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Abstract—We analyze targeted layered containment strategies
to contain an influenza pandemic in the National Capital Terri-
tory of India (NCT-I, including New Delhi and its surrounding
areas). A key contribution of our work is to synthesize a realistic
individual-based social contact network for NCT-I using a wide
variety of open source and commercial data. New techniques were
developed to infer daily activities for individuals using aggregate
data published in transportation science, combined with human
development surveys and targeted local surveys. The resulting
social contact network is the first such network constructed for
any urban region of India. The time varying spatially explicit
network has over 13 million people and 200 million people-people
contacts. The network has several interesting similarities and
differences as compared to similar networks for US cities.

As a second step, we use a high performance computing based
modeling environment to study how an influenza-like illness (ILI)
would spread over the NCT-I network. We also analyze well
understood pharmaceutical and non-pharmaceutical containment
strategies to control a pandemic outbreak. Our methodology
builds on earlier work in this area. The results suggests that:
(i) pharmaceutical containment strategies typically are more
effective than the non-pharmaceutical ones for NCT-I residents;
(ii) the epidemic dynamics of the region are strongly influenced by
activity pattern and demographic structure of the local residents;
(iii) a high resolution social contact network helps us make better
public health policy. To the best of our knowledge this is the first
such study in the Indian sub-continent.

I. INTRODUCTION

Today’s densely populated urban regions enable rapid
transmission of infectious diseases [40]. Additionally, urban
contact networks in regions like India and China are rapidly
growing. The National Capital Territory region of Delhi is
predicted to see a rise in population from 16.7 million in 2011
to 22.5 million in 2021 primarily due to the high rate of in-
migration in Delhi [32]. In Beijing, the population has risen
from 12.9 million in 2000 to 18.8 million in 2010 [31]. The
densely populated large urban regions provide a perfect fabric
for rapid spread of infectious diseases. Public health authorities
have focused on developing effective interventions and policies
to control the spread of diseases using both pharmaceutical
interventions as well as social distancing measures. Both
the strategies effectively reduce the connectivity within the
social contact network or change the transmission probability
between individuals

Over the last 10 years, we have developed a formal method-
ology for network computational epidemiology – development
and use of computer models to understand the spatio-temporal

diffusion of disease through populations using a synthetic
yet realistic representation of the underlying social contact
network [37]. The basic approach has now become widely
accepted in the literature. It is based on the idea that a
better understanding of the characteristics of the social contact
network can give better insights into disease dynamics and
intervention strategies for epidemic planning.

A methodology to synthesize social contact networks for
the US cities is already in place. Contact networks for US
cities are generated by following a hierarchical composition
of data-driven stochastic processes: (i) The baseline popula-
tion is synthesized based on sociodemographic statistics and
microsample data from the United States Census; (ii) Mobility
patterns from a nationwide household survey and land use
data in the form of work, retail, recreational, and school and
college locations are used to estimate region-specific contact
networks. The structure of the resulting social networks, which
are calibrated to the above data, has been shown to influence
the outcome of disease outbreaks in our simulated epidemic
models [16], [37].

Since the synthetic network should provide a realistic
representation of the contact network specific to that region,
the process to generate the contact network utilizes region-
specific data. The US synthetic population captures details
of household structure by utilizing the 5% Public Use Micro
Sample for each Public Use Microsample Area modeled. The
US National Household Travel Survey (NHTS) [33] captures
the interdependence of people’s activities, especially adults,
in the same household across all surveyed households in the
United States. Data of similar level of detail is not available
for Delhi (and will not be for many other regions as well),
making it impossible to replicate the US network generation
process for regions outside the US.

A. Summary of contributions

Building on our earlier work, we construct a synthetic
social contact network for NCT-I. To overcome the limitations
as regards to available data for Delhi, we developed several
new methods – several of these methods are general and can
be applied to synthesize networks for urban regions in other
developing countries. To the best of our knowledge, this is the
first such synthetic network developed for any urban region
in South Asia. Using a variety of data sources, demographic
information for each person and location, and a minute-by-
minute schedule of each person’s activities and the locations
where these activities take place is generated by a combination
of simulation and data fusion techniques. This yields a dynamic
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social contact network represented by a (vertex and edge)
labeled bipartite graph GPL, where P is the set of people and
L is the set of locations. If a person p ∈ P visits a location
� ∈ L, there is an edge (p, �, label) ∈ E(GPL) between them,
where label is a record of the type of activity of the visit and
its start and end points. The synthetic social contact network is:
(i) spatially explicit – home locations, work locations, business
locations, educational institutions, government institutions and
other places of interest are explicitly represented; (ii) is time
varying – individuals carry out daily activities based on a
normative day and visit appropriate location in turn interacting
with other individuals visiting the locations during the same
time and (iii) is labeled – both individuals and locations carry
a range of attributes described in the subsequent sections. It is
impossible to build such a network by simply collecting field
data; the use of generative models to build such networks is a
unique feature of this work.

We then use high-performance agent-based simulations to
study the spread of influenza-like disease over the synthetic
social contact network of NCT-I. We study the efficacy of var-
ious intervention strategies. This includes both pharmaceutical
interventions as well as non-pharmaceutical interventions. We
rank order these strategies based on their efficacy and discuss
how these results compare with results reported for other cities
in the world.

II. RELATED WORK

Traditionally, mathematical and computational modeling of
epidemics has focused on aggregate models using coupled
rate equations [2]. In this approach, a population is divided
into subgroups (compartments) according to an individual’s
health state (e.g., susceptible, exposed, infected, and recovered)
and demographics. The evolution of the infectious disease is
characterized by ordinary differential equations. An important
assumption in all aggregate differential equation-based models
is homogeneous mixing. This limits use of these models for
spatially sensitive processes.

In recent years, high-resolution individual-based computa-
tional models have been developed to support planning, control
and response to epidemics. These models support networked
epidemiology – the study of epidemic processes over explicit
social contact networks. Research in this area can be divided
into three distinct subareas.

The first subarea aims to develop analytical techniques
and computer simulations over classes of progressively so-
phisticated random graphs [4], [29]. These models relax the
mean field assumption to some extent but still use the inherent
symmetries in random graphs to analytically compute impor-
tant epidemic quantities of interest. The primary goal of these
results is to obtain closed form analytical results.

The second subarea aims to develop individual based mod-
els using important statistics of a region. The two important
statistics used are: (i) density and is usually obtained using
LandScan data and (ii) basic census information that provides
the demographic distribution of individuals within a popula-
tion. A simple template is used to represent a community
and these communities are joined hierarchically to obtain
larger regions. See [10], [17]–[19], [34] for examples of this
approach. These models can be extended to obtain hybrid

models as well. In a hybrid model, counties are represented
as nodes and edges are added between counties to capture the
movement of individuals – see [1], [12], [27] for a comparative
study. Epidemic dynamics within a county are computed using
an individual-based model. The dynamics over network of
counties are captured using coupled rate equations.

The final class of models use the most realistic represen-
tation of social contact networks; see [6], [15], [28]. In [6],
[8], [9], [15] each individual in the United States is modeled
with detailed demographic profiles and daily activities. Our
synthetic social network for NCT-I is constructed using this
class of models.

III. NETWORK GENERATION: DATA AND METHODOLOGY

To study the intervention strategies for pandemic response,
it is important that we create a faithful people-people contact
representation for the region. In this section, we describe how
to construct a realistic social contact network for the city of
Delhi. During the procedure, both data and methodology play
a key role.

A. Data Collection

Precisely, Delhi refers to the National Capital Territory
(NCT) of India. It is the capital of India, including New Delhi
and several adjacent urban areas. It contains over 13 million
people and is one of the areas with highest population density
in the world. The population is young with more males than
females. Some statistics for the population can be found in
table I in comparison with the two other representative cities
in the world.

In constructing a contact network, multiple sources of data
are required including demographics, activity pattern and land
use information about the region. The data we collected to
construct the Delhi network is listed in Table II.

B. Network Construction Methodology

Our method follows the steps we use when constructing
networks of another area [5]: synthesize a baseline population
with detailed individual structure and same aggregate statistic
properties of the real population; assign each individual a
reasonable activity schedule; and create locations in the region
where synthetic people can take their activities. Our methods
are similar to what was done in [5], but to accommodate
region-specific data in table II, we also design some novel
methodologies. In the following, section III-B2 and III-B4 are
new methods and are described in more detail, other steps can
be found with more details in paper [5].

1) Synthetic population generation with the India Census
2001 and micro household sample data: Our objective in
creating a synthetic population is to create all the individuals
with disaggregate demographic features that fit aggregate dis-
tributions of demographic variables as a whole, and meanwhile
build a realistic household structure for all those individuals.
For this purpose, both summary statistics of interested demo-
graphic variables in household level (India Census 2001 [21])
and a collection of household samples from a survey to
Delhi [14] are required.
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City Population size Average age Average household size sex ratio (M/F)
Beijing 16,191,340 37.9 2.6 0.99
Delhi 13,850,507 25.6 5.14 1.22

Los Angeles 16,228,759 32.9 3.0 0.97

TABLE I: Demographic statistics of Delhi in comparison with other two cities

Data Set Description

Demographics
India Census 2001 [21] Statistics for demographic variables such as age, gender,

income, etc. in individual level and household level for Delhi
residents.

Household Microdata: India Human Develop-
ment Survey 2005 by the University of Maryland
and the National Council of Applied Economic
Research [14]

Micro samples for household structure. It depicts each house-
hold sample: size, income, householder age, house types;
and also for each individual in the hh: demographic details,
religion, work, marital status, relationship to the householder,
etc.

Locations MapMyIndia Dataset [24] It includes the following information for Delhi: (1) Ward-wise
statistics for population and households; (2) Coordinates for
locations such as residential areas, schools, shopping centers,
hotels etc. (3) Infrastructures such as roads, railway stations,
land use etc. (4) Boundary for each city, town and ward.

Activity
Thane Travel Survey by USF [36] The dataset collect travel survey for residents in Thane, an

Indian city similar to Delhi. Activity templates are extracted
from travel statistics, and assigned to the synthetic population
with a decision tree.

00-07 school attendance statistics from the UN-
ESCO Institute of Statistics (UIS) [25]

It is used to decide the fraction of kids as students.

India residential area activity survey by Network
Dynamics and Simulation Science Laboratory
(NDSSL) at Virginia Tech

The survey focused on approximately 40% of population in
Delhi without daily travels. We collected people’s age, gender,
and contact statistics near their home.

TABLE II: The demographics, location and activity data used in the construction of the Delhi network.

Assuming the surveyed household samples are represen-
tative, any household in the real population can be estimated
with a carefully selected sample in terms of its household size
and household members. We are able to replicate the samples
to create all Delhi households. The family members in those
synthetic households naturally compose the Delhi population.

During the procedure, the sample selection is critical. From
the census data we collected the distributions of available
demographic variables in household level, i.e., householder’s
age and household size. We then select and replicate the
samples based on the joint distributions of those variables. We
choose these two variables because they characterize important
household structure features. Many other variables regarding
household structure in the micro sample data are related to
these two variables to some extent. For example, the number
of children in a family is correlated to the householder’s age
and household size; the number of workers in a family is
correlated with the household size and to some extent reflects
the household income.

While the marginal distribution of the two variables (house-
holder’s age and household size) are presented in census data,
their joint probability is unknown. To estimate a reasonable
joint probability, we apply the iterative proportional fitting
(IPF) procedure to fulfill the task. IPF is an iterative algorithm
for estimating cell probabilities in a contingency table such
that the marginal totals remain fixed, the details can be found
in [5]. To calculate the cell probabilities, we will assign an
initial value for each marginal variable combination cell, and
then iteratively fit the cell values through the IPF procedure
until we get converged results. Since the selection of initial
cell value might affect the accuracy of final results, we put

in the estimation value from the micro household sample data
before the first iteration.

2) Activity assignment using the 2001 Thane, India house-
hold travel survey statistics: Due to the unavailability of travel
survey data in Delhi at the time of this study, we devise a
discrete-time simulation to assign detailed activity schedules to
the Delhi synthetic population using the 2001 Thane household
travel survey statistics described by Nehra [36] and Banerjee
[3]. Thane is a city in the western state of Maharashtra, India.
A quick comparison based on census data [21] reveals the high
similarity between the two India cities regarding demographic
structure and religious/cultural habits, therefore we believe
Thane is a reasonable proxy for Delhi.

The 2001 Thane household travel survey is a trip-based
survey that collected travel data in the form of 24-hour trip
diaries from 14,428 respondents from 3,505 households in
the metropolitan region of Thane. Additionally, the survey
collected sociodemographic information from respondents and
their respective households. Literature on the Thane travel
survey describes travel data statistics in the form of empirical
frequency distributions of trip start times and trip durations of
adults in the surveyed sample population. Statistics of personal
and household trip rates are split by mode of transportation,
household size and individual worker status. The literature
also briefly describes trip frequency, activity characteristics,
and time use characteristics of students younger than 16,
students older than 15, and adults. Detailed trip chaining
analysis is also reported for commuters (adults reporting at
least one work-based trip). All trips reported in the survey
began at home and ended at home. Based on the Thane survey
statistics reported in [36] and [3], the activity assignment
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process stated in Algorithm 1 generates a sequence of activities
along with their start and end times for a normative 24-hour
day for each synthetic person in the population. Each set of
activity assignments for a synthetic person are independent of
the activity assignments to all other people in the synthetic
population.

For each person in the baseline population, the algorithm
first assigns an activity class to the synthetic individual depend-
ing on his/her demographics (age, gender, etc.). For adults, this
is achieved by sampling from the commuter status and demo-
graphic distribution of adults in the survey population reported
in [3]. The algorithm classifies synthetic adults as commuters
(adults reporting at least one work related trip), noncommuters
(mobile adults with no work related trips), or zero trip makers.
We further assume all adult noncommuters below the age of
23 to have school related activities and classify them as college
attendees. Since the literature reports commuter status statistics
only for adults, we make the following assumptions about
individuals aged 17 years or less, henceforth referred to as
kids. A kid under the age of 6 years is assigned the same
sequence of activities as an adult from the same household
having no work related or school related activities. Kids 6 to 10
years old are classified as primary school attendees, non school
goers that make at least one trip in a day, or zero trip makers.
Similarly, kids 11 to 17 years old are classified as secondary
school attendees, non school goers that make at least one trip
in a day, or zero trip makers. Those assumptions are made
based on observations from the real world for reasonability.
The distribution of primary and secondary school attendees,
non school going kids and kids with no trips in the synthetic
population is set to match the net enrollment ratios of primary
and secondary schools all over India from 2000 to 2007 [25]
and the fraction of zero trip makers in the age range 6 through
17 years in the Thane sample. The activity class assignment
process for both kids and adults is represented by function f1
in step 1 of the algorithm.

In step 2, the activity class of the synthetic individual is
then used to decide his/her activity sequence by sampling from
an empirical frequency distribution of reported activity se-
quences in the Thane survey. The Thane survey describes each
recorded trip by the origin and destination of the trip, namely,
home, work, shop, school (or college), social/recreational, and
all other location categories. These six location types along
with ‘travel’ define the seven distinct activities that constitute
an activity sequence. Individuals classified as zero trip makers
are assigned a home activity for all 24 hours of the day. More
than 99% of the students in the Thane survey report exactly
two trips in a day [3]: home to school and school to home.
As a result, we assign the activity sequence home – travel –
school (or college, in the case of adults) – travel – home to
all school or college attendees. The algorithm defines all non
working adults and non school going individuals reporting at
least one trip during the day and with no school or work related
activities as noncommuters. Close to all noncommuting adults
report exactly two trips in a day [3], of which approximately
half reported the activity sequence: home – travel – shop
– travel – home, a quarter reported the activity sequence:
home – travel – social/recreational – travel – home, and the
remainder reported the sequence: home – travel – other –
travel – home. Since the literature provides no information
on noncommuter kids in the survey, we assume that the above

frequency distribution of activity sequences of noncommuting
adults applies to noncommuter kids as well. Commuters report
eight distinct activity sequences, of which 97.34% report only
two trips in a day: home to work and work to home. The
activity sequence assignment process for both kids and adults
is represented by function f2 in step 2 of the algorithm.

Finally, in step 3 of the algorithm, a detailed activity
schedule with start and end times for each activity in the
sequence is generated by sampling from reported empirical
frequency distributions of trip start times and trip durations.
For each activity in the activity sequence, the algorithm sam-
ples from the relevant trip start time and trip duration empirical
distributions (represented by functions g and h, respectively,
in the algorithm) by conditioning on the time left till the day
ends. Since the literature does not report start time and the
trip duration distributions for school or college related trips,
we assign a fixed schedule to all primary school, secondary
school and college attending individuals.

Algorithm 1: Assign Activities
Input: baseline synthetic population file with age and

gender of each synthetic individual, input
random seed ξ

Output: activity file with start and end times of each
activity for each person in the synthetic
population

for each synthetic individual i do
1. [ξ, actCLASSi] = f1(agei, genderi, ξ) ;
/* assign activity class */
2. [ξ, actSEQi] = f2(actCLASSi, ξ) ;
/* assign activity sequence */
3. for each activity j in actSEQi do
/* generate detailed schedule */

[ξ, startT imei,j ] =
g(actSEQi.activityj , endT imei,j−1, ξ)
[ξ, endT imei,j ] =
h(actSEQi.activityj , startT imei,j , ξ)

Output:
base-synthetic-population-file-with-activity-schedule

3) Location creation, assignment and contact network es-
timation: Locations are where people conduct their activities.
They decide how people are distributed in the geographical
space of the city. The dataset of MapMyIndia [24] contains
the land use statistics in the NCT of Delhi, including the
coordinates for multiple types of real locations where people
work, study, shop and have entertainment respectively. We
extracted those coordinates and assigned people to those
locations for their daytime activities. Here, schools, colleges,
shopping centers and other places are also work places. For
example, schools are places students take classes, but they are
also work places for teachers.

Home locations are another type of location for people’s
home activities, which usually occur at night. We don’t have a
complete data set for people’s real home coordinates. However,
the city of Delhi is divided into 114 wards and we know the
number of households in each ward, which helps us precisely
distribute home addresses over the whole city. The locations of
those households within each ward are missing, and we choose
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to distribute them along streets etc. for two reasons. First,
residential area is typically close to some streets/lanes in the
real world. Second, the algorithm helps us avoid putting home
locations to a place or infrastructure geographically unsuitable
to live, such as lakes, rivers or railways.

Once people are assigned to locations, we will further
model their interactions within the locations via sublocations.
Sublocation is the division of people in a location wherein all
people in the same sublocation are in contact with each other.
Sublocation size is considered the largest possible sublocation
within a given area. Apparently, the sublocation size is an
important parameter characterizing the interactions of people
within a location. We will discuss this further in section V.

4) Contacts in residential area: The above methodology
has been applied to generate several other cities in the
world [5], [11]. However, as an unusual social-economic
phenomenon in Delhi, about 40% of the population do not have
a formal job and they stay around their residential area for the
whole day. The data is verified from two independent sources,
a nation-wide household survey conducted for India [14], and
the travel survey we retrieved from [36]. Reference [36] claims
that 40% of people do not travel, excluding 32% of commuters,
12% of Non-commuters, and 16% of school kids.

Therefore, it is nontrivial to model the interactions among
those people who stay home. We conducted a survey in Delhi
and several other cities nearby, collecting data regarding those
“at-home people” within a residential area. Since those people
claim they do not travel, we assume they are in contact only
with those people within their own community. Those contacts
are generated randomly following certain patterns retrieved
from the survey. Those new generated contacts form a contact
network we call the residential network. We then incorporate
the residential network into the Delhi network.

IV. ANALYSIS TO THE CONTACT STRUCTURE AND
OPTIMAL PUBLIC HEALTH POLICY IN DELHI

As introduced in the last section, we generate the Delhi net-
work for the city of Delhi based on the high resolution data and
novel methodologies. A high resolution social contact network
reserve effective contact structure in the population. It will
provide insights for policy makers in studying the epidemic
dynamics and evaluating effective public health policies. In the
following, we conduct a detailed analysis of the synthetic Delhi
population and the Delhi network. In using such a network
and the powerful epidemic simulation platform EpiFast [8],
we study various intervention strategies to contain the spread
of disease in the city.

A. Demographics and Daily Activity pattern of the synthetic
population

The individuals in the synthetic population are synthesized
by aggregating members from those representative household
samples based on the distributions of household level demo-
graphics. This is different from the coarse synthetic population,
where individuals are built directly based on individual level
demographic variables. We take the new method as an im-
provement because it incorporates more details and provides a
realistic household structure. However, we hope the synthetic
population is statistically similar to that of a real population
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Fig. 1: On the left side is the age-group counts for Delhi from India Census
2001 [21]. On the right side is the age-group counts of the synthetic population
based on micro sample data and household level statistics. Visually we see
that the synthetic population conforms to the real statistics quite well. Q-Q
plots in Figure 2 give us a clearer visualization on this.

in terms of individual level demographics. To verify, we plot
Figure 1 and 2, comparing the synthetic population in 16
different age groups to the census data on an individual level.
The observation with a Q-Q plot visualization in Figure 2a
shows that the synthetic population in each age group is very
close to the real statistics. The sex ratio of the synthetic
population deviates slightly for adults (refer to the deviation in
counts of unisex groups in Figure 2b). The results suggest that
both our model and the implementation are reasonable. Given
that the number of micro samples are small, the deviation is not
very large. The statistic deviation will diminish as we collect
more representative household samples.

Figure 3 compares the statistics of the synthetic activities
for all the people. We calculate for each hour in a typical day
the number of people taking a specific type of activity, at-
home, work, school, etc. The aggregated activities have a bias
towards “at-home”. For anytime, there are more people staying
at home than going out for other activities. This is due to the
special economic phenomenon in India where about 40% of
people do not have a job, as discussed earlier. Most people
work or study during the day, and almost all people stay at
home late at night. If the survey basis is accurate, this unique
cultural feature is quite different from a US city example.

B. Graph Structural Properties of the Contact Networks

A detailed profiling to the network structure is shown
in Figure 4. We plot the distribution of node degrees, clus-
tering coefficients and contact durations. To get a better
understanding of the epidemic implication of those measure-
ments, we compare these structural properties of the Delhi
network against those of the Los Angeles network in Table III.
Different from theoretic assumptions such as power law degree
distribution, the degree distribution of the Delhi network is
peaked around a degree of 20. The average degree is about 30,
which is a relative small number based on our other study of
US cities [11]. Similarly, compared to those of the Los Angeles
network, the average edge weight (representing accumulated
contact duration) is longer, the average clustering coefficient is
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Fig. 2: Q-Q plots of the age-group quantiles for the synthetic Delhi
population. In Figure 2a, the age-group quantiles of the synthetic population
conforms very well with the expected value based on the census data. If we
count for unisex only, Figure 2b plots the comparison for male age-group
counts; it deviates a little more but is still acceptable.
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Fig. 3: Activity statistics of the synthetic population. For each type of
activity, we calculate for each hour the number of people that conduct that
kind of activity. During the late night(hour 0 and 24), almost all people stay
at home.

significantly higher. Those structural features suggest residents
in Delhi tend to stay with a few fixed acquaintances for a long
time instead of meeting many unfamiliar people for a short
time. Such contact structure has implications to the pandemic
spreading in the population.

C. Epidemic Dynamics and Intervention Policies

Now we run epidemic simulations on the Delhi contact
network to study epidemic dynamics and the effects of public
health policies in the Delhi population. We assume the disease
to be simulated is H1N1 which occurred in a 2009 global
outbreak and is still prevalent in India [20]. To address the vari-
ations in different estimates of R0 of H1N1 in literatures [22],
[26], [42], we choose a set of values: 1.35, 1.40, 1.45, and 1.60.
We believe the range of these values covers most estimates for
R0 of H1N1 found in the literature.

1) Analysis of node vulnerability: Node vulnerability is
measured as the probability a node is infected during an
epidemic. We estimate it based on results of 10,000 random
simulation runs. The distribution of node vulnerability when
R0 = 1.35 is shown in Figure 5. The distributions for other
R0 are very similar to that of R0 = 1.35 (omitted here
to save space, refer to reference [41] for complete results),
indicating that the node vulnerability is more relevant to the
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Fig. 4: Network structure profiling for the Delhi Network. By comparing it
with several other city-scale networks (Table III), we can get a better sense
of the relation between the structure and the epidemic dynamics.

network structure than to the disease property. This implies the
following observations from the vulnerability distribution are
applicable to a multitude of diseases regardless of their R0.

The vulnerability distribution of the people varies from 0
to 1, biased towards the left side. Quite a few people have a
vulnerability close to 0. Compared to other populations (refer
to section VI), such a distribution suggests a contact network
resistant to disease spreading. And we believe it is highly
related to the fact that a large portion of people do not travel
a great deal in the city as shown in Figure 3.

2) Optimal intervention strategies during epidemic spread-
ing: Using a high resolution contact network modeled for
Delhi, we are able to get a good understanding for the
epidemics and effectiveness of different intervention policies.
We simulate four public health policies frequently applied in
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Network No. of nodes number of edges Avg. degree Avg. edge weight (minute) Avg. CC
the Delhi network 206,787,386 13,850,507 29.86 363 0.546

the Los Angeles network [11] 459,273,880 16,228,759 56.60 141 0.389

TABLE III: Average structure properties of several city-scale contact networks
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Fig. 6: Epidemics under various intervention strategies in the Delhi net-
work when R0 = 1.35, including a base case where no intervention is
conducted. Here we use the tuple (attack-rate, peak, peak-day) to characterize
epidemic dynamics. For Vaccination and Antiviral, we randomly choose 25%
of the population to apply corresponding pharmaceutical treats. School Closure
and Work Closure are applied for 3 weeks when 0.1% of the nodes in the city
get infected.

the real world, including pharmaceutical interventions (PI) and
non-pharmaceutical interventions (NPI). PI includes Antiviral
and Vaccination; NPI includes School Closure and Work Clo-
sure. The simulation results when R0 = 1.35 are presented
in Figure 6. The results when R0 is 1.40, 1.45 and 1.60
are omitted because they are all very similar to what we
show when R0 = 1.35. The complete results can be found
in reference [41]. The insensitivity to R0 here and in the
following chapters suggests that the ordering of the policy
effects remain the same regardless of the R0 value of a disease.

Vaccination has the strongest effect in containing the
disease spread. All the other policies, including Antiviral,
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Fig. 7: Epidemic curves show subpopulation epidemics in the Delhi net-
work when R0 = 1.35. The Delhi population is partitioned to four groups
based on age: preschool, school age, adult, and senior. Each dashed curve
shows the fraction of people in that subpopulation infected on each day in the
base case in Figure 6, where there is no intervention. The red curve shows
the fraction of people in the whole Delhi population infected on each day in
the same base case.

School Closure, and Work Closure, have lower effectiveness.
Vaccination is significantly better than other policies and seems
the best choice without considering other factors. Vaccines are
not always available, however, especially at the early stage
of an epidemic from an emerging disease. This was the case
for the 2009 H1N1 pandemic. Even if vaccines are available,
they may not be sufficient to provide mass vaccination. It is
meaningful to consider the other three intervention policies as
well.

School Closure and Antiviral have their pros and cons.
Antiviral will help reduce the attack rate more than a School
Closure, but a School Closure works better in reducing the
maximum number of cases on any day (peak), and in delaying
the occurrence of the peak. School Closure, however, is better
in all three parameters (attack rate, peak population, and peak
day) than Work Closure. By dissecting into the subpopulation
structure and comparing their epidemic dynamics, we could
gain insights on controlling the disease spreading. In Figure 7
we plot the epidemic curve, which is the fraction of people
infected on each day, for each of the four subpopulations
(preschool, school age, adult, and senior). As observed from
Figure 7, among all subpopulations, only school age has
an epidemic worse than the population average (red curve
in figure). Closing schools can avoid disease transmissions
between students within schools, which explains the high
effectiveness of School Closure.

V. SENSITIVITY TEST TO OUR SYNTHETIC NETWORK
MODEL OF THE DELHI NETWORK

Detailed and comprehensive data of a region is critical in
constructing a high resolution network. However, not all data

127127127

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 05:07:47 UTC from IEEE Xplore.  Restrictions apply. 



is available for us to prepare the Delhi network. We have
to make assumptions in our model when necessary data is
not retrieved yet or unlikely to be available. Two important
assumptions in our model, made based on educated guess, are
the sublocation size and the location assignment algorithm. As
introduced, people within a location are divided into connected
subgroups in a network view. Let sublocation size be the
largest subgroup size within a location; it characterizes the
internal structure of a location. We define for each type of
location an empirical value as their sublocation size. Please
note that sublocation size is region specific value and should
be adjusted based on local statistics when we model another
area. Also we apply the gravity model to assign locations
for activities. Based on observation in the real world [7], the
gravity model suggests that the distance between one’s home
and work place or shopping center etc. follows an exponential
distribution: f(x;λ) = λe−λx where 1

λ is the mean distance.

Divergence between our synthetic network and the real
network could occur due to such assumptions. To evaluate
the influence of such choice to the quality of the constructed
network, we conduct sensitivity tests to measure the divergence
in terms of epidemic output.

We choose the same experimental settings as those in
Section IV. Here we assume R0 = 1.35. We point out,
however, that the observations are similar for the sensitivity
experiments with R0 value being 1.40, 1.45, or 1.60.

A. Sensitivity to Sublocation Size

The sensitivity test results to various sublocation size are
shown in Figure 8. Obviously, varying the sublocation size
has a significant impact to either the disease spreading or the
intervention to the spreading because it changes the contact
density within locations. Second, changing the sublocation size
of some specific types of locations may change the topological
structure of the network, which may eventually change the
effectiveness of intervention policies. For example, in the
baseline network, School Closure is more effective in delaying
disease spreading comparing to Work Closure. For the network
constructed after we increase sublocation size of work places
(w+10 in figure), however, the effect of closing work places
is as significant as that of closing schools. This means that
the change of sublocation size has a fundamental impact to
the structure of the synthetic representation of the real contact
network, which produce non-negligible impact to the control
of disease spreading in the population. Therefore, choosing the
right sublocation size is essential in our network modeling.

B. Sensitivity to Location Switches

To test the second assumption we switch locations for two
randomly chosen people with the same type of activities. By
verifying the robustness of the results under location switching,
we can understand what the epidemic dynamics could be
for another possible location assignment algorithm. From the
simulation results, shown in Figure 9, we can hardly tell the
difference between all those location switching operations.
Obviously, the location assignment algorithm doesn’t change
the effective contact structure under the context of our model.
We conclude that in terms of epidemics, people’s interaction
pattern in a local place is more important than the location
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Fig. 8: Epidemics and policy efficacy in the Delhi network with various
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Fig. 9: Impact of location switches to the Delhi network under different
public health intervention policy (R0 = 1.35). Two people are selected
randomly to exchange their daytime locations (named one switch) only when
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switch” means work-places are switched randomly between workers. Other
legends is self-evident in the meaning. For each case, we conduct a large
number of switches to assure system convergence. The location switches in
all cases do not change the epidemic dynamics of the underlying networks
however.

distribution in the city globally, given that the population
density is unchanged.

VI. COMPARISON STUDY BETWEEN THE COARSE
NETWORK AND THE REFINED NETWORK

In our previous paper [11], we generated a network for
Delhi based on very limited data with a generic methodology.
In this paper, we construct a network with more detailed infor-
mation and new methodology. We call the former “the coarse
network” and the latter “the refined network” in this section.
The data sets used in generating the two Delhi networks are
listed in Table IV. The coarse network does not have micro
household samples so the accuracy of the household structure
of its synthetic population is not guaranteed. It does not have
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Fig. 10: The vulnerability histogram in the coarse network and the refined
network with H1N1 when R0=1.35. The histogram shows very different
structural properties for the two networks.

the exact location information of Delhi, so LandScan data is
used which contains only the population density distribution
over the region. More importantly, there were no activity
survey data for India when we created the coarse network,
only some aggregate statistics in the literature are available,
including average time for school activities [35], [38] and work
activities [30]. We compose simple yet reasonable activity
sequences and calibrate each activity’s duration based on the
statistics we collected. In summary, the refined network is
much more realistic in the sense of data input. By intuition,
more detailed data will make the constructed network more
realistic, and allow more precise analysis and prediction for
the epidemics in the Delhi population. To this end, we conduct
a brief comparison study regarding the contact structure and
epidemic dynamics of Delhi based on the two networks.

The network structure profiling for the two networks are
listed in Table III. Compared to the refined network, the coarse
network has a much higher degree (76.99 v.s. 29.86) and lower
edge weight (contact duration) on average. We deduce that
such difference makes diseases spread easier in the coarse
network1. Similarly, in regards of the clustering coefficient
distribution, the refined network has a higher average clustering
coefficient, which also helps hinder the disease spreading.

1) Epidemic Dynamics and Intervention Policies: We run
exactly the same simulations with the coarse network as we
do for the refined network in section IV. We listed the results
with R0 1.35 in Figure 10, 11 to compare against the refined
network. Similarly, the results with other R0 values are omitted
but they are also very similar to the case of R0 1.35 here.
Please refer to reference [41] for complete results.

The vulnerability distribution in Figure 10 reveals a clear
difference between the two networks. Distribution of the
refined network is generally flat, but that of the coarse net-
work changes up and down violently. Compared to the refined
network, the coarse network contains more high vulnerability
nodes (those above 0.8) and less low vulnerability nodes (those

1Let’s consider two simplified cases. Case 1, a seed node u has two contacts
with durations d1 and d2. Case 2, a seed node u has one contact with duration
(d1 + d2). The expected number of secondary infections in case 1 is (1 −
(1− τ)d1)+(1− (1− τ)d2); that in case 2 is 1− (1− τ)d1+d2, where τ is
the probability of disease transmission per unit of contact time. The expected
number is almost the same in two cases, except that in case 1 is larger by a
second-order difference: (1− (1− τ)d1) ∗ (1− (1− τ)d2).
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Fig. 11: Epidemics and policy efficacy in the coarse network and the
refined network under H1N1 when R0=1.35. The epidemic parameter and the
intervention strategy setups are same as the case in Figure 6. The two networks
show significantly different epidemic dynamics, despite the calibration of R0

to 1.35 for the two networks.

less than 0.4). This difference is consistent with their different
activity schedules. Nodes in the coarse network have a busier
schedule, so they are exposed to more people and become more
vulnerable. On the other hand, the refined network contains
40% at-home people and they account for the large low
vulnerability people.

The coarse network and the refined network differ a lot
in epidemic dynamics despite the R0 calibration, as shown in
Figure 11, where we use the tuple (attack-rate, peak, peak-day)
to characterize epidemic dynamics. For either the base case
without intervention, or the cases under various intervention
policy, the coarse network has much higher attack rate, higher
peak and earlier outbreak dates than the refined network,
conforming to our observation earlier.

Both networks indicate “Vaccination” is the most effective
intervention strategy in all candidates. Non-pharmaceutical
interventions such as school closure and work closure have
similar effects across the two networks. Nevertheless, we
can see that the disparate network precision may lead us to
draw different conclusions in selecting a right policy in some
scenarios. For example, the effects of two policies, Antiviral
and School Closure are very different in the coarse network and
the refined network. School Closure seems a better solution
to delay the disease outbreak than Antiviral based on the
network of the coarse network. However, the conclusion is
quite different if we are going to choose between the two
strategies based on the refined network.
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