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Hybrid Electric Vehicles
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Abstract—Optimal energy management of hybrid electric
vehicles requires a priori information regarding future driving
conditions; the acquisition and processing of this information is
nevertheless often neglected in academic research. This paper in-
troduces a commuter route optimized energy management system,
where the bulk of the computations are performed on a server.
The idea is to identify commuter routes from historical driving
data, using hierarchical agglomerative clustering, and then pre-
compute an optimal solution to the energy management control
problem with dynamic programming; the obtained solution can
then be transmitted to the vehicle in the form of a lookup table.
To investigate the potential of such a system, a simulation study
is performed using a detailed vehicle model implemented in the
Autonomie simulation environment for MATLAB/Simulink. The
simulation results for a plug-in hybrid electric vehicle indicate that
the average fuel consumption along the commuter route(s) can be
reduced by 4%–9% and battery usage by 10%–15%.

Index Terms—Clustering algorithms, data mining, dynamic
programming, energy management, hybrid electric vehicles, intel-
ligent vehicles.

I. INTRODUCTION

R ISING fuel prices and pollutant emissions and an increas-
ing concern for global warming has initiated a transition

toward electric powertrains. One of the main challenges with a
hybrid electric powertrain is the design of the energy manage-
ment system (EMS), which controls the power split between
the battery and the engine throughout a driving mission. Con-
sequently, over the past decade, there has been a vast number
of studies investigating different EMSs, for both hybrid electric
vehicles (HEVs) and plug-in HEVs (PHEVs). The established
research consensus is that a near-optimal fuel economy can only
be reached if the future driving conditions are known a priori
[1]–[3]. The most straightforward way to obtain the desired
a priori information is to connect a GPS-based navigation
system, containing speed limits and topography data, to the
EMS and let the driver specify the final destination; such a
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Fig. 1. Route optimized EMS. Driving data are transmitted to a server, where
routes are identified and an optimal control strategy is precomputed.

system has been investigated in several studies [4]–[6] and is
already available on the consumer market [7]. There are, of
course, limitations with this type of system; the driver might not
enter a route during everyday usage, and the predicted driving
path/conditions might not reflect the actual drive. Furthermore,
to solve the energy management control problem onboard the
vehicle, the computational demand must be kept within reason-
able limits, thereby drastically limiting the possible complexity
of the vehicle model.

However, a recent development trend within the automotive
industry is to connect the vehicle to the cellular network and
the Internet [8], [9]. These systems enable a user to control
certain features using his or her cell phone, e.g., check the
battery charge level or start preheating/precooling. It is also
possible for a user to download detailed driving statistics since
trips are logged and the data are transmitted to servers [8]. The
introduction of such systems opens up for new possibilities
in terms of energy management. If driving data are available
on a server, it is possible to use machine-learning algorithms
to identify commuter routes and to precompute an optimal
control strategy that can be transmitted back to the vehicle, as
illustrated in Fig. 1. During operation, either the vehicle can
then try to recognize routes autonomously, or the driver can be
asked to confirm if any of the frequent routes will be driven.

The two principal building blocks of such a system, i.e., route
identification and optimization of the EMS, have mainly been
studied separately. Several studies have investigated different
machine-learning techniques that can be used to identify routes
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from historical driving data and how to recognize these routes
when the vehicle is being operated [10]–[14]. Other studies
have examined how to optimize the EMS toward known routes,
where the driving conditions are modeled based on historical
driving data [4], [14]–[18]. There is, as far as the authors
know, only one study that combines route identification with
optimization of the EMS [14]; however, in [14], the focus is on
reinforcement learning, and a highly simplified vehicle model
is considered in a simulation study that is presented only briefly.

The main contributions of this paper are therefore as fol-
lows: 1) a framework to combine route identification with
optimization of the EMS; 2) a simulation study based on two
different logged commuter driving patterns, using a detailed
model of a parallel PHEV powertrain; and 3) a compara-
tive study of a discharge strategy computed with dynamic
programming (DP) [19] and two simpler discharge strategies
(depletion–sustenance and linear discharge). Note that the main
objective of the paper is not further development of the meth-
ods, but rather to obtain a realistic assessment of the overall
benefit of such a system.

The methodology used in the paper is to identify com-
muter routes from logged GPS driving data, using hierarchical
agglomerative clustering, which is an unsupervised learning
technique, where the number of clusters, i.e., routes, are not
specified in advance; the method has previously been used for
route clustering with promising results in [11]. Once the com-
muter routes are identified, a route representation is derived,
which is aimed to model both the driving conditions along
the route and the uncertainty of the exact final position. Then,
based on a simplified quasi-static vehicle model, DP is used
to precompute an (implicit) optimal state-feedback law along
the route representation. The simulation study is performed
with the high-fidelity vehicle modeling software Autonomie
[20], in which an equivalent consumption minimization strategy
(ECMS) [21], [22] is implemented as the real-time control
strategy. The equivalence factor is then given by either the
precomputed DP state-feedback law or a proportional–integral
(PI) controller tracking a linearly decreasing state-of-charge
(SoC) reference.

Outline: The paper is divided into eight sections. Following
the introduction, the route identification procedure and the
corresponding route representation are explained. The next
section describes how DP can be used to precompute an optimal
control strategy for a commuter route. The simplified vehicle
model used during the precomputations and the more detailed
simulation model with the associated real-time control strategy
are described in the two subsequent sections. In the second half
of the paper, the simulation study and its results are presented
before the paper ends with a discussion and conclusion. The
database containing the logged driving data used in the simula-
tion study is described in Appendix A.

II. IDENTIFICATION OF COMMUTER ROUTES

In this paper, the concept of a commuter route is defined as a
recurring driving trajectory between two different geographical
areas, which is roughly along the same driving path. The
definition is intentionally somewhat vague, in order to cover

the variability of everyday driving. The idea is to keep the
number of routes to a bare minimum and not form new routes
for situations where the vehicle is parked in slightly different
positions, slightly different paths around an obstruction are
equiprobable, or when the driver stops for errands near the final
destination, e.g., to shop at the local supermarket.

Trip Definition: A trip is defined as the drive between two
consecutive parking periods irrespective of the duration of the
parking periods.1

Trip Features: To facilitate the clustering, each trip is associ-
ated with a finite number of features, e.g., driving length, start-
ing time, weekday, and GPS coordinates at different positions.

A. Trip Clustering Procedure

The process of clustering can be thought of as the task of
grouping objects (trips) in an n-dimensional space, according
to some measure of similarity. The idea is to assign nearby
objects (trips) to an aggregated data structure denoted as a
cluster (route), containing objects (trips) with a high degree of
similarity.

Assuming that the driving pattern of a vehicle has been
logged over the course of a few weeks, routes can be identified
using the trip clustering procedure outlined in the following.

1) Assign each of the k logged trips with q features and form
a trip data observation matrix Θ ∈ R

k×q . The row vectors
ri ∈ R

q , i = 1, . . . , k, correspond to feature vectors of
the logged trips, and the column vectors cj ∈ R

k, j =
1, . . . , q, consequently represent all observed values of a
certain feature.

2) Calculate the symmetric trip distance matrix D ∈ R
k×k,

between all the k trips using the standardized Euclidian
distance

dij =
√

(ri − rj)V −1(ri − rj)T , {i, j} = 1, . . . , k. (1)

The diagonal matrix V ∈ R
q×q is defined by the vari-

ances of the column vectors of Θ, i.e., vjj = var[cj ].
3) Perform hierarchical agglomerative clustering and form

a dendrogram tree. That is, start by defining each trip
as an individual cluster; nearby clusters are then recur-
sively merged into larger clusters until there is only one
cluster remaining. For a more comprehensive description
of hierarchical clustering, refer to any standard textbook
covering unsupervised learning, such as [23].

4) Commuter routes are defined by clusters containing at
least γ trips at a certain cutoff height hc in the dendro-
gram tree.

Note that the cutoff height is a tuning parameter that must be
determined iteratively. Parts 3) and 4) of the outlined procedure
have previously been implemented in [11]. However, in that
paper, the trip distance matrix was determined using another
approach; rather than working with different features, the aver-
age pointwise spatial distance between the trips was calculated,
which is a much more tedious approach.

1This definition was used in the database that forms the basis for this paper.
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Fig. 2. Example of the trip clustering procedure consisting of four trips, which
are characterized by five GPS positions at different fractional driving distances
along the trip. The trip distance matrix shows the feature distance between the
trips, and the dendrogram illustrates the resulting clustering steps.

Observe that the trip definition used in this paper implies
that some journeys might be divided into several shorter trips,
separated by relatively short parking durations. Therefore, not
all commuter journeys will be identified correctly with the trip
definition used. In an actual implementation of the system, it
is important to preprocess the driving data, in order to merge
trips that probably belong to the same journey. It is, however,
deemed to be beyond the scope of this paper to also investigate
a more exhaustive trip definition.

Trip Clustering Example: To illustrate the trip cluster-
ing procedure, a small example consisting of four trips
{A,B,C,D} is shown in Fig. 2. Three of the trips, i.e.,
{B,C,D}, have the same starting and ending positions but
follow two different paths; the fourth trip {A} has the same
starting position but has a different ending position. The trip
features considered in the example are the starting and ending
positions, as well as the positions where 25%–50%–75% of the
trip length is driven, i.e., a total of ten features since the po-
sitions are specified with longitude and latitude. The resulting
clustering dendrogram first merges the two trips that follow the
same path {B,D} into one cluster. In the next step, the third trip
{C}, which has the same starting–ending positions, but along
the other path, is merged with the first cluster. The final step
merges the remaining trip {A} with the first three. Finally, with
the cutoff height indicated in the figure, there is only one cluster
{B,D} containing more than one trip.

B. Route Representation

In order to optimize the energy management of a hybridized
vehicle for a particular route, the driving conditions along the
route must be modeled using a suitable method. The authors
have previously investigated a stochastic approach in [15] and
[16], where a Markov model representation was used to pre-
compute near-optimal control strategies for an HEV driving
along a prescribed route. In those papers, it was also shown that
a single previous trip logged along the route could be used with

Fig. 3. Illustration of the workflow used to derive a route representation.

only slight degradation in fuel economy, at least if the driving
conditions are recurring. The observation that commuter trips
typically start within a narrow time interval, on an almost daily
basis, means that the driving conditions are often relatively
similar from day to day. Hence, in this paper, the driving
conditions will be modeled by the most representative trip
logged along the commuter route. Described very briefly, the
idea is to assign each logged commuter trip with an additional
feature vector (here characterizing the driving conditions rather
than the driving trajectory) and then select the trip with the most
representative feature vector; the procedure is outlined more in
depth in Appendix A. The representative trip will define the
nominal driving path (GPS trajectory), topography, and velocity
trajectory of the route representation.

However, since parking locations and driving paths often
vary slightly from day to day, all trips associated with a com-
muter route might not end in exactly the same position or after
exactly the same driving distance. It is important to capture
this uncertainty when optimizing the EMS, since the remaining
driving distance is a key parameter when planning the battery
usage of a hybridized vehicle, particularly with a PHEV, for
which an overestimation of the remaining driving distance can
be very costly [24]. To model the uncertainty, it is assumed that
the route length is a normally distributed stochastic variable

zf ∈ N
(
zn, σ

2
d

)
(2)

where zn is the mean trip length of the trips associated with the
route, and σ2

d represents the corresponding variance. A graphic
illustration of the workflow used to derive a route representation
is shown in Fig. 3.

III. PRECOMPUTING AN OPTIMAL CONTROL STRATEGY

FOR THE ROUTE

The energy management control problem is to minimize the
overall expected energy cost along the route representation,
while adhering to the constraints and dynamics of a simplified
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vehicle model with SoC as the only dynamic state x. The
resulting optimal control problem can be formulated as

min
u(·)

E
tf

{
G(x(tf ))+

∫ tf

t0

g(u(t)) dt

}
,

s.t. ẋ(t)= f (x(t), u(t))

Tp

(
u(t)

)
=Tr (v(t), θ(t))

x(t0)=x0

x(tf )∈ [xmin
f , xmax

f ]

x(t)∈ [xmin, xmax]

u(t)∈U (x(t), v(t), θ(t)) (3)

where f(x, u) represents the battery SoC dynamics, g repre-
sents the instantaneous fuel cost of the engine, and G represents
the cost to recharge the battery. The decision variables in the
control signal u vary with powertrain configuration, but it may
include torque/power split(s), engine state, and choice of gear.
Furthermore, the control signal must be chosen, such that the
powertrain traction torque Tp(u) meets the torque request of
the route representation Tr(v, θ), where v and θ represents the
route speed and road slope trajectories, respectively. Observe
that the final time tf is a stochastic variable, since the route
length is assumed to be nondeterministic.

A. Numerical Solution With DP

The optimal control problem, which is illustrated by (3),
is solved numerically using Bellman’s principle of optimality
and DP [19]. However, since the computed solution will be
used as an (implicit) state feedback along the route, it is more
convenient to define the cost-to-go over the state x and distance
z along the route, rather than time. Described very briefly, the
methodology is to time discretize the problem using the Euler
method, with sample time ts, grid the state and then solve the
recursive equation

J(zk, xk) = min
uk∈Uk

{tsg(uk) + (1 − p(zk+1|zk))G(xk)

+ p(zk+1|zk)J(zk+1, xk+1)} (4)

backward in time, starting from the final sample N at driving
distance zN , where the cost-to-go is initialized with the final
cost J(zN , xN ) = G(xN ). Note that the expected value oper-
ation in (3) is equivalent to discounting the cost-to-go, at each
sample k, with the conditional probability p(zk+1|zk) that the
trip reaches the next position zk+1 given that position zk has
been reached, where the conditional probability is derived from
(2). To improve numerical stability and reduce interpolation
effects when enforcing the state constraints in (3), the DP al-
gorithm is implemented using level-set functions to distinguish
between backward-reachable and nonbackward-reachable grid
points [25].

Extending the Route Representation: The assumption that
the route end distance zf is a stochastic variable implies that
the length of the route representation will not be identical to the
length of the representative trip. Hence, the driving conditions

TABLE I
VEHICLE DATA

Fig. 4. Vehicle configuration.

of the representative trip must be extrapolated to cover driving
distances up to the length of the route representation, which is
defined here as zN = zn + 4σd. For simplification reasons, the
speed profile is extended back to back with its initial part, and
the topography is (during the extended part) assumed to be flat.
Observe that the extrapolated driving conditions are of minor
importance, since this part will have a significant discount when
solving the energy management control problem.

IV. VEHICLE MODELING

A post-transmission parallel PHEV is considered, i.e., the
electric motor is connected directly to the front axle, and
the engine is coupled through a clutch and a stepped auto-
matic transmission. The vehicle configuration is one of the
preparameterized models available in the Autonomie software
[20]; the only modification made with respect to the original
powertrain model is the number of cells in the battery pack,
which has been altered to give an all-electric range comparable
to that of the Toyota Plug-in Prius. The powertrain parameters
are summarized in Table I, and the configuration is shown
in Fig. 4.

A. Detailed Simulation Model in Autonomie

To obtain a realistic assessment of the potential of a com-
muter route optimized EMS, the simulation study is carried
out in the Autonomie software, which is a high-fidelity vehicle
modeling environment for MATLAB/Simulink developed by
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Argonne National Laboratory. In an Autonomie vehicle model,
all principal powertrain components are described by a plant
model and a separate controller. The model is based on a causal
forward-looking modeling approach, where a drive cycle is
used as input to a driver model. The driver’s traction demand
is then interpreted by the EMS, where appropriate torque
requests for the engine and electric motor are decided. The
full Autonomie model is nonlinear and contains several (> 5)
dynamic states, meaning that the computational demand would
be immense if the simulation model is used for optimization.
Hence, a simplified model with SoC as the only dynamic state
x is extracted from the Autonomie model. The simplified model
is outlined next, and powertrain components not described are
not considered when precomputing the EMS.

B. Simplified Vehicle Model for the Precomputations

In the simplified model, the forces acting on the powertrain
are determined using a noncausal and inverse approach, e.g.,
see [26], meaning that the torque requested at the wheels, i.e.,
Tr, to follow a given velocity and road slope trajectory, is
given by

Tr = rw
(
1/2ρCdAv

2 +mea+mg(fr cos θ + sin θ)
)

(5)

where v represents the velocity, a is the acceleration, θ is the
road slope, ρ is the density of air, CdA is the air drag resistance,
fr is the rolling resistance, m is the vehicle mass, and me is the
equivalent vehicle mass, i.e., including moments of inertia of
the rotating parts. The traction torque of the powertrain Tp, at
the wheels, is given by

Tp = ηfrf (Tm + ηgb,irgb,iTe) + Tb (6)

where Tm represents the motor torque, Te represents the engine
torque, and Tb represents the torque of the friction brakes. The
ratio of the final gear is denoted by rf , and the corresponding
efficiency ηf depends on the sign of the torque demand at
the wheels. The gears, i = 1, . . . , 5 are represented by a drive
ratio rgb,i and a mechanical efficiency ηgb,i. It is assumed that
torque responses are instantaneous and that gear shifts and the
engine-state transitions are both instantaneous and lossless. The
instantaneous fuel mass rate of the engine is approximated to be
affine in engine torque, and the instantaneous fuel cost g is thus
given by

g = cf (c0(ωe)Te + c1(ωe)) eon (7)

where cf represents the price of fuel, and eon represents the en-
gine state. Furthermore, the combined electrical power demand
of the motor and the inverter is assumed to be quadratic in motor
torque. The resulting battery power Pb is hence

Pb = d0(ωm)T 2
m + d1(ωm)Tm + d2(ωm) + Pa (8)

where Pa represents the auxiliary electrical loads. The speed-
dependent coefficients c0:1 and d0:2 are determined by linear

least squares from the engine and motor maps available in
Autonomie. A Li-ion battery is considered, and it is modeled
as an equivalent circuit consisting of nc battery cells connected
in series. The battery is assumed to have a constant internal
resistance Ri and an open-circuit voltage Voc that is affine in x,
i.e., in SoC. Consequently, the state dynamics are given by

d x

d t
= f(x, u) = −Voc(x)−

√
V 2
oc(x)− 4PbRi

2RiQ
(9)

where Q represents the cell capacity.
To summarize, the control signal u for the simplified vehicle

model is the engine-state decision and the torques of the engine
and the electric motor, i.e.,

u = [eon, Te, Tm] ∈ U(ωe, ωm) (10)

where U represents the torque constraints of the engine and
motor. Moreover, the control signal must be chosen, such that
the torque request is satisfied, i.e., Tp should be equal to Tr.
The choice of gear is not included in the control signal of
the simplified model, since it is decided by a separate gearbox
controller in the Autonomie model. Hence, when precomputing
the EMS with the simplified model, the gear selected is the
highest possible gear that will not cause the engine to stall; an
assumption that will be nearly fuel optimal since the engine and
electric motor do not share transmission.

V. REAL-TIME CONTROL STRATEGY IN AUTONOMIE

In the Autonomie vehicle model, the torque split controller
is modified from a rule-based strategy to an ECMS strategy
[21], [22]. The optimal control signal is determined using the
simplified vehicle model and is thus given by

u∗ = argmin
u∈U

{g(u) + s · f(x, u) + δ(eon)} (11)

where s represents the ECMS equivalence factor, and δ is
a small cost for turning on the engine, which is added to
decrease the number of engine-on decisions. Furthermore, since
the simplified vehicle model is based on affine and quadratic
expressions, the ECMS equation (11) is solved analytically to
obtain a closed-form expression for the control signal. The
expression is, however, rather complicated and will therefore
not be shown here, although it is straightforward to derive using
a symbolic solver. During the simulations, the torque requests
are updated at 100 Hz, i.e., the sample time of the Autonomie
model, and the engine-state request at 0.5 Hz. The value of the
equivalence factor s is determined differently depending on the
discharge strategy.

A. Route Optimized Discharge Strategy

With the route optimized strategy, the equivalence factor
is determined by linear interpolation in a 2-D lookup table
h(x, z), with SoC and distance position along the route rep-
resentation as the interpolation variables. The lookup table is
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determined by computing the partial derivative (numerically)
of the cost-to-go J , with respect to the state x, i.e.,

s = h(x, z) =
∂J(x, z)

∂x

∣∣∣∣
{x,z}

. (12)

The distance position z along the route representation can be
determined as the distance traveled since the start of the trip,
which is corrected with a distance offset against the route
representation Δz, as the trip might not have begun at the
exact nominal starting position. The offset can, for example, be
determined by calculating the normalized 2-D cross-correlation
between the GPS trajectories of the route representation and the
ongoing trip [27].

B. Linear Discharge With Respect to Route Energy Demand

To assess the benefit of the route optimized discharge strat-
egy, it is compared against a heuristic discharge strategy, which
is implemented by a PI controller and a SoC reference that
is decreased gradually along the route. If the topography is
relatively flat, it has been shown that it is near optimal to
decrease the reference linearly with distance; see [6] and [27].
However, if the route is hilly, it is important to account for
the potential energy that can be recuperated. Therefore, the
reference is decreased linearly with respect to route energy
demand, rather than distance, thus ensuring an increasing refer-
ence during segments of negative traction request, e.g., during
downhill driving. The SoC reference xr is hence given by

xr(z) =

{
x0 − (x0 − xf )

E(z)
E(zn−3σd)

, if z ≤ zn − 3σd

xf , if z > zn − 3σd

(13)

where xf represents the desired final SoC, and the cu-
mulative route energy demand is given by E(z(t)) =

(1/rw)
∫ t

to
v(τ)Tr(τ)dτ. Observe that the reference is defined

such that the lower SoC limit is reached at a three-sigma
distance before than the mean route length; this is to ensure
that the battery will be fully depleted. Finally, the equivalence
factor is given by

s = s0 − FPI(e) (14)

where s0 corresponds to the nominal value of the equivalence
factor. The PI controller is represented by FPI, which is defined
by a proportional gain Kp and an integral gain Ki. The tracking
error e is defined as e = xr − x.

C. CDCS Discharge Strategy

The trivial charge-depletion–charge-sustaining (CDCS) dis-
charge strategy is also investigated as a baseline strategy, rep-
resenting the case when there is no knowledge of the route.
In the CDCS strategy, the equivalence factor is zero during
the depletion phase, and in the sustaining phase, commencing
below xs, it is given by a PI controller

s =

{
0, if x > xs

s0 − FPI(e), if x ≤ xs
(15)

TABLE II
DATA AND PARAMETER VALUES USED IN THE SIMULATION STUDY

where e = xf − x. Furthermore, a hysteresis relay is used to
ensure that no chattering effects occur around the switching
level.

VI. SIMULATION STUDY

The simulation study in Autonomie is carried out using real-
world driving patterns extracted from the Swedish Car Move-
ment Database, i.e., a database containing GPS-logged driving
data from roughly 500 passenger cars, gathered between 2010
and 2012 in the Göteborg area in western Sweden. More in-
formation regarding the database can be found in Appendix B.
Two driving patterns are examined in the simulation study, each
roughly two months long. The patterns were selected based on
the following two criteria: 1) the vehicle should have a distinct
commuter pattern with a route exceeding 30 km, and 2) the
commuter route must be driven at least 50 times during the
logging period.

A. Training and Validation Periods

The logged data for each driving pattern were divided into a
training period and a validation period, which are both equal in
duration. The training period was used to identify the commuter
routes and to derive the corresponding route representations, as
outlined in Section II. During the route clustering, each trip
was associated with seven evenly distributed GPS positions
(as in Fig. 2) and the trip length, i.e., in total 15 features.
The validation period was reserved for the simulation study in
Autonomie.

B. Investigated Driving Patterns

The two driving patterns are described briefly in the follow-
ing, and the main driving statistics are summarized in Table II;
the resulting route representations are shown in Figs. 5 and 6.

Pattern A has a commuter route going from the suburb
of Kungsbacka to an industrial facility on the outskirts of
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Fig. 5. Driving pattern A—Route representation. The upper plots show the
representative trip and the logged commuter trips. The lower plots depict the
route topography and the probability that the trip is ongoing.

Fig. 6. Driving pattern B—Route representation. The upper plots show the
speed profiles of the logged commuter trips. The lower plots depict the route
topography and the probability that the trip is ongoing.

Göteborg, which is the region’s main city. The route is mainly
along the E6 motorway, which (by Swedish standards) has a
fairly high volume of traffic.

Pattern B has a commuter route between Lerum, which is a
suburb of Göteborg, and the medium-sized city of Borås. Two
thirds of the route follows national road 40, which is a trunk
road with a relatively low volume of traffic, and the remaining
third follows a smaller country road.

C. Simulation Setup

The commuter trips found in the validation period were used
as speed references when simulating the Autonomie vehicle
model with the ECMS controller described in Section V; the
route optimized discharge strategy, the linear discharge strategy,
and the baseline CDCS discharge strategy were simulated.
During the study, it was assumed that the vehicle was informed

Fig. 7. Block diagram illustrating the workflow used during the simulation
study with the route optimized discharge strategy.

of the choice of route before the start of each trip. The workflow
during the simulation study is illustrated in Fig. 7, and the
parameter values used are shown in Table II. To make the study
more realistic, the PI controller, which is used by the linear
discharge strategy and the CDCS strategy, had the same pa-
rameterization for both driving patterns. Furthermore, the route
optimized cost-to-go was also initialized with the same final
cost (G) for both driving patterns. The penalty for turning on
the engine (δ) was the same for all three strategies. For simplifi-
cation reasons, the route representations for each driving pattern
were kept constant during the simulation study; however, it
would be straightforward to update the route representations
recursively after each additional commuter trip.

D. Simulation Results

The speed profiles and the corresponding SoC discharge
trajectories for the commuter trips in the validation period are
shown in Figs. 8 and 9. By studying the speed profiles, it is
clear that the representative trips for both driving patterns are
also good representations of the driving conditions during the
validation period. The simulation results for the two driving
patterns are summarized in Tables III and IV, which display the
mean values of the fuel mass consumed, the C-rate, the ampere-
hour throughput, the final SoC, and the standard deviation of the
final SoC. As the difference in final SoC is relatively small, the
fuel mass shown in the table has not been adjusted with respect
to the difference in final SoC.2

From the simulations, it is clear that the route optimized
strategy tends to end near the desired final SoC, with low
variance, since the uncertainty in trip length is considered when
the route optimized strategy is computed. Furthermore, also the
linear discharge strategy tends to end near the desired final
SoC, although, in this case, it is mainly due to the ad hoc
definition of the SoC reference. The CDCS strategy has no route
knowledge and is therefore more likely to end at an undesired
SoC level, particularly if there is a downhill segment during the

2This was investigated by the authors, but the influence is relatively small.
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Fig. 8. Driving pattern A—Simulated SoC trajectories in Autonomie for the
commuter trips in the validation period.

Fig. 9. Driving pattern B—Simulated SoC trajectories in Autonomie for the
commuter trips in the validation period.

TABLE III
DRIVING PATTERN A—SIMULATION RESULTS. THE FIGURES IN PERCENT

ARE WITH RESPECT TO THE OPTIMIZED STRATEGY

TABLE IV
DRIVING PATTERN B—SIMULATION RESULTS. THE FIGURES IN PERCENT

ARE WITH RESPECT TO THE OPTIMIZED STRATEGY

very end of the route; this effect is clearly illustrated in driving
pattern B for the route from work. Furthermore, since the linear
discharge and the CDCS strategy does not explicitly consider
the uncertainty in route length, the variance in final SoC is thus
noticeably higher for these strategies.

In terms of fuel economy, it is evident that both the route
optimized strategy and the linear discharge strategy can be
significantly better than the trivial CDCS strategy. More specif-
ically, the CDCS strategy is particularly inefficient if there is
a segment of high power demand during the initial part of the
route, i.e., high speed and/or uphill driving. Operation in the
charge depletion mode during a high-power segment will result
in high discharge currents and high resistive losses, since these
are quadratic in current. Therefore, a CDCS strategy will have
poor fuel economy if there is a high-power segment during the
all-electric range of the PHEV. Consequently, as illustrated in
Tables III and IV, the improvement in fuel economy is highly
correlated with the direction of travel along the route.

Moreover, both the route optimized and the linear discharge
strategy have additional advantages compared to the CDCS
strategy. The two former strategies discharge the battery at a
slower rate, i.e., at a lower C-rate. Thus, less time is spent in the
charge sustaining mode, and the overall battery ampere-hour
throughput is reduced as well. Both the C-rate and the ampere-
hour throughput are correlated with the capacity fade of Li-ion
batteries [28], meaning that the route optimized discharge strat-
egy and the linear discharge strategy should improve battery life
length.

VII. DISCUSSION

Three important aspects in this paper are identification and
representation of routes and how to adapt the EMS toward the
identified routes. These aspects should be investigated further
and are therefore discussed briefly in the following.

A. Route Identification Via Trip Clustering

One aspect that has not been investigated in the paper is the
reliability and robustness of the trip clustering procedure. Ag-
glomerative clustering is an unsupervised learning procedure,
meaning that there is no guarantee that the correct number of
routes will be identified. If the cutoff height, in the dendrogram
tree, is poorly chosen, it might very well happen that too many
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(or too few) routes are formed, e.g., the daily commute might be
divided into several closely related routes. To counteract such
behavior, the route clustering method must be refined further.
However, it is less likely that trips going between completely
different locations are merged into a route, at least if the trip
features are GPS coordinates and trip length.

B. Route Representation

In this paper, the driving conditions along the route are mod-
eled by a representative trip, which is chosen from historical
driving data to reflect typical driving conditions. This approach
might not be very robust if the traffic conditions along the route
change from day to day. One way to improve robustness could
be to consider several representative trips, e.g., to cover both
free-flowing and congested traffic flow. Another possibility
would be to derive one or several stochastic representations,
e.g., Markov models, of the route driving conditions.

C. Optimization of the EMS

The simulation results indicate that the route optimized strat-
egy and the linear discharge strategy are essentially equally
good, in terms of both fuel economy and battery usage. Hence,
one might argue that it is not worth the computational effort
(and cost) to compute a route optimized strategy on a server.
Nevertheless, a (heuristic) linear discharge strategy is not guar-
anteed to give a near-optimal fuel economy for all possible
vehicle configurations and routes.

VIII. CONCLUSION

This paper has investigated the concept of a commuter
route optimized EMS, where the bulk of the computations are
performed on a server. The simulation results for two real-
world driving patterns, using a high-fidelity model of a post-
transmission parallel PHEV, indicate that fuel consumption
along the two commuter routes (A and B) can be reduced by an
average of 9% and 4%, respectively. Furthermore, the battery
C-rate and ampere-hour throughput are also reduced by about
10%–15%. Despite the relatively high figures, the correspond-
ing fuel cost savings are only about C 60 per year3 with the
current fuel costs. The fuel savings alone are most likely not
substantial enough to motivate a server-based solution. How-
ever, if the servers are already in place for other systems, e.g.,
infotainment and safety, the marginal cost for implementing a
route optimized system should be relatively low.

APPENDIX A
SELECTING THE MOST REPRESENTATIVE TRIP

Each of the logged commuter trips is associated with a set of
characteristic features aimed at describing the general driving
conditions of the trip, e.g., fraction of time spent in different
speed intervals, average deceleration, standstill time, etc. The

3Assuming European fuel costs and 226 working days per year with two trips
a day.

features considered in this paper have been selected on the basis
of the results in [29], in which more than 2000 trips were ana-
lyzed using factorial analysis to obtain 16 independent features
correlated with fuel economy. The features that were possible to
determine from the logged driving data were computed for each
commuter trip. The most representative trip was then chosen
as the trip with the least feature distance (in a standardized
Euclidian-distance sense) to all the other commuter trips.

APPENDIX B
SWEDISH CAR MOVEMENT DATABASE

The database contains logged driving data from roughly
500 passenger cars, which were randomly selected from a sub-
set of the Swedish vehicle fleet. The cars were driven by private
households in Kungsbacka municipality and Västra Götaland
county, with the latter containing Sweden’s second largest city,
i.e., Göteborg. Each vehicle was logged for approximately two
consecutive months, between 2010 and 2012, using a com-
mercial GPS unit. The key parameters logged were latitude,
longitude, altitude, velocity, and system time, which are all
sampled from the GPS receiver at 2.5 Hz. If the GPS signal
was lost for less than 10 s, the missing data were interpolated,
and if the signal was lost for more than 10 s, a new trip was
defined. Therefore, some journeys were broken up into several
smaller trips, which are not necessarily connected, time- or
position-wise, at least if the signal was lost for a longer time
period. In this paper, no effort was made to reconstruct longer
journeys that were broken up into two or more trips. For a more
detailed description of the measurement equipment and the data
collection, see [30].
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