
Teams that Finish Early Accelerate Faster: A Pattern Language for High
Performing Scrum Teams

 Jeff Sutherland Neil Harrison Joel Riddle

 Scrum Inc. Utah Valley University Scrum Inc.
 jeff@scruminc.com Neil.Harrison@uvu.edu joel@scruminc.com

Abstract
Recent surveys show that 42% of Agile projects

are successful. While this is three times better than
traditional projects, 49% of Agile projects are late or
over budget and 9% are total failures [1]. There is a
better way to help Agile teams to implement Scrum.
At the 2013 Scrum PLoP Conference held in
Tisvildeleje, Denmark thought leaders in the Agile
community reviewed a set of Scrum Patterns that
together generate a high performing Scrum team.
During this editorial process it became apparent that
a combination of nine Patterns in conjunction with
the Scrum framework could help teams achieve
Hyper-Productivity, more than a 400% increase in
velocity over a team’s initial velocity.

1. Introduction

Many years before the writing of the Agile

Manifesto [2], Mike Beedle was influenced by the
online description of Scrum [3]. He then
implemented the process in his company, and led the
effort to drive Scrum through the Pattern Languages
of Programming Design conferences. The result was
Scrum: A Pattern Language for Hyperproductive
Software Development, a groundbreaking work that
established a pattern foundation for Scrum, the most
widely deployed Agile processes in the world [4].

Recent work by Jim Coplien shows that Scrum is
deceptively simple while compressing a complex
array of organizational patterns [5]. While Scrum
incorporates at least 33 organizational patterns, it can
be superficially explained in just 2 minutes.

One of Scrum's design goals was to encapsulate
best practices from 40 years of software development
into a process that was simple enough for the average
developer to use with less than 2 days of startup time.
Coplien’s analysis [6] indicates that this goal was
accomplished.

In recent years the Scrum Pattern
Community has written a comprehensive set of
patterns for Scrum [7] that allow teams to try proven

approaches that have worked in many companies.
While the Scrum Guide [8] provides the basic rules
of Scrum, the patterns give teams the tools to solve
problems when implementing Scrum in specific
contexts.

2. Hyper-Productive Software
Development

Only a small percentage of Scrum teams achieve
Scrum’s design goal of five to 10 times traditional
project productivity with a corresponding increase in
quality. Some of these Hyper-Productive teams
include Mike Beedle’s [3] and Jeff Sutherland’s
companies [9], as well as organizations in the U.S.
[10], Russia [11], the Netherlands and India [12], and
from Software Productivity Research data on agile
teams [13].

Systematic, a CMMI Level 5 company in
Denmark, has shown how to systematically produce a
Hyper-Productive team by focusing on a high
standard for “Done” at the end of a sprint and
“Ready” at the beginning of a sprint [14]. They
noticed that it was impossible to achieve Hyper-
Productivity if they changed members of the Scrum
team at the beginning of every project, showing that
the pattern Stable Teams [5] is a requirement for
high performance. Similar results were observed
consistently for a style of Scrum called “Shock
Therapy” in the U.S. and Europe [15].

The Systematic and Shock Therapy approaches
to consistently generating a Hyper-Productive team
have been too disciplined or too aggressive for most
teams to implement. However, a venture capital
group with over 30 companies suggested a better
approach. OpenView Venture Partners decided to
implement Scrum internally in 2006 for all
departments in the company [16]. After running
hundreds of sprints with carefully documented
metrics, they discovered that Teams that Finish
Early Accelerate Faster [17]. This insight provided
a way for the average team to approach
Hyperproductivity. If a stable team could accelerate

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.580

4722

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:04:36 UTC from IEEE Xplore. Restrictions apply.

faster by finishing early, what other simple steps
could be taken by any team to achieve Scrum: A
Pattern Language for Hyperproductive Software
Development [4]?

3. A Generative Pattern Language for
Hyper-Productivity

A Pattern Language is an attempt to express

deeper wisdom through a set of interconnected
expressions arising from contextual knowledge. It
moves beyond a list of processes, to seek activities or
qualities that repeat across many of those processes,
in an effort to find what works. It is an interconnected
whole, that when applied coherently, creates "the
quality that has no name" (QWAN) [18]. Combining
multiple patterns creates a whole greater than the
sum of the individual patterns.

The investors at OpenView Venture Partners
were surprised when they discovered Teams that
Finish Early Accelerate Faster. They observed that
Scrum is not about velocity, it is about acceleration.
An accelerating team will soon outperform a team
with flat-lined velocity.

This pattern seemed counterintuitive to the
investors, so the authors and others experimented
with it in other companies and found that it
consistently worked. The next question becomes how
to get it to work well enough to generate a Hyper-
Productive team. What set of generative patterns will
feed off one another, generating unexpected side
effects that keep teams accelerating?

Generative patterns work indirectly; they work
on the underlying structure of a problem rather than
attacking the problem directly. Good design patterns
are similar: they encode the deep structure of a
solution and its associated forces, rather than
cataloging a solution [19].

We already knew from the Systematic data [14]
that Stable Teams were necessary for
hyperproductivity. We decided to systematically
investigate every other major problem that blocks a
team from finishing early.

4. The Patterns

A Scrum Pattern is a general reusable solution to

a commonly occurring problem within the Scrum
framework. The structure of Scrum is simple and
designed to help Teams adapt to change as it occurs
but Scrum doesn’t solve every problem. As Scrum
has been implemented and improved upon over time,
a number of practices evolved to address common
pitfalls.

Every year at the Scrum PLoP conference, new
Patterns are proposed and go through a round robin
editorial process by some of the most influential
minds in the Scrum community. Eventually, if the
Pattern is seen as having value, it is approved and
added to the Pattern spreadsheet.

As more and more Patterns emerge, they can be
used together. A subset of the Scrum patterns are the
nine Patterns listed below, which form in essence a
vocabulary of a Pattern Language for Hyper-
Productive Teams.

The Patterns are:

1. Stable Teams
2. Yesterday’s Weather
3. Swarming: One Piece Continuous Flow
4. Interrupt Pattern: Illigitimus Non Interruptus
5. Daily Clean Code
6. Emergency Procedure
7. Scrumming the Scrum
8. Happiness Metric
9. Teams that Finish Early Accelerate Faster

The first two patterns help the team get ready for

a successful sprint. Patterns 3-6 help the team deal
with the most common disruptive problems in a
sprint. Patterns 7-8 will drive a team to the Hyper-
Productive state by causing Pattern 9 to emerge as a
side effect.

5. Patterns that Help Teams Get Ready

Stable Teams: Keep teams stable and avoid

shuffling people between teams. Stable teams tend to
get to know their capacity, which makes it possible
for the business to have some predictability.

The Scrum framework is built around a team of
three to nine members. Research at Harvard
University and elsewhere has shown that the
optimum size is five people [20, 21]. Small teams
keep communication paths simple and allow for
communication saturation, a key to hyper-
productivity [22]. However, just having a small team
doesn’t mean it will be successful. If members are
pulled off the team to work on other projects or are
unable to participate regularly in rituals, the team’s
Velocity will suffer. To solve this problem,
practitioners realized they needed small, stable teams.

At PatientKeeper [23] during 2005-2007 all
teams were Hyper-Productive except an offshore
waterfall team. Careful data collection during this
period showed the onshore teams were 10 times as
productive as the offshore team. A key feature was
the stability of the onshore teams with almost no
changes in team members during this period. We did

4723

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:04:36 UTC from IEEE Xplore. Restrictions apply.

discover, however, that adding a new person to the
team about every 6-12 months helped to bring in
fresh ideas.

6. Patterns that Help Teams Finish the
Sprint

Stable teams tend to reach a consistent Velocity,

which helps the Team predict how many Points they
can accomplish, each Sprint. That enables them to
use the first pattern that helps prevent failed Sprints.

Yesterday’s Weather: In most cases, the

number of Estimation Points completed in the last
Sprint is the most reliable predictor of how many
Estimation Points will be completed in the next
Sprint.

Yesterday’s Weather allows teams to build a

more accurate Sprint Backlog, limiting the possibility
of the team ambitiously pulling in too many
Estimation Points and endangering the Sprint. Stable
Teams know their capacity, which enables them to
use Yesterday’s Weather.

Once stable teams have built a realistic Sprint
Backlog using Yesterday’s Weather, they start their
Sprint. They then encounter numerous forces that can
cause a Sprint to fail. The following four Patterns are
designed to address the most common Sprint pitfalls.

Swarming: Focus maximum team effort on one

item in the Sprint Backlog to get it done as soon as
possible. Whoever takes this item is Captain of the
team. Everyone must help the Captain if they can and
no one can interrupt the Captain. As soon as the
Captain is Done, whoever takes responsibility for the
next priority backlog item is the new Captain.

When Teams struggle to finish Sprints, it is

usually because they have too much work in progress
and aren’t swarming on high value Sprint Backlog
items. Swarming helps teams move items to “Done”
quickly, increasing Velocity. Yesterday’s Weather
allows Swarming Teams to increase Velocity because
the team is building a realistic Sprint Backlog.

The next most common problem Scrum teams
face is interrupts to work on the Sprint Backlog.
Many requests come to the team which are not on the
subset of the Product Backlog accepted into the
Sprint. Research at Carnegie Mellon and 20 years of
experience with Scrum teams has shown that teams
that plan for interruptions do significantly better than
teams that do not, even when they experience no
interruptions [24].

Interrupt Pattern: Allot time for interruptions

and do not allow the time to be exceeded. Set up
three simple rules that will cause the company to self-
organize to avoid disrupting production:

1. The team creates a buffer for unexpected items

based on historical data. For example, 30% of
the team's work on the average is caused by
unplanned work coming into the sprint
unexpectedly. If the team velocity averages 60
points, 20 points will be reserved for the
interrupt buffer.

2. All requests must go through the Product
Owner for triage. The Product Owner will give
some items low priority if there is no perceived
value relative to the business plan. Many other
items will be pushed to subsequent Sprints even
if they have immediate value. A few items are
critical and must be done in the current Sprint, so
the Product Owner puts them into the interrupt
buffer.

3. If the buffer starts to overflow, i.e. the Product
Owner puts one point more than the 20 points
allocated to the buffer into the Sprint, the team
must automatically abort, the Sprint must be re-
planned, and management is notified that
delivery dates will slip.

The Interrupt Pattern, like Swarming, allows

teams to finish their Sprints because they have
developed a process to deal with found work.
Examples of how to use these patterns to solve
common problems were found in many of the
OpenView Venture Partners portfolio companies
[16].

Balihoo, a company that automates local
marketing campaigns for companies such as
Wendy’s, Ace Hardware, and New Balance, failed to
deliver half of its planned stories for 18 two-week
sprints in a row. The management was not happy
with their Scrum team.

The first problem addressed was that almost all
stories were open on their Scrum Board every day.
Excessive “work in progress” delays testing and
makes it extremely difficult to get things done in a
Sprint. We fixed that by Swarming, which caused the
whole team to focus on completing a least one story
on the board every day. At the same time we
implemented the Interrupt pattern. All of the next 18
Sprints, were successful, none were aborted, and
velocity more than tripled. The Interrupt pattern
generates a side effect that causes the entire company
to self-organize to avoid sprint aborts. This means
the buffer is never completely used up and teams tend

4724

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:04:36 UTC from IEEE Xplore. Restrictions apply.

to finish early and pull forward from the next Sprint’s
backlog. This increases yesterday’s weather and the
team accelerates.

Finishing at least one story every day allowed
the team to focus on the second value in the Agile
Manifesto – working software with no bugs. This
minimizes the amount of undone work at the end of
the sprint and maximizes velocity. All great Scrum
teams implement the Daily Clean Code pattern.

Daily Clean Code: Fix all bugs in less than a

day. Aim to have a completely clean base of code at
the end of every day.

If a Team isn’t creating daily clean code, a lot of

time will be wasted going back to fix bugs. Errors
can be limited by building quality control into the
development process so that issues are discovered
and corrected at the point of origin. Research in
Silicon Valley at Palm, Inc. in 2006, showed that a
bug that is not fixed the same day it is created can
take as much as 24 times longer to correct three
weeks later.

Despite their best efforts, even a great team may
find themselves behind on implementing the Sprint
Backlog with no clear way to complete the Sprint
successfully. In this case, by mid-Sprint they should
execute the Scrum Emergency Procedure.

Emergency Procedure: When high on the

burndown try a technique used routinely by pilots.
When bad things happen, execute the emergency
procedure designed specifically for the problem. Do
not delay execution while trying to figure out what is
wrong or what to do. In a fighter aircraft you could
be dead in less time than it takes to figure out what is
going on. It is the responsibility of the Scrum Master
to make sure the team executes the Scrum Emergency
Procedure, preferably by mid-sprint, when things are
going off track.

Emergency Procedure Steps: (do only as much
as necessary)

1. Change the way the work is done. Do
something different.

2. Get help, usually by offloading backlog to
someone else.

3. Reduce scope
4. Abort the sprint and replan. Inform

management how release dates will be
affected.

7. Getting Hyper-productive

Stable Teams and Yesterday’s Weather set the

team up for success by helping it get in a ready state.

Swarming, the Interrupt Pattern, Daily Clean Code,
and the Emergency Procedure help the Team deal
with Impediments as they arise during the Sprint. The
next three Patterns take advantage of the previous
Patterns and allow the team to attain a Hyper-
Productive state.

Scrumming the Scrum: Identify the single most

important impediment from the previous Sprint
during the Sprint Retrospective and remove it before
the end of the next sprint. To remove the top
impediment, put it in the Sprint Backlog as a user
story with acceptance tests that will determine when
it is Done. Then evaluate the state of the story in
the Sprint Review like any other story.

If the team is able to capitalize on Scrumming the

Scrum they should create at least one process
improvement per sprint. The pattern calls this process
improvement the Kaizen. This contributes to
increasing Velocity. If the team is using Yesterday’s
Weather, than they have a good chance to finish their
sprint early because they will have one less
impediment dragging down their Velocity. (The
Kaizen may not be a direct process improvement. It
may deal with strong personalities, management
impeding the Sprint, or a variety of sticky human
issues. These impediments should be treated like
process improvements and should be resolved as
quickly as possible.)

Happiness Metric: Happiness is one of the best

metrics because it is a predictive indicator. When
people think about how happy they are they are
really projecting out into the future about how they
feel. If they feel the company is in trouble or doing
the wrong thing, they will be unhappy. Or if there is a
major roadblock or frustrating system they have to
deal with, they will be unhappy.

A powerful way to take the pulse of the Team is

by finding out how happy they are. The Scrum
Master asks just 2 questions:

• How happy are you with the company?
• How happy are you with your role?

Team Members are asked to rate their feelings

on these questions on a scale from one to five. These
numbers are kept in a spreadsheet and tracked over
time. If the average changes significantly it’s
important to talk and see how Team happiness can be
improved. By monitoring the team’s happiness, the
Scrum Master can anticipate drops in Velocity and
make adjustments.

4725

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:04:36 UTC from IEEE Xplore. Restrictions apply.

Teams That Finish Early, Accelerate Faster:

Teams often take too much work into a Sprint and
cannot finish it. Failure prevents the Team from
improving. Therefore, take less work into a Sprint
(see Yesterday’s Weather for guidance Then
implement the four Patterns that reduce Impediments
within the Sprint, which will systematically deal with
any interruptions and help you finish early. On early
completion pull work from the Product Backlog
which will increase the baseline of Yesterday’s
Weather.

8. Implementation Example

A new Scrum team was started up in 2010 to run

an entire company with one week Sprints. Backlog
was pulled into Sprints based on the average Velocity
for the previous three Sprints. An interrupt buffer was
used to handle unplanned work. The team minimized
work in progress focusing on daily clean completion
of stories. The emergency procedure was used to
handle difficult problems.

The team used the Happiness Metric as a way to
identify and prioritize process improvements. On a
scale of 1-5 they asked (1) how they feel about their
role in the company and (2) how they feel about the
company. They then shared what would make them
feel better. The team used planning poker to estimate
the value of things that would make team members
feel better. The team estimated the value (as opposed
to effort) of backlog items as well. The entire product
backlog was estimated at 50 points of value in an
early Sprint.

“Better user stories” was the top priority
improvement for the team. Removing this
impediment was estimated at over 60 points of value.
The Chief Product Owner wondered if removing that
impediment might double velocity, as the
impediment value was higher than the entire product
backlog value for the sprint.

"Improve User Stories" was put into the Product
Backlog and pulled into the next sprint with a
definition of Done. That definition of Done included
acceptance tests with metrics that were calculated at
the next Sprint Review. They included:

1. How many stories got into the sprint that did
not meet the INVEST criteria (immediately
actionable, negotiable, valuable, estimable, sized to
fit, and testable)?

2. How many times did members of the Team
have to go back to the product owner to clarify a
story during a sprint?

3. How many times did dependencies force a
story into a hold state during a Sprint?

4. How many stories had a process efficiency of
over 50%? (process efficiency = actual work
time/calendar time)

5. How many stories were not clear to the team
members? Measure by number of team members that
complained about a story.

6. How many stories implied technical
implementation rather than clarifying desired user
experience?

7. For how many stories did team members
understand the linkage between the story, the theme
that produced the story, the epic that generated the
theme, and the business need that generated the epic?
This was measured by number of team members
complaining that they did not understand why they
were doing a story.

Resulting Context: While improving the quality of
user stories is never ending, the sprint review
demonstrated significant improvement on this
backlog item as measured by the acceptance tests.
Significant improvement resulted in an increase in
velocity sprint to sprint for three sprints. After
velocity had tripled this impediment fell off the top of
the impediment list and another impediment took its
place.

The graph above is team happiness data for

weekly sprints 140-212 where the solid line is
happiness about the individual's work and the shaded
area is happiness about the company. While
happiness had some normal variation, work on the
Kaizen kept it hovering around 4.

The graph below shows the raw velocity of the
team. In Sprint 86 the team’s size was doubled and
velocity rose to 37 during Sprint 88. In Sprint 89,
“Improve User Stories” was put in the backlog of
each sprint for three sprints. By Sprint 91 velocity
was 111, up 300% from Sprint 88.

Velocity continued to increase for the next two
years using the Scrumming the Scrum pattern and by
Sprint 211 output was up 1200% while the team had
tripled in size. This is the first documented,
sustainable, hyper-productive company (400%
improvement in velocity), as the data include all

4726

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:04:36 UTC from IEEE Xplore. Restrictions apply.

work for the entire company. The low points on the
velocity graph are when individuals or the whole
company were on vacation.

Velocity in Points. Source: Scrum Inc. Company Data
2010-2013, weekly sprints 1-214

9. Conclusions

By implementing and executing all nine Patterns,

teams dramatically increase their ability to finish the
Sprint early. This allows them to pull more Product
Backlog Items into the Sprint from the Product
Backlog. This will increase Velocity and establish a
higher baseline for Yesterday’s Weather, setting the
team-up for the next Sprint. Teams that finish early
also tend to have a higher Happiness Metric because
they feel confident about their ability to complete
Sprints. This initiates a virtuous cycle of continuous
improvement eventually leading to Hyper-
Productivity.

The generative nature of these patterns is not
obvious to those who have not tried them.
Unanticipated side effects cause unexpected positive
results. Therefore, it is recommended that all teams
try these patterns, particularly in combination, to see
if they help improve performance, quality, and
happiness of the team.

10. References

[1] K. Schwaber and J. V. Sutherland, Software in 30 days
: how agile managers beat the odds, delight their
customers, and leave competitors in the dust.
Hoboken, N.J.: John Wiley & Sons, Inc., 2012.

[2] M. Fowler and J. Highsmith, "The Agile Manifesto,"
Dr. Dobbs, July 13 2001.

[3] M. Beedle. (2010, June 15). Mike Beedle on the Early
History of Scrum. Available:
http://scrum.jeffsutherland.com/2010/08/mike-beedle-
on-early-history-of-scrum.html

[4] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J.
Sutherland, "Scrum: A Pattern Language for
Hyperproductive Software Development," in Pattern
Languages of Program Design. vol. 4, N. Harrison,
Ed., ed Boston: Addison-Wesley, 1999, pp. 637-651.

[5] J. O. Coplien and N. Harrison, Organizational
patterns of agile software development. Upper Saddle
River, NJ: Pearson Prentice Hall, 2005.

[6] G. Bjornvig, J. Coplien, and J. Ostergaard, Scrum
Tuning Using Organizational Patterns: Scrum
Foundation, 2010.

[7] ScrumPloP. (2013). Scrum Pattern Community.
Available: http://scrumplop.org

[8] K. Schwaber and J. Sutherland, "The Scrum Guide:
The Definitive Guide to Scrum, The Rules of the
Game," in Software in 30 Days, ed: John Wiley &
Sons, 2011.

[9] J. Sutherland and K. Schwaber, The Scrum Papers:
Nuts, Bolts, and Origins of an Agile Method. Boston:
Scrum, Inc., 2007.

[10] M. Cohn, User Stories Applied : For Agile Software
Development: Addison-Wesley, 2004.

[11] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov,
"Distributed Scrum: Agile Project Management with
Outsourced Development Teams," presented at the
HICSS'40, Hawaii International Conference on
Software Systems, Big Island, Hawaii, 2007.

[12] J. Sutherland, G. Schoonheim, and M. Rijk, "Fully
Distributed Scrum: The Secret Sauce for
Hyperproductive Offshored Development Teams," in
Agile 2008, Toronto, 2008.

[13] C. Jones, "Development Practices for Small Software
Applications," Software Productivity Research 2007.

[14] C. R. Jakobsen and J. Sutherland, "Scrum and CMMI
Going from Good to Great," in Agile Conference,
2009. AGILE '09., 2009, pp. 333-337.

[15] J. Sutherland, S. Downey, and B. Granvik, "Shock
Therapy: A Bootstrap for Hyper-Productive Scrum,"
in Agile Conference, 2009. AGILE '09., 2009, pp. 69-
73.

[16] J. Sutherland and I. Altman, "Take No Prisoners: How
a Venture Capital Group Does Scrum," in Agile 2009,
Chicago, 2009.

[17] J. Sutherland. (2013). Teams that Finish Early
Accelerate Faster. Available:
https://sites.google.com/a/scrumplop.org/published-
patterns/retrospective-pattern-language/teams-that-
finish-early-accelerate-faster

[18] P. L. o. G. Process. (2013). What is a Pattern
Language? Available:
http://grouppatternlanguage.org/What_is_a_Pattern_L
anguage

[19] J. Coplien. (1995). Generative Pattern. Available:
http://c2.com/cgi/wiki?GenerativePattern

[20] J. R. Hackman and D. Coutu. (2009) Why Teams
Don't Work. Harvard Business Review.

[21] J. R. Hackman, Leading Teams: Setting the Stage for
Great Performances. Cambridge: Harvard Business
Review Press, 2002.

[22] J. O. Coplien, "Borland Software Craftsmanship: A
New Look at Process, Quality and Productivity," in
5th Annual Borland International Conference,
Orlando, FL, 1994.

[23] J. Sutherland, "Future of Scrum: Parallel Pipelining of
Sprints in Complex Projects," presented at the AGILE
2005 Conference, Denver, CO, 2005.

4727

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:04:36 UTC from IEEE Xplore. Restrictions apply.

[24] B. Sullivan and H. Thompson, "Gray Matter: Brain,
Interrupted," in New York Times, ed. New York City:
New York Times Company, 2013.

4728

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:04:36 UTC from IEEE Xplore. Restrictions apply.

