
ASeCS: Assistive Self-Care Software Architectures
for Delivering Service in Care Homes

Reza Shojanoori, Radmila Juric, Mahi Lohi, Gabor Terstyanszky
Faculty of Science and Technology, University of Westminster, London, UK

Abstract
We propose a layered and component based software
architecture, which generates semantic software
applications, for the purpose of delivering
personalized services for residents in Self-Care
Homes (SeCH). The architectural core layers
accommodate software components which grasp and
understand the semantic of various situations we may
encounter in SeCH, through a variety of cyber-
physical objects which co-exist in pervasive
environments used in monitoring SeCH residents.
The decision making on appropriate actions in SeCH is
based on reasoning created by SWRL enabled OWL
ontologies to ensure that in any situation, residents
are delivered suitable and personalized healthcare
services. The ASeCS architecture has been deployed
through component based Java technologies, and
uses OWL-API in order to seamlessly incorporate
reasoning into software applications. ASeCS is SeCH
specific, but provides a window of opportunities for
creating modern and flexible software solutions for
pervasive healthcare, where decision making solely
depends on OWL/SWRL enabled computations.

1. Introduction

The healthcare domain gives some of the most
successful examples of where the application of
modern software technologies, advances in mobile
and wireless environments and the power of
pervasive computing has materialized [1][2][3][4][6].
The issue of having enormous number of devices
with variable communication and computational
power embedded into our everyday life has become
almost common in healthcare. In support of the
technological advances, new software solutions also
have been developed which support the delivery of
health services, remote patient monitoring, remote
management of diseases, self-care systems, and
patient tele-monitoring. These have proved that
modern healthcare is pervasive and has become a
scientific discipline [3]. We are now able to turn our
traditional general practitioners’ surgeries, clinical
interventions, patient monitoring and public health

protection into e-health services, delivered at any
time, in any place with the involvement of
empowered patients interested in self-management of
their health. Despite the fact that security is a major
issue in pervasive computing [7], people might be
willing to compromise and give up a considerable
amount of their privacy for the sake of medical
treatment [8]. As the computing boundaries are
extended and include physical spaces, people who are
interacting with the devices are becoming aware of
the amount of personal information, which is
collected, exchanged and processed. In the health
care domain, nevertheless, if provision of personal
health information reassures people of their health
and timely medical treatment when required, they
might be more prepared to share personal healthcare
information. The number of pervasive software
applications built for the healthcare domain exceeds
applications in any other domain.

In this paper we promote a layered Software
Architectural (SA) style, which accommodates
software components with computations based on
OWL/SWRL enabled ontologies. Their purpose is to
secure the delivery of remote and personalized
healthcare services, based on reasoning. The SA has
been illustrated through the scenario of self-care
homes, where residents are remotely monitored and
assistance guaranteed according to the interpretation
and understanding of various situations they
encountered in care homes. The novelty of the SA is
in its core layers, which comprise specific software
components with taxonomies, OWL ontologies and
reasoning, for the purpose of (a) defining and
describing a particular situation in care homes and (b)
reasoning upon the most suitable service for that
situation. However, the SA also specifies the exact
set of software artifacts, spread across three layers,
which have to be developed in order to achieve (a)
and (b). These core layers fit very well within the
known MVC pattern in software engineering, and
thus software applications generated from the
proposed SA are viable solutions for Web based
applications. They can be developed in Integrated
Development Environments (IDEs) and run on
Cloud, iClouds, Android or similar operating

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.365

2928

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

environments. The SA components have been
deployed using NetBeans IDE, with Java Enterprise
technologies for its front end. Accessibility to the
OWL/SWRL enabled computations has been secured
through the OWL-API plug-ins. Therefore the SA
allows access to various types of persistence which
may include relational databases and OWL concepts
at the same time. It is important to note that SA
components which store OWL/SWRL enabled
computations are purely software engineering
mechanisms for reasoning in remote delivery of
healthcare and should not be confused with formal
ontologies in Healthcare which create knowledge
bases.

The paper is organized as follows. In the
background section we describe what Self-care
homes are and emphasize the pervasiveness of such
environments and expectations we may have from
them. The Scenario section sets the scene in order to
introduce a particular situation in a care home, which
would require the delivery of an appropriate service.
In section 4 we introduce the proposed SA by
describing its layers and computations within its core
layers. We separately illustrate software components
which house taxonomical structures and ontologies
with their extensions and reasoning performed upon
OWL concepts. We overview related work in section
5 and conclude in section 6.

2. The Background

Self Care Home, SeCH, is a physical environment,
in which residents who need constant care receive
personalized services appropriate to their situation.
These services can be for example recommending
residents to take due medication or to stop a current
social/physical activity; informing residents of any
changes to their daily routine due to change of
circumstances; activating a device within SeCH
automatically, such as switching a heater on in a
resident’s room; or issuing an alarm for the medical
staff on duty because urgent medical attention is
needed. To be able to provide these services, SeCH is
equipped with sensors which detect the whereabouts
of its residents and monitor their activities. In addition
sensorized garments worn by residents may monitor
their physiological changes. Services that are
delivered as a result of the collation of information
from the environment in SeCH are personalized. This
means that sensors are not the only source of
information in SeCH. Residents, when admitted to
SeCH, state their preferences in terms of how they
would like to make use of facilities, and how they
would like to receive SeCH services. This means that

software applications which support SeCH are less
intrusive and more personalized. Sensor devices,
objects embedded with computational capabilities,
actuators that can activate or deactivate a device in
SeCH and a communicator that residents use to
interact with software applications are connected
together through a wireless network.

3. The Scenario

Margaret, John, Peter and Paul are residents of
SeCH. Their morning routine starts with having a
shower, followed by breakfast, and taking morning
medicine. Then, they have free time to take part in a
physical and social activity suitable for their health
condition and preferences. Every day a balance
exercise class for senior residents takes place in the
‘Function’ room. Attendance is compulsory for
geriatric residents, but other residents attend if they
wish. Margaret usually takes part in the ‘walking-for-
all’ activity in the adjacent park. This morning,
however, she did not feel well and decided to go to
her bedroom and read the daily paper. Margaret like
all other residents of SeCH is being monitored. And
the sensorized garment Margaret is wearing shows
that she is feverish. When she was admitted to SeCH,
Margaret indicated that she would prefer to have her
allocated heater in her room turned on, if it is off,
when she feels cold. Sensors in SeCH are to inform
whether an allocated room is cold, normal or hot,
considering the body temperature of the resident to
whom the room is allocated, provided he/she is
currently inside the room. These sensor devices
indicate that the room is cold for Margaret.

 Recommending, informing, activating a device,
or issuing an alarm are actions which may be taken in
SeCH in various situations. Considering that
Margaret is feverish, and her rom is too cold for her,
she would expect the heater in her room to be
automatically turned on. Therefore, the expected
service in this situation is “Activating a device”. The
software application which supports SeCH is
therefore expected to trigger an actuator that turns on
the heater in Margaret’s room.

4. The ASeCS Architecture

Assistive Self Care Software (ASeCS)
architecture is illustrated in Figure 1. It is component
based and layered: each layer has its own purpose
and role in the overall ASeCS architectural style.

The Context Management Layer (CML) and
Application Layer (AL) have specific roles compared
to other ASeCS layers. The ASeCS architecture

2929

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

hosts software applications that primarily support
SeCH and trigger the delivery of its services.
Therefore a set of various software applications and
their interfaces are stored within the AL. They
communicate with software components stored in the
lower ASeCS layers and interpret and manipulate any
type of input and user interaction we may have in
various situations in SeCH.

Figure 1: ASeCS software architecture

However, the CML has a completely different
role. The availability of information about a
particular situation in SeCH or “situational
information” is essential to provide timely and
appropriate service to the user. Acquiring “contextual
data” from the environment is an indispensable part
of any modern pervasive environment [9][10].
Sensitized garments, tagged heatesr, persistent data
repositories, and software programs which integrate
various devices into a pervasive environment, are
examples of cyber-physical devices in SeCH which
provide some form of contextual data to the ASeCS
architecture. For a particular situation in SeCH,
information on who the user is (Margaret), where she
is, whether the room she is in is cold (given her body
temperature), whether the heater in her room on or
off are some of the “situational information”
examples which define the situation in SeCH and
deliver a service to fulfill Margaret’s expectation.
Consequently, such contextual data have to be
managed, i.e. captured and interpreted
[11][12][13][14]. The CML stores, represents and
manages data received from the cyber-physical
objects and prepares the “situational information” for
the ASeCS upper layers. This is in line with many
other similar solutions which require interpretation of
the meaning of the collected contextual data, which
has been exercised in context aware software
applications for more than a decade [15][16][17]. For
example, the detection of whether Margaret is
“feverish” or not is the responsibility of the CML,
and should be given to the upper ASeCS layers as a

part of particular “situational information”.
Consequently, the CML makes sure that sensed data
is qualified with semantics for further computation by
ASeCS.

Computationally significant semantics provided
by the CML is managed in the ASeCS core layers.
They are taxonomical structures, denoted as PCEΔT,
OWL Ontology, and Inference/Reasoning
mechanisms. It is important to note that the ASeCS
core layers are essential for exploiting the situational
information generated by the CML and delivering
services through the applications Appn.

The PCEΔT layer stores taxonomies of a
particular situation in SeCH. They may be very
generic, i.e. they may contain basic taxonomical
elements which could be used for describing any
situation in SeCH. However, possible extensions of
the PCEΔT may be needed for two important reasons:
(i) the situational information generated by the CML
may require the creation of more situation-specific
taxonomical elements in the PCEΔT in order to secure
the delivery of services in SeCH and (ii) generic
taxonomical structure might not be sufficient to
accommodate the specificity of the semantics in this
particular domain (Healthcare).

All real world abstractions that participate in a
situation in SeCH are accommodated in the
taxonomical structure. In other words, the PCEΔT
layer is responsible for arranging and organizing all
detected taxonomical elements participating in the
situation. However, the PCEΔT might not have all
abstractions ready for a particular situations and
therefore extensions of the existing elements might
be needed. For example, any real person in the SeCH
without any specificity could be presented as an
instance of Psn (Person). However, Margaret is a
specific “Person” in SeCH. She is a Resident and
thus the PCEΔT should be extended: element Psn is
extended into Resident to accommodate information
relevant to Margaret. This is shown in Figure 2.
“name, and “ender” are characteristics of Resident.

Figure2: Part of PCEΔΔΔΔ T showing
“margaret” in “Resident”

The Ontology Layer has a similar role to the PCEΔT
Layer. The only difference is that the taxonomy of

2930

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

the “situational Information” from the PCEΔT Layer
is transferred into OWL classes and properties.
Similarly to the PCEΔT Layer, the Ontology Layer
hosts a generic OWL ontology GOnto (applicable to
any situation in SeCH), which can be extended by
adding the specificity of a particular situation in
SeCH. Therefore the extended ontology is called
SeCHOnto. GOnto represents a minimum of OWL
concepts applicable to all situations in SeCH and
SeCHnto represents the exact set of OWL concepts
applicable to a particular situation.

 The inference and Reasoning Layer provides an
essential functionality for delivering services in
SeCH. OWL ontologies are based on Description
Logic and therefore inference on the concepts within
GOnto or SeCHOnto is feasible using DL reasoning
mechanism of OWL. However, when there is a need
for reasoning about a complex semantic involving
several concepts, OWL falls short and SWRL rules,
which are also based on DL, have to be used. This is
why the Ontology Layer is complemented with the
Inference/Reasoning Layer to cover for the reasoning
aspect of the ASeCS architecture.

Finally, the applications from the Application
Layer are able to communicate with Ontology and
Inference/Reasoning layers, through OWL-API. It
ensures that software applications derived from
ASeCS “know” SeCH inhabitants’ precise location,
their current activities, and present physiological vital
sign measurements. They can “react” in order to
assist residents in their everyday lives. In other
words, “reacting” means delivery of personalized
service(s) to SeCH residents.

4.1 Computations Defined in ASeCS

Computation in ASeCS that secures the delivery
of a situation-specific service(s) in a particular
situation is achieved by
1) creating a situation-specific taxonomical

structure PCEΔT for the situation and its
counterpart in OWL ontology

2) reasoning upon the OWL elements in order to
deliver a situation-specific service.

Consequently, the computations in ASeCS
architecture have to secure the existence of a generic
taxonomical structure PCE�T, which can fit any
situation found in SeCH. However, the semantic of
SeCH is always domain-specific and when dealing
with a situation in SeCH we have to have domain and
situation-specific taxonomical elements, as noted in
1). This implies that the computation should be able
to create the exact PCE�T for each detected situation,
i.e. to create a situation-specific taxonomical
structure, which might have been extended from the

generic PCE�T. The delivery of a situation-specific
service must include computation that manipulates
the semantics of the situation in SeCH through
reasoning upon OWL elements of SeCHnto.
Obviously the result of such reasoning is always a
delivery of a situation-specific service(s).

It is important to note that the creation of
situation-specific taxonomical structure is a powerful
mechanism for delivering a correct service(s).

The reader should note that ASeCS architectural
components cannot fully specify the exact
computation of the delivered service(s), because
services are domain and situation-specific. Figure 3
shows that for the given domain (this is Healthcare
and we call it PCEΔ) a PCEΔT (which is SeCH
specific) is abstracted. We reason upon its
taxonomical elements in order to deliver an expected
service; i.e. triggering an actuator within SeCH that
turns on the heater in Margaret’s room.

Figure 3: Computation of a situation-
specific service in SeCH

4.2 Taxonomical Structure for SeCH

There are five essential taxonomical elements
for SeCH.

OBJECTS - Given that SeCH is cyber-physical,
it is naturally occupied with physical and tangible
objects that do not necessarily bear any resemblance
to a device. These objects could be tagged and
equipped with appropriate microchips and sensor
pads to act like a device, lending themselves to a
more diverse SeCH. There are also intangible
objects such as software programs which integrate
various devices within SeCH or software
applications which generate and manipulate data
created within the SeCH. Each of these cyber and
physical objects that are seamlessly interconnected
through a wireless network, and allow pervasiveness
of computing and communication of data at anytime
and anywhere, have a purpose and role to play in

2931

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

various situations. An abstraction of cyber and
physical objects in SeCH is named Ojt for Object.

PERSON - In each situation in SeCH we know
exactly which cyber physical objects are
interconnected with the user, and what the user
expects from the SeCH at that moment. User
expectations are very often associated with services
which should be delivered in a particular situation.
However, there is always a user who is in charge of
the SeCH. They can have distinguishing roles, and
therefore should belong to different taxonomical
element. Whatever the role of the user is, he or she
is a person and thus we have Psn for Person.

FIELD - The third type of an abstraction is for all
domain-specific information. Every service offered in
SeCH is specific to the SeCH domain (Healthcare).
We named such an abstraction Fld for Field.

These three basic elements of the PCEΔT might
not be sufficient for describing SeCH. The elements
that contribute towards the creation of a specific
situation in SeCH often come from other abstractions
such as PREFERENCES and LOCATION.
Preferences Pfc of the user, and location Lcn of
persons and objects are extremely important for
delivering services. Their inclusion means that the
software application which supports the user in SeCH
is less intrusive and more personalized.

We have relationships between taxonomical
elements in PCEΔT. They are shown in Figure 4 and
apply to SeCH in general. They are all self-
explanatory. However, we may have a relation
between “heater152”, (Heater) and “Margaret”
(Resident) which ����������	
� relationship. It
must exist between Psn and Pfc. However user may
have preferences regarding his/her personal
requirements, preferences related to objects and
locations. This will result in defining a subset of Pfc
namely Ojt-specific-Pfc, Psn-specific-Pfc and Lcn-
specific-Pfc.

4.3. Extending the Taxonomical Structure

The PCE�T has to be extended to cater for any
necessary abstractions contributing to the situation in
SeCH. Possible extensions of the taxonomical
elements from Figure 4 are shown in Figure 5: they
are specific for SeCH Scenario given in Section 3.

The extension of Psn includes Resident, extension
of Ojt includes Heater. The extension of the Lcn is
“double”: we need to know the exact Physical
Location of a person and its private location (room
allocated to a SeCH resident).

Fld may have any number of enumerated sub
elements for a variety of domains such as health,
education, manufacturing, business etc. In SeCH, the

domain is health, public health, e-health and similar
therefore Fld has extension Health, which further
extends towards Care Homes and General Health in
the SeCH situation described in the Scenario.

Taxonomical elements in Figure 5 colored with
red are extensions of the generic PCE�T.

Figure 4: Summarization of generic PCEΔΔΔΔT

Figure 5: Extension of generic PCEΔΔΔΔT

4.4 Creating GOnto

OWL ontologies have four concepts: individual,
class, object and data type property. The variety of

2932

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

features that OWL supports for each one of them is
not the concern of this paper. What is important is to
establish a mapping between each element of the
PCEΔT and an OWL ontological model.

The counterpart of “element” in PCEΔT is “class”
in OWL. Although classes can have different
relationships with each other in an OWL ontology,
here we are only interested in (a) the ���� (or
subsumption) relationship, and (b) in relationships
which are defined through object properties.

Every element of PCEΔT has some characteristics
(see Figure 2). They cannot be shown graphically in
Figures 4 and 5, because of space restrictions. In
OWL they are data type properties. The domain of a
data type property is their class. Their range value are
different types, but we restrict them to “string” type.

Figure 6: The generic GOnto OWL ontology

Object properties are also relationships defined by
their domain and range, which by definition are both
OWL classes. When individuals are asserted in OWL
classes, if there are any relationships between them,
object properties will be asserted.

Following the above, the generic PCEΔT shown in
Figure 4 becomes an ontological hierarchy shown in
Figure 6. We name this generic ontology GOnto.
The name of classes in GOnto, unlike in PCEΔT, have
been deliberately chosen from English words to ease
the writing, and interpretation of rules which are
based on the ontological concepts and govern the
delivery of services in SeCH. The object and data
type property names remain as in the PCEΔT because
they are self-explanatory.

4.5. Extending SeCHOnto

The availability of concepts in GOnto does not
mean that every one of them has to be used. The

situation in SeCH determines which ones are needed.
The SeCHOnto, given in Figure 7 will provide the
semantics for the delivery of expected service in the
situation in SeCH described in the Scenario.

Figure 7: The SeCHOnto OWL ontology

Figures 6 and 7 do not show object properties
between OWL classes. These are given in Table 1.
All of them belong to GOnto, except “belongTo”
which is situation-specific property for SeCHOnto.

Table 1: Generic and extended object
properties

Object Property Domain Range
hasPreference PERSON PREFERENCE
isAssociatedWith PERSON FIELD
isRelatedTo OBJECT-

SPECIFIC-
PREFERENCE

OBJECT

isCurrentlyIn OBJECT LOCATION
Isin PERSON LOCATION
belongsTo OBJECT RESIDENT

4.6. Inference with SWRL

Inference with SWRL has to be used for the
purpose of decision making in order to deliver
required services: to turn the heater in Margaret’s
room on. Once all the necessary OWL concepts have
been identified, and the GOnto extended to SeCHnto,
a reasoner engine can run the SWRL rule in order to

2933

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

reason upon the assertions in SeCHOnto. It will infer
new “knowledge” about already existing OWL
individuals od SeCHOnto. We used the built-in Pellet
reasoner [18] in Protégé 4.0 [19] ontology editor to
run the SWRL rule. We show the final result of
running the SWRL rule in Figure 8.

.
Figure 8: The result of SWRL rule

The SWRL rule that reasons upon the semantics
in SeCHnto is shown in Table 2. The premises of the
rule represent the semantics of a situation in SeC
described in the Scenario. It consists of a number of
atoms. Some of them are individuals: Resident(?r)
represents a typical resident “r” and Location(?l)
represents a typical location “l”. Other atoms
represent the binary relationships between two
individuals. For example, isIn(?r,?l), represents
relationship “isIn” between two typical individuals
“r” and “l” which are of course defined before being
used in this relationship. The conclusion of the rule
is the result of the reasoning: class
ToBeTurnedOnObject(?h) indicates that individual
“h”, which is defined in the premise as a Heater, will
also be an individual of the class
ToBeTurnedOnObject.

Table 2: SWRL rule for the example scenario

5. Related works

5. Related Works

There are no available publications on SA which
use specific core layering for accommodating
OWL/SWRL enabled computations.

However, OWL ontologies are increasingly being
used in the health domain, mostly for vocabulary
specification or for serving context aware
applications. Examples for the former are Gene
Ontology Consortium, with the role of producing a
dynamic, controlled vocabulary for genes [20], a big
biomedical vocabulary like a Thesaurus for cancer
research [21], large scale clinical terms SNOMED
[22], or examples which serve the needs of a
particular community such as phenotype ontologies
[23]. Ontologies which are used for purposes other
than vocabulary, and in environments similar to
SeCH are [24[25][26][27][28][29][30][31][32][33].
Most of them have already been formalized in
healthcare, but they can still be retrieved and used in
software applications generated from the ASeCS
architectures, if necessary. It allows the retrieval of
the ontological elements through OWL-API.

It is important to note that there are also
numerous solutions which use ontologies for
managing data which can be stored in the ASeCS
Context layer. Chen and Finin [34] consider
ontologies as ’key requirements’ for building
context-aware software applications and in Chen et al
[35] they developed a shared ontology SOUPA
(Standard Ontology for Ubiquitous and Pervasive
Applications) for supporting pervasive software
applications. They believe that their generic
ontological model in OWL, can be a step towards the
standardization of a shared ontology to be reused by
ontology-driven application developers. Wang et al.
[25] use a set of ontologies to describe and represent
contextual information within their SOCAM
architecture. In their ontology based U-HealthCare,
Ko et al. [26] have defined three context ontologies
for Person, Device and Environment, and their model
does not include the element of time. Their
ontologies are semantically divided into general
context ontologies and domain context ontology,
similar to [25].

Paganelli and Giuli [27] provide a more detailed
ontological model than [26] for their ‘Kamer’ project.
They have provided four ontologies to represent
patients, other people patient encounters, the physical
environment, and alarm management ontology. In the
‘Patient Personal Domain Ontology’ they include
patient physiological information. They use OWL
and some first order logic rules to reason upon the
“context”.

It is important to note that all these solutions do
not house OWL/SWRL combined code within their
architectures for the purpose of deploying them as a
computational solution for delivering services in
Healthcare. Their OWL repositories address a

General_Health(?gh),Heater(?h),Location(?l),Object-
Specific- Preference (?osp), Resident(?r),
belongsTo(?h,?r) , hasPreference(?r,?osp),
isAssociatedWith(?r,?gh), isCurrentlyIn(?h,?l),
isIn(?r,?l),isRelatedTo(?osp,?h), assignedRoom(?r,?ln),
bodyTemperature(?gh,"feverish"), locationName(?l,?ln),
objectNewStatus(?osp,"on"),
roomTemperature(?l,"cold"), status(?h,"off")->
ToBeTurnedOnObject(?h)

2934

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

complete environment and they are not “situation”
specific.

6. Evaluation and Conclusions

The proposed ASeCS architecture’s specificity is
in the extensive use of Semantic Web Technologies
(SWTs) and OWL/SWRL enabled computations in
particular, which dictate the nature of its software
components and architectural layering. The SA is
technology specific because it has to guarantee the
deployment of its components. It is also designed
with “the delivery of healthcare services” in mind,
because its core layers secure the interpretation of the
semantics stored in environments built for remote
patient monitoring. We would like to justify our
architectural design in the next few paragraphs.

If we wish to create a new era of software
engineering solutions based on the semantic and
understanding of our computational environments in
modern healthcare environment, the use of SWTs is
the way forward. The SWT stack [37] has been
created with the semantic “Web” in mind, but the
same philosophy, ideas and languages in particular
can be re-used outside the semantic Web domain. If
we can transfer the interpretation of and reasoning
upon the content of the Web to any computational
environment, then we can achieve an almost identical
result as on the Web. In our particular domain of
creating situations in SeCH and reasoning upon it in
order to deliver services, we need the same
mechanism: describe the domain (“situation” within a
SeCH) using SWT languages, and reason upon it
using SWRL in order to create a computational result
(“deliver a service”).

The choice of OWL sublanguages within the
SWT stack is impressive. Of the three sublanguages:
OWL Lite, OWL DL and OWL Full, we have used
OWL DL. Considering that the purpose of the
computation in SeCH is to reason upon taxonomical
elements of PCE�T to deliver a service to the user of
SeCH, the variant of OWL to be chosen should
support SWRL as the reasoning language used in the
SWT stack. This requirement automatically
dismissed OWL Full, which was not a suitable
candidate because of its unrestricted expressivity.
OWL Full allows restrictions to be defined at the
“meta level” and therefore types, such as classes and
individuals, are not separated from each other.
Elements of PCE�T, on the contrary, are clearly
separated from each other and therefore OWL Full
could not be suitable for mapping in our case.

Furthermore, computations in environments such
as SeCH should be computationally “cheap”. This
means that building any knowledge base and

excessive persistence, which could underpin the
delivery of services in SeCH is out of the question, i.e.
knowledge bases are not essential in deploying
ASeCS components. In the era of highly accessible
mobile and wireless computing, we should assume
that all our implementations should run on mobile
devices. Therefore, we should have the possibility of
hosting software applications generated from ASeSC
in various Clouds.

The ASeCS architecture has been tested in
various applications of the SeCH domain, which
were developed with NetBeans. OWL-API was used
for accessing OWL/SWRL enabled computations,
where the Protégé editing tool and reasoners were
involved. The front end of our applications have
been programmed in JavaServer Pages and we used a
selection of components from the AL, deployed with
Servlet Technology in order to manage the
applications [38]39][40]. The experiences are
summarised below.

The use of SWTs through IDEs such as
NetBeans, shows that we are able to extend the same
mechanism of manipulating the semantics of the Web
towards any other form of computations in software
engineering, which does not have to be related to the
Internet. However, we have to bear in mind that
traditional software technologies, including Java
technologies, cannot manage reasoning in SeCH
without reference to SWT. Software applications
needed by SeCH cannot rely only on procedural or
object-oriented programming languages alone to
address requirements of SeCH. Managing them
through knowledge base systems and making them
dependent on constantly growing persistence would
not satisfy a fraction of expectations we have from
environments such as SeCH.

Although in real life situations all SWRL rules are
usually defined in advance and stored with ontologies
such as GOnto in our case, we have also experienced
how SWRL rule can be defined, created and executed
through the Application Layer at run time once
SeCHOnto has been created. Readers should notice
that the result of the inference and reasoning of a
situation in SeCH is just “for the moment”, when the
situation in SeCH occurs, and as soon as another
change in SeCH is detected, the result of the
reasoning related to the previous “moment” has to be
deleted. This is because the inference/reasoning of a
particular situation in SeCH might not be exactly
correct contextual information or suitable for another
situation. This means that each time a change is
detected in SeCH, software applications generated
from the ASeCS architecture must reload GOnto and
disregard situation-specific SeCHOnto once the
reasoning on the situation which delivered a service

2935

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

is done. Nevertheless, accessing GOnto from outside
of Protégé to extend it to SeCHOnto requires
somewhat frustrating interaction with confirmation
dialog boxes, because the current version of Protégé
does not support its OWL file to be handled by
applications automatically.

Although Protégé 4 is user-friendly and the most
commonly-used open source ontology editor, it is
still an incomplete and somewhat unstable tool. The
obvious example is the “tab” provided in Protégé 4,
for editing SWRL rules. There is a limit to the
number of atoms one can employ in each rule. If the
number exceeds the limit, a number of the
“consequences” in the rule, would literally be omitted
from the rule’s syntax.

There is scope for improvements and future
works. SeCH is an example of a very dynamic
pervasive healthcare environment and we must allow
its extension, removal and replacement of devices
without any restriction. This requires devices to be
self-maintaining in terms of the meaningful data they
provide. The integration of devices in SeCH and their
management is the area which would need attention
in future. The ASeCS architecture does not
necessarily acknowledge this problem because it
focuses on the interpretation of contextual data when
collecting the semantics of a situation in SeCH. It
remains to be seen if ASeCS would change in order
to accommodate the dynamics of cyber-physical
objects in environments like SeCH.

We should look at implementations of the ASeCS
architectures in environments with Android operating
systems. The lightness of our computational solution
defined in the ASeCS core layers is encouraging. It
remains to be seen how we can maintain the MVC
pattern, which is so prevalent in modern computing
and accommodate the dynamic environments where
Apps are developed and programmed.

7. References

[1] Arnrich, B., Mayora, O., Bardram, J. and Tröster, G.
(2010) ‘Pervasive healthcare: Paving the way for a
pervasive, user-centered and preventive healthcare model’,
Methods of Information in Medicine, 49:1, pp. 67-73.

[2] Coronato, A. and Pietro, G.D.E. (2010) ‘Formal
specification of wireless and pervasive healthcare
applications’, ACM Transaction in Embedded
Computing Systems, 10:1, Article 12.

[3] Bardram, J.E. and Christensen, H.B. (2007) ‘Pervasive
Computing Support for Hospitals: An overview of the
Activity-Based Computing Project’, IEEE Pervasive
Computing, 6:1, pp. 44-51.

[4] Romero L.M.R., Tosina L. J. R., Valderrama M.A.E.,
Arbizu J.C. and Martíne I.R. (2011) ‘A Comprehensive
View of the Technologies Involved in Pervasive Care’,
Communications in Medical and Care Compunetics,
pp. 3-19.

[6] Zhang Y., Jia Z. and Chen Y. (2011) ‘A thought on the
goals & realization of pervasive healthcare’, Scientific
Research & Essays, Vol. 6 (13), pp. 2752-2756.

[7] Campbell, R, Al-Muhtadi, J, Naldurg, P, Sampemane,
G, Mickunas, M (2002) ‘Towards security and privacy for
pervasive computing’, ISSS, Tokyo, Japan, pp. 1-15.

[8] Bohn, J., Gartner, F. and Vogt, H. (2004)
‘Dependability issues of Pervasive Computing in a
healthcare Environment’.

[9] Schmidt, A. (2000) ‘Implicit Human-Computer
Interaction through Context’, Personal Technologies, 4 (2
& 3), pp. 191-199.

[10] Henricksen, K. and Indulska J. (2006) ‘Developing
Context-Aware Pervasive Computing Applications:
Models and Approach’, Pervasive and Mobile
Computing, 2, Issue 1, pp. 37-64.

[11] Dey, A. K. (1998) ‘Context-Aware Computing: The
CyberDesk Project’, AAAI 1998 Spring Symposium on
Intelligent Environments, Technical Report SS-98-02, pp.
51-54.

[12] Dey, A. K. (2001) ‘Understanding and using context’,
Personal and Ubiquitous Computing, 5, No.1, pp. 4-7.

[13] Strang, T. and Linnhoff-Popien, C. (2004) ‘context
modelling survey’, In 1st Int. Workshop on Advanced
Context Modelling, Reasoning and Management.
Comm, 6, No. 8, pp. 10–15.

[14] Bettini, C., Brdiczka, O., Henricksen, K., Indulska,
J., Nicklas, D., Ranganathan, A, Riboni, D. (2010)
‘Survey of Context Modelling and Reasoning
Techniques’, Pervasive and Mobile Computing, 6, Issue
2, pp. 161-180.

[15] Gu, T., Wang, X., Pung, H. and Zhang, D. (2004) 'An
Ontology-based Context Model in Intelligent
Environments’, In Proceedings of Communication
Networks and Distributed Systems Modeling and
Simulation Conference, San Diego, California, USA.

[16] Ellenberg, J., Karstaedt, B., Voskuhl, S., Luck, K.V,
and Wendholt, B. (2011) ‘An environment for context-
aware applications in smart homes’, in to appear in:
International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Guimaraes, Portugal.

[17] Sang, P., So, W., Jong, L., Sung, K. (2003) ‘Smart
home – digitally engineered domestic life’, Personal and
Ubiquitous Computing. pp. 189-196.

2936

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

[18] Pellet: OWL 2 Reasoner for Java,2004 available at
http://clarkparsia.com/pellet/ (accessed October 2012)

[19] Protégé Documentation, Protégé-owl api, 2009,
available at http://protege.stanford.edu/plugins/owl/api/
(accessed October 2009).

[20] GO (2000), Gene Ontology, The Gene Ontology
Consortium: tool for the unification of biology. Nature
Genet, 25, pp. 25-29.

[21] Hartela, F., W., Coronadoa, S., Dionneb, R., Fragosoa,
G., Golbeckc, J. (2005) ‘Modelling a description logic
vocabulary for cancer research’, Journal of Biomedical
Informatics, 38, pp. 114-129.

[22] Spackman, K. (2000) ‘SNOMED RT and SNOMED
CT’, Promise of an international clinical ontology, M. D.
Computing 17.

[23] Mungall, C.J., Gkoutos, G. V., Smith, C.L., Haendel,
M. A., Lewis, S. E., Ashburner, M. (2010) ‘Integrating
phenotype ontologies across multiple species’, Genome
Biol, 8, 11(1).

[24] Chen, H., Finin, T., Joshi, A. (2003) ‘Using OWL in a
Pervasive Computing Broker’.

[25] Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K. (2004)
‘Ontology based context modelling and reasoning using
OWL’, Pervasive Computing and Communications
Workshops, 2004. Proceedings of the Second IEEE Annual
Conference on, pp. 18-22.

[26] Ko, E. J., Lee, H. J. and Lee, J. W. (2007) ‘Ontology-
Based Context Modeling and Reasoning for U-
HealthCare’, IEICE - Trans. Inf. Syst. E90-D, pp. 1262-
1270.

[27] Paganelli, F. and Giuli, D. (2007) ‘An Ontology-Based
Context Model for Home Health Monitoring and Alerting
in Chronic Patient Care Networks’, Proceedings of the 21st

international Conference on Advanced information
Networking and Applications Workshops, AINAW. IEEE
Computer Society, Washington DC, pp. 838-845.

[28] Bardram, J.E. and Christensen, H.B. (2007) ‘Pervasive
Computing Support for Hospitals: An overview of the
Activity-Based Computing Project’, IEEE Pervasive
Computing, 6:1, pp. 44-51.

[29] Niyato, D., Hossain, E., Camorlinga, S. (2009)
‘Remote Patient Monitoring Service using Heterogeneous
Wireless Access Networks: Architecture and Optimization’,
IEEE Journal on Selected Areas in Communications, 27:4,
pp. 412-423.

[30] Arnrich, B., Mayora, O., Bardram, J. and Tröster, G.
(2010) ‘Pervasive healthcare: Paving the way for a

pervasive, user-centered and preventive healthcare model’,
Methods of Information in Medicine, 49:1, pp. 67-73.

[31] Polze, A., Tröger, P., Hentsche, U., Heinze, T. (2010
)13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops’, pp. 204-210.

[32] Coronato, A. and Pietro, G.D.E. (2010) ‘Formal
specification of wireless and pervasive healthcare
applications’, ACM Tansaction in Embedded
Computing Systems, 10:1, Article 12.

[33] Romero L.M.R., Tosina L. J. R., Valderrama M.A.E.,
Arbizu J.C. and Martíne I.R. (2011) ‘A Comprehensive
View of the Technologies Involved in Pervasive Care’,
Communications in Medical and Care Compunetics,
pp. 3-19.

[34] Zhang Y., Jia Z. and Chen Y. (2011) ‘A thought on the
goals & realization of pervasive healthcare’, Scientific
Research & Essays, Vol. 6 (13), pp. 2752-2756.

[35] Chen, H. and Finin, T. (2003) ‘An Ontology for
Context-aware Pervasive Computing Environments’.

[36] Chen, H., Perich, F., Finin, T. W. and Joshi, A.
(2004b) ‘SOUPA: Standard ontology for ubiquitous and
pervasive applications’, Proceedings of the First Annual
International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous’04),
IEEE Computer Society, pp. 258-267.

[37] W3C (2004) ‘OWL Web Ontology Language
Overview’, Available at: http://www.w3.org/TR/owl-
features/ (Accessed: 8 March 2013).

[38] Shojanoori, R., Juric, R., and Tourani, B. (2010)
‘Experiences of building assisted self-care systems within
smart home environment’. In: Proceedings of the 15th

International Conference on System Design and Process
Science, 06 – 11, Dallas, USA.

[39] Shojanoori, R., Juric, R. and Lohi, M. (2012)
‘Computationally Significant Semantics in Pervasive
Healthcare’, Transactions of the SDPS: Journal of
Integrated Design and Process Science, 16 (1), 43-62.

[40] Shojanoori, R. and Juric, R. (2013) ‘Semantic Remote
Patient Monitoring System’, Telemedicine and e-Health, 19
(2), 1-8.

2937

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 19:20:54 UTC from IEEE Xplore. Restrictions apply.

