��
	�
�� ����	��
�
� ��� �������� 	
�� �����	�
�
��

����	�
�
��

���������� �����
������
�
����
�
�
�����
�������
���
�	��� 	������
�

	����������	�
�
����

Table 4: Unpacking module tests set

To verify that the unpacking module generates

accurate results, several packers were used with the
same target program. In each case, we were able to
retrieve automatically the original entry point of the
protected executable and the memory map of the
protected program.

Previous benchmarks that were given in [12] have
been improved by two settings:

• Limit to the minimum the number of
information extraction call-backs activated.

• Activate some optimization techniques, such
as the instrumentation of some translation
block terminator instructions (for example
the "REPeat string operation" assembler
instructions [9]), which are often used in
decryption layers. If such a block terminator
instruction is encountered, all information
extraction call-backs are inhibited until the
next translation block.

With these settings and for the tested packers, it is

possible to strip the protected program from its
protection loader in less than sixty seconds on a
standard personal computer (Table 5). Observe that
packers used during tests are a little old. We intend to
complete this evaluation by using more recent
packers and by enriching the protection mechanisms
available in our packer.

 �����	� ��	�
�
� �
��������
����
!��	�
������ "�#$� %#�

!&�	�'�� (�)(�)$�

!&���������)�(%��*"� (#�

��*���	����)�$+� ,�

���
���� (�%� -�

����*��������� (�)� .�

&��

'��� %�"�)#�

5086

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

/�0��)�("1� $�

2 ��� "�%� .�

33�	�'%(�)�(#�� +�

�*��)�(�� ,�

Table 5: Unpacking module efficiency

3.4. Normalization module efficiency

The goal of the following tests is to unitarily
validate the good behavior of the normalization
module with regards to different types of calls (usual
and less usual conventions, such as using a ret
instruction to invoke an API function).

The LLVM representation is compiled, by using
the back-end llvm-ld (or llc and then gcc). The
resulting binary code is edited using a disassembler.

����� ����	
��
�
�
����� !��� C4� X86_StdCall� 	
�� X86_FastCall�

����
������
�
���

������ !��� 2	�
	 ���	�����
���56		���7���
��
�
���	�����

������ !�"� �����	�������
������
�
��

����� !��� /�������8��������
��

���

����� !��� 9�
'�����������
�
��

����� !�"� *�����
��	���

��5*��7��

����� !�#� *�����
��	���

��5�*��7��

����� !�$� :	�
�������6
���	�
�	�
�
��
��	���

����

Table 6: Normalization module tests set
(including calling conventions support)

The support for several calling conventions is

currently implemented in the normalization module.
LLVM supports currently ten of them, among which
we find notably: C, X86_StdCall and X86_FastCall.

����� �� �
%��
�����
&

�����

����� �
%��
�����
&

����

��������
�
%�� �����
&

����

��������
�
���
�����
�����

����� !���)$(� ()$(� ,(� ..�

����� !���)$(�),",� ,(� ,#�

����� !�"�)$(� (%.#� ,(� -$�

����� !�#�)$(� (+%$� ,(�)#$�

����� !�$�)$(� ()%%� ,(� .$�

Table 7: Normalization module efficiency (to give an idea,

D(O(P)) time may be optimized)

First results show that standard optimization used
in conjunction with the partial evaluation induced by
the dynamic translation of target code to its LLVM
representation are sufficient to drastically reduce and
simplify the code under analysis. In each test (table
6), the obfuscated program O(P) is “normalized” or
recompiled to the same executable, D(O(P)).

Let us illustrate this concept on a simple “toy”
example: consider the following program (which
displays: "y = 22"), after unpacking and
reconstruction:

 ! entrypoint:
 ! push ebp
 401001 ! mov ebp, esp
 401003 ! sub esp, 10h
 401006 ! mov dword ptr [ebp-4], 0
 40100d ! mov dword ptr [ebp-0ch], 2
 401014 ! mov dword ptr [ebp-8], 0ah
 40101b !
 ! loc_40101b:
 ! cmp dword ptr [ebp-0ch], 6
 40101f ! jnl loc_40108c
 401021 ! mov eax, [ebp-0ch]
 401024 ! mov [ebp-10h], eax
 401027 ! mov ecx, [ebp-10h]
 40102a ! sub ecx, 2
 40102d ! mov [ebp-10h], ecx
 401030 ! cmp dword ptr [ebp-10h], 3
 401034 ! ja loc_40108a
 401036 ! mov edx, [ebp-10h]
 401039 ! jmp dword ptr [edx*4+data_4010a4]
 401040 mov dword ptr [ebp-4], 2
 401047 mov dword ptr [ebp-0ch], 3
 40104e jmp loc_40108a
 401050 cmp dword ptr [ebp-8], 0
 401054 jng 40105fh
 401056 mov dword ptr [ebp-0ch], 4
 40105d jmp 401066h
 40105f mov dword ptr [ebp-0ch], 6
 401066 jmp loc_40108a
 401068 mov eax, [ebp-4]
 40106b add eax, 2
 40106e mov [ebp-4], eax
 401071 mov dword ptr [ebp-0ch], 5
 401078 jmp loc_40108a
 40107a mov ecx, [ebp-8]
 40107d sub ecx, 1
 401080 mov [ebp-8], ecx
 401083 mov dword ptr [ebp-0ch], 3
 40108a !
 ! loc_40108a:
 ! jmp loc_40101b
 40108c !
 ! loc_40108c:
 ! mov edx, [ebp-4]
 40108f ! push edx
 401090 ! push strz_yd_402008
 401095 ! call dword ptr [msvcrt.dll:printf]
 40109b ! add esp, 8
 40109e ! xor eax, eax
 4010a0 ! mov esp, ebp
 4010a2 ! pop ebp
 4010a3 ! ret return 0;

The control flow graph (CFG) of such a program

has the property to be flattened.

The normalization module execution produces
(when we do not apply all optimizations) the
following code:

 ! push eax
 4011f1 ! mov dword ptr [esp-0ch], 0ah
 4011f9 ! mov dword ptr [esp-8], 4
 401201 ! dec dword ptr [esp-0ch]
 401205 ! add dword ptr [esp-8], 2
 40120a ! dec dword ptr [esp-0ch]
 40120e ! add dword ptr [esp-8], 2
 401213 ! dec dword ptr [esp-0ch]
 401217 ! add dword ptr [esp-8], 2
 40121c ! dec dword ptr [esp-0ch]
 401220 ! add dword ptr [esp-8], 2
 401225 ! dec dword ptr [esp-0ch]
 401229 ! add dword ptr [esp-8], 2
 40122e ! dec dword ptr [esp-0ch]
 401232 ! add dword ptr [esp-8], 2

5087

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

 401237 ! dec dword ptr [esp-0ch]
 40123b ! add dword ptr [esp-8], 2
 401240 ! dec dword ptr [esp-0ch]
 401244 ! add dword ptr [esp-8], 2
 401249 ! dec dword ptr [esp-0ch]
 40124d ! add dword ptr [esp-8], 2
 401252 ! dec dword ptr [esp-0ch]
 401256 ! mov eax, [esp-8]
 40125a ! mov [esp-18h], eax
 40125e ! mov dword ptr [esp-1ch],
 strz_yd_402010
 401266 ! mov ebp, esp
 401268 ! lea eax, [esp-1ch]
 40126c ! mov esp, eax
 40126e ! call crtdll.dll:printf_4012d8
 401273 ! mov esp, ebp
 401275 ! mov ebp, esp
 401277 ! lea eax, [esp+8]
 40127b ! mov esp, eax
 40127d ! mov esp, ebp
 40127f ! xor eax, eax
 401281 ! pop edx
 401282 ! ret

We can observe here that the dynamic generation

of code operated by our tool naturally unflattens the
flatten code. The application of standard optimization
transformations results in a program stripped from
this obfuscation:

 ! push eax
 4011f1 ! mov dword ptr [esp-18h], 16h
 4011f9 ! mov dword ptr [esp-1ch],
 strz_yd_402010
 401201 ! mov ebp, esp
 401203 ! lea eax, [esp-1ch]
 401207 ! mov esp, eax
 401209 ! call crtdll.dll:printf_401268
 40120e ! mov esp, ebp
 401210 ! mov ebp, esp
 401212 ! lea eax, [esp+8]
 401216 ! mov esp, eax
 401218 ! mov esp, ebp
 40121a ! xor eax, eax
 40121c ! pop edx
 40121d ! ret

Observe however that obfuscation

transformations studied from now on are quite basic.
We intend to complete this evaluation by using code
virtualization tools that are commercially available
(and by completing the obfuscation passes currently
available in our obfuscator).

Now that the program is de-obfuscated, we can

expect to retrieve the high level code of our example
program, thanks to a de-compiler
(printf("y=%d\n",22);). We have thus judged
useful to test C and C++ back-ends of LLVM.

3.4. De-compilation efficiency

����� ����	
��
�
�
�&�;�*�<�##� ==2<�������� 	�'>�
�������

���

�&�;�*�<�#)� ?���	�����>����
�����

LLVM C and C++ back-ends do not produce a
code with a quality comparable to the one that can be
obtained by using other de-compilation tools.

It may be observed that the decompiled code
produced by state-of-art de-compilers, such as
HexRays, is often erroneous (for example, the high
level code of our example program provided by
HexRays is printf(0)), because of unsupported
calling conventions. We may take advantage of our
normalization module to design a de-compiler
adapted to malware (which in most case do not
respect the usual calling conventions!).

4. Conclusion

Even if there is still work before obtaining a
software that supports the set of software protection
tools usable by malware authors, first results
encourage us to pursue the study of generic methods
of unpacking and normalization, with the goal to
automate as much as possible the tasks conducted by
an analyst.

More work has to be done to make virtual
computer processing units (and the other components
of a virtual computer) more resilient against the wide
range of emulation detection techniques. The
emulation must be as precise as possible, and such a
consideration is not currently a priority for the
developer community of virtual computers.

Concerning the unpacking module, even if a
universal generic unpacking algorithm is not feasible,
we can improve the main algorithm to fight the most
recent protections. In particular, we can implement
the following features:

• The dynamic adaptation of the memory area
under monitoring, to capture the code moved
in the protection or in a dynamically
allocated memory area.

• The dynamic exploration of unused branches
of the control flow, to deal with the
environmental triggers and improve the code
coverage.

• The dynamic acquisition of several processes
contexts to deal with the “multi-fork”
protection.

This tool provides a self sufficient piece of
software for malware analysis. However, one of the
future goals of this project is to develop the ability of
the tool to interact with other analysis tools. By
design, this tool may be able to collaborate with any
software analysis tool based on the LLVM
compilation chain. In addition, Vellvm (Verified
LLVM) may be used to extract formally verified

5088

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

implementations of de-obfuscation passes
implemented by our tool.

We can at last imagine other uses of this tool,

than malware threat analysis: detection scheme
extraction, software protection solutions security
evaluation, antivirus software robustness analysis.

10. References

 [1] G. Balakrishnan, R. Gruian, T. Reps, and T.
Teitelbaum, `”Codesurfer/x86 : a platform for analyzing
x86 executables”, in Compiler Construction, Springer, pp.
139-139, 2005.

[2] U. Bayer, A. Moser, C. Kruegel, and E. Kirda,
“Dynamic Analysis of Malicious Code”, in Journal in
Computer Virology, vol. 2, no. 1, Springer, 2006, pp. 67-
77.

[3] F. Bellard, “QEMU, a Fast and Portable Dynamic
Translator”, in Proceedings of the USENIX Annual
Technical Conference, FREENIX Track, 2005, pp. 41--46.

[4] “Tiny code generator”, http://wiki.qemu.org/.

[5] J. Cappaert and B. Preneel, “A general model for hiding
control flow”, in Proceedings of the tenth annual ACM
workshop on Digital rights management, 2010, pp. 35-42.

[6] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A
platform for in-vivo multi-path analysis of software
systems”, ACM SIGARCH Computer Architecture News,
vol. 39, no. 1, pp. 265-278, 2011.

[7] T. Dullien and S. Porst, “Reil: A platform-independent
intermediate representation of disassembled code for static
code analysis”, CanSecWest, 2009.

[8] P. Ferrie, “Attacks on Virtual Machine Emulators”, in
Proceedings of the 2006 AVAR Conference, Auckland,
New Zealand, December 3-5, 2006.

[9] Intel, “Intel 64 and IA-32 Architectures Software
Developer's Manual, Instruction Set Reference”, 2012.

[10] S. Josse, “Secure and advanced unpacking using
computer emulation”, in Proceedings of the AVAR 2006
Conference, Auckland, New Zealand, December 3-5, pages
174-190, 2006.

[11] S. Josse, “Rootkit detection from outside the Matrix”,
in Journal in Computer Virology, vol. 3, pages 113-123.
Springer, 2007.

[12] S. Josse, “Dynamic analysis and detection of viral
code in a cryptographic context”. PhD Dissertation, Ecole
polytechnique, 2009.

[13] M. Kang, P. Poosankam, and H. Yin, “Renovo: a
hidden code extractor for packed executables”,
Proceedings of the 2007 ACM workshop on Recurring
malcode, pp. 46-53, 2007.

[14] C. Lattner and V. Adve, “LLVM: a compilation
framework for lifelong program analysis &
transformation”, International Symposium on Code
Generation and Optimization, pp. 75--86, 2004.

[15] Microsoft, “Microsoft Portable Executable and
Common Object File Format Specification, revision 8.0”,
http://msdn.microsoft.com/, 2013.

[16] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation”, ACM
Sigplan Notices, vol. 42, no. 6, pp. 89-100, 2007.

[17] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an
emulator for fingerprinting zero-day attacks for advertised
honeypots with automatic signature generation”, in
Proceedings of the 2006 EuroSys conference, ACM Press
New York, NY, USA, 2006, pp. 15-27.

[18] J. Rutkowska, “Red Pill... or how to detect VMM
using (almost) one CPU instruction”, 2005.

[19] T. Scheller, “Llvm-qemu, backend for qemu using
llvm”, 2007, google Summer of Code,
http://code.google.com/p/llvm-qemu/.

[20] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M.
G. Kang, Z. Liang, J. Newsome, P. Poosankam, and P.
Saxena, “BitBlaze: A new approach to computer security
via binary analysis” in Proceedings of the 4th International
Conference on Information Systems Security. Keynote
invited paper, Hyderabad, India, Dec. 2008.

[21] T. Teitelbaum, “Codesurfer”, ACM SIGSOFT
Software Engineering Notes, vol. 25, no. 1, p. 99, 2000.

[22] “Yoda's Protector”, 2012,
http://yodap.sourceforge.net/.

[23] J. Zhao, S. Nagarakatte, M.M.K. Martin, S.
Zdancewic, « Formalizing the LLVM intermediate
representation for verified program transformations », in
Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp.
427-440, 2012.

5089

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 01:06:32 UTC from IEEE Xplore. Restrictions apply.

