
Information Flow Analysis for a Dynamically Typed Functional Language with
Staged Metaprogramming

Martin Lester
C.-H. Luke Ong

Department of Computer Science
University of Oxford

Oxford, UK
{martin.lester, luke.ong}@cs.ox.ac.uk

Max Schäfer
School of Computer Engineering

Nanyang Technological University
Singapore

schaefer@ntu.edu.sg

Abstract—Web applications written in JavaScript are regu-
larly used for dealing with sensitive or personal data. Conse-
quently, reasoning about their security properties has become
an important problem, which is made very difficult by the
highly dynamic nature of the language, particularly its support
for runtime code generation. As a first step towards dealing
with this, we propose to investigate security analyses for lan-
guages with more principled forms of dynamic code generation.
To this end, we present a static information flow analysis
for a dynamically typed functional language with prototype-
based inheritance and staged metaprogramming. We prove
its soundness, implement it and test it on various examples
designed to show its relevance to proving security properties,
such as noninterference, in JavaScript. To our knowledge, this
is the first fully static information flow analysis for a language
with staged metaprogramming, and the first formal soundness
proof of a CFA-based information flow analysis for a functional
programming language.

Keywords-noninterference; staged metaprogramming; CFA;
information flow; dynamically typed languages; JavaScript;
static analysis

I. INTRODUCTION

An information flow analysis determines which values in
a program can influence which parts of the result of the
program. Using an information flow analysis, we can, for
instance, prove that program inputs that are deemed high
security do not influence low security outputs; this important
security property is known as noninterference [1].

Early work on noninterference focused mainly on applica-
tions in a military or government setting, where there might
be strict rules about security clearance and classification of
documents. More recently, there has been increased interest
in information security (and hence its analysis) for Web
applications, particularly for Web 2.0 applications written
in JavaScript.

We have developed a static information flow analysis
for a dynamically typed, pure, functional language with
stage-based metaprogramming [2]; we call the language
SLamJS (Staged Lambda JS) because it exhibits a number
of JavaScript’s interesting features in an idealised, lambda
calculus-based setting [3]. The analysis is based on the idea

of extending a constraint-based formulation of the analysis
0CFA [4] with constraints to track information flow. We
believe that the idea could be extended to other CFA-style
analyses (such as CFA2 [5]) for improved precision. We have
formally proved the correctness of our analysis; we have also
implemented it and tested it on a number of examples.

Supporting material, which includes mechanisations of
our key results in the theorem prover Coq and an imple-
mentation of our analysis in OCaml, is available online at
http://mjolnir.cs.ox.ac.uk/web/slamjs/.

The structure of the remainder of the paper is as fol-
lows. In Section II, we present SLamJS: we begin with an
explanation of why we believe our chosen combination of
language features is relevant to information security in Web
applications. Next, we present the semantics of SLamJS and
explain, using an augmented semantics, what information
flow means in this language. Section III explains how the
analysis works and how we proved its correctness. We
discuss our implementation and some examples on which
we have tested the analysis in Section IV. In Section V,
we examine the gap between our work and a practical
analysis for real-world Web applications. We also discuss
other research on analysis of information flow and staged
metaprogramming, before concluding in Section VI.

II. THE LANGUAGE SLAMJS
A. Motivation

The new arena of Web applications presents many inter-
esting challenges for information flow analysis. While there
is an extensive body of research on information flow in stati-
cally typed languages [6], there is little tackling dynamically
typed languages. The semantics of JavaScript are complex
and poorly understood [7], which makes any formal analysis
difficult. Web applications frequently comprise code from
multiple sources (including libraries and adverts), written
by multiple authors in an ad-hoc style. They are often
interactive (so cannot be viewed as a single execution with
inputs and outputs) and it might not be known in advance
which code will be loaded.

2013 IEEE 26th Computer Security Foundations Symposium

© 2013, Martin Lester. Under license to IEEE.

DOI 10.1109/CSF.2013.21

209

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

The eval construct of JavaScript, which allows execution
of arbitrary code strings, is particularly troublesome, to
the extent that many analyses just ignore it. However, a
recent survey shows that real JavaScript code uses eval
extensively [8]. Its uses vary widely from straightforward
(loading data via JSON) through ill-informed (accessing
fields of an object without using array notation) to sub-
tle (changing scoping behaviour) and complex (emulating
higher order functions). We think that it is important to
develop techniques for analysing this notorious construct.

So that we might reasonably work formally, we have
developed a simplified language called SLamJS. The lan-
guage is heavily influenced by λJS, a “core calculus” for
JavaScript [3]. Like JavaScript, SLamJS is dynamically
typed and features first-class functions and objects with
prototype-based inheritance. Like JavaScript, it allows code
to be constructed, passed around and executed at run-
time. Unlike JavaScript, this is achieved using Lisp-style
code quotations rather than code strings [9]. Recent work
indicates that real-world usage of eval is often of a form
that could be expressed using code quotations [10]. Thus
analysis of programs with executable code quotations is an
important step towards analysis of programs with executable
code strings.

B. Syntax and Semantics of SLamJS

1) Syntax: SLamJS is a functional language with atomic
constants, records, branching, first-class functions and staged
metaprogramming; the syntax is given in Fig. 1.

The language has five types of atomic constant: booleans,
strings, numbers and two special values (undef and null)
to indicate undefined or null values. A record {s : v} is
a finite mapping from fields (named by strings) to values.
Fields can be read (e[e]), updated or replaced (e[e] = e) and
deleted (del e[e]). Records support prototype-based lookup:
a read from an undefined field of a record is redirected to
the corresponding field on the record held in its " proto "
field, if there is one.

Branching on boolean values is enabled by the
if(e){e} else{e} construct. Functions can be defined
(fun(x){e}) and applied (e(e)).

Staged metaprogramming is supported through use of the
box, unbox and run constructs in the style of Choi et al. [9].
box e1 turns e1 into a “quoted” or “boxed” code value, which
can be executed using run. The use of unbox e2 within a
boxed expression e1 forces evaluation of e2 to a boxed value,
which is spliced into e1 before it becomes a boxed value.

Expressions of the form (e, ρ) and run e in ρ only arise as
intermediate terms during execution: the former represents
an explicit substitution [2], [11] where all free variables of
the expression e are given their value by the environment
ρ; the latter represents an expression to be unboxed and
evaluated in environment ρ.

Values exist at all stages. Constants, records with constant
fields and constant code quotations are values vn at every
stage n; closures are only values v0 at stage zero. Other
constructs may be values at higher stages (vn+1, vn+2 for
n ≥ 0), provided that their subexpressions are values at the
appropriate stage. We generally omit the stage superscript
for values of stage zero (writing v instead of v0).

2) Semantics: We give a small-step operational seman-
tics with evaluation contexts and explicit substitutions for
SLamJS. There are two reduction relations,

n
99K and n−→,

each annotated with a level n. The former is for top-level
reduction, while the latter is for evaluation under a context.

Evaluation contexts In a staged setting, evaluation con-
texts may straddle stage boundaries, hence they are anno-
tated with stage subscripts and superscripts. A context Cmn
denotes a hole at stage n inside an expression at stage m. For
a context Cmn and an expression e, we denote by Cmn 〈e〉 the
expression obtained by plugging e into the hole contained in
Cmn . The grammar of some key evaluation contexts is given
in Fig. 2; full details are in Appendix A.

Reduction rules Top-level reduction rules fall into two cat-
egories: environment propagation rules for pushing explicit
substitutions inwards (Fig. 3), and proper reduction rules
(Fig. 4). The former are fairly straightforward, so full details
are left for Appendix A. Note that explicit substitutions only
apply at stage zero, hence (x, ρ) evaluates to x at level
n+ 1 without looking up x in ρ. Furthermore, observe that
(run e, ρ) pushes its environment into e, allowing boxed
code values to capture variables from outside.

The proper reduction rules are also quite standard [9],
except for the field access rules, which are designed to mimic
JavaScript semantics as far as possible.

In particular, every record is expected to have a
" proto " field, which holds either the value null or
another record, giving rise to a chain of prototype objects
that ultimately ends in null. Reading a record field follows
this chain by rule (READ2), until the field is either found
(READ1), or the top of the chain is reached, where (READ3)
yields undef. Note that the reduction

0
99K can get stuck, for

example, when applying a non-function, or branching on a
non-boolean.

There is only a single rule for m−→:

Cmn 〈e〉
m−→ Cmn 〈e′〉 if e

n
99K e′

We write ◊−→ for the union over all m of m−→, and ◊−→∗ for
its reflexive, transitive closure.

Example 1: Here is an evaluation trace of a simple if
statement. We use ε to stand for the empty environment.

(if(true){false} else{1}, ε)
0−→ if((true, ε)){(false, ε)} else{(1, ε)}
0−→ if(true){(false, ε)} else{(1, ε)}
0−→ (false, ε) 0−→ false

210

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

Booleans b ::= true | false
Strings s ∈ String
Numbers n ∈ Number
Names x ∈ Name
Constants k ::= undef | null | b | s | n
Expressions e ::= k | {s : e} | x | fun(x){e} | e(e) | box e | unbox e | run e

| if(e){e} else{e} | e[e] | e[e] = e | del e[e] | (e, ρ) | run e in ρ
Values. . . v, v0 ::= (fun(x){e}, ρ) . . . at stage 0 only
. . . at any stage vn ::= k | {s : vn} | (box vn+1)
. . . at higher vn+1 ::= x | (fun(x){vn+1}) | (vn+1(vn+1)) | (run vn+1)

stages only | (if(vn+1){vn+1} else{vn+1})
| (vn+1[vn+1]) | (vn+1[vn+1] = vn+1) | (del vn+1[vn+1])

vn+2 ::= (unbox vn+1)
Environments ρ ∈ Name fin−→ v0

Figure 1. Syntax of SLamJS

Cmn ::= [] ∈ Cnn
| (fun(x){Cm+1

n }) ∈ Cm+1
n | (if(Cmn){e} else{e}) ∈ Cmn

| (Cmn (e)) ∈ Cmn | (if(vm+1){Cm+1
n } else{e}) ∈ Cm+1

n

| (vm(Cmn)) ∈ Cmn | (if(vm+1){vm+1} else{Cm+1
n }) ∈ Cm+1

n

| (unbox Cmn) ∈ Cm+1
n | (box Cm+1

n) ∈ Cmn
| (run Cmn in ρ) ∈ Cmn | (run Cmn) ∈ Cmn

Figure 2. Selected evaluation contexts

(k, ρ)
n
99K k (x, ρ)

n+1
99K x

(fun(x){e}, ρ)
n+1
99K (fun(x){(e, ρ)}) (e1(e2), ρ)

n
99K ((e1, ρ)((e2, ρ)))

(box e, ρ)
n
99K (box (e, ρ)) (unbox e, ρ)

n
99K (unbox (e, ρ))

(run e, ρ)
0
99K (run (e, ρ) in ρ) (run e, ρ)

n+1
99K (run (e, ρ))

(if(e1){e2} else{e3}, ρ)
n
99K (if((e1, ρ)){(e2, ρ)} else{(e3, ρ)})

Figure 3. Selected environment propagation rules

(LOOKUP) (x, ρ)
0
99K ρ(x)

(APPLY) ((fun(x){e}, ρ)(v))
0
99K (e, ρ[x 7→ v])

(UNBOX) (unbox (box v1))
1
99K (v1)

(RUN) (run (box v1) in ρ)
0
99K (v1, ρ)

(IFTRUE) (if(true){e1} else{e2})
0
99K e1

(IFFALSE) (if(false){e1} else{e2})
0
99K e2

(READ1) ({s : v, si : vi, s : v′}[si])
0
99K vi

(READ2) ({s : v," proto " : {s : v′}, s : v′′}[sx])
0
99K ({s : v′}[sx]) if sx 6∈ s ∪ s′′

(READ3) ({s : v," proto " : null, s : v′′}[sx])
0
99K undef if sx 6∈ s ∪ s′′

(WRITE1) ({s : v, si : vi, s : v′}[si] = v′i)
0
99K {s : v, si : v′i, s : v′}

(WRITE2) ({s : v}[sx] = vx)
0
99K {s : v, sx : vx} if sx 6∈ s

(DEL1) (del {s : v, si : vi, s : v′}[si])
0
99K {s : v, s : v′}

(DEL2) (del {s : v}[sx])
0
99K {s : v} if sx 6∈ s

Figure 4. Proper reduction rules

211

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

(LIFT-APP) ((m : e), ρ)(v)
0
99K (m : ((e, ρ)(v)))

(LIFT-IF) (if(m : v){e1} else{e2})
0
99K (m : (if(v){e1} else{e2}))

(LIFT-UNBOX) unbox (m : v)
1
99K (m : (unbox v))

(LIFT-RUNIN) run (m : v) in ρ
0
99K (m : (run v in ρ))

(LIFT-READSEL) (v1[m : v2])
0
99K (m : (v1[v2]))

(LIFT-READREC) ((m : v1)[v2])
0
99K (m : (v1[v2]))

(LIFT-WRITESEL) (v1[m : v2] = v3)
0
99K (m : (v1[v2] = v3))

(LIFT-WRITEREC) ((m : v1)[v2] = v3)
0
99K (m : (v1[v2] = v3))

(LIFT-DELSEL) (del v1[m : v2])
0
99K (m : (del v1[v2]))

(LIFT-DELREC) (del (m : v1)[v2])
0
99K (m : (del v1[v2]))

Figure 5. Semantic rules for lifts

Example 2: The staging constructs in SLamJS allow frag-
ments of code to be treated as values and spliced together
or evaluated at run-time, as shown in this evaluation trace.

(run (box (if(unbox (box (true))){false} else{1})), ε)
0−→ run (box (if(unbox (box (true))){false}

else{1}), ε) in ε
0−→∗ run (box (if(unbox (box (true))){(false, ε)}

else{(1, ε)})) in ε
0−→ run (box (if(true){(false, ε)} else{(1, ε)})) in ε
0−→∗ run (box (if(true){false} else{1})) in ε
0−→ (if(true){false} else{1}, ε)
0−→ if(true, ε){(false, ε)} else{(1, ε)}
0−→ if(true){(false, ε)} else{(1, ε)} 0−→ (false, ε) 0−→ false

Example 3: Our staging constructs allow variables to be
captured by code values originating outside their scope.
Here, the code value box y is outside the scope of y, but
captures it during evaluation.

(((fun(x){(fun(y){run x})})(box y))(true), ε)
0−→∗(fun(y){run x}, 〈x 7→box y〉)(true)
0−→ (run x, 〈y 7→ true, x 7→box y〉)
0−→ run (x, 〈y 7→ true, x 7→box y〉) in 〈y 7→ true, x 7→box y〉
0−→ run (box y) in 〈y 7→ true, x 7→box y〉
0−→ (y, 〈y 7→ true, x 7→box y〉)
0−→ true

This useful feature is vital for modelling certain uses of eval;
the above code corresponds to this JavaScript:
((function (x) {return function (y) {

return (eval(x));}})("y"))(true);
However, the power comes at a price: the usual alpha equiv-
alence property of λ-calculus does not hold in SLamJS [2],
which makes reasoning about programs harder.

C. Augmented Semantics of SLamJS

The result of a program can depend on its component
values in essentially two different ways. Consider pro-
grams operating on two variables l and h. The program
(if(l){h} else{1}) may evaluate to the value of h (if l is
true); we say that there is a direct flow from h to the
result. Conversely, the program (if(h){true} else{1}) cannot
evaluate to h. However, the result of evaluation tells us
whether h was true or false because h influences the control
flow of the program; there is an indirect flow from h to the
result of the program.

In order to track the dependency of a result on its
component subexpressions, we augment the language with
explicit dependency markers [12], [13]. We also introduce
new rules for lifting markers into their parent expressions
to avoid losing information about dependencies. The aug-
mented semantics is not intended for use in the execution
of programs; rather, we use it for analysing and reasoning
about dependencies in the original language. We begin by
adding markers to the syntax:

Markers m ∈ Marker
Expressions e ::= . . . | (m : e)
Values vn ::= . . . | (m : vn)

We extend contexts to allow evaluation within a marked
expression:

Cmn ::= . . . | (m : Cmn) ∈ Cmn

We allow propagation of environments within marked ex-
pressions:

(m : e, ρ)
n
99K (m : (e, ρ))

In Fig. 5 we introduce lifts to maintain a record of indirect
flows. Note there is no need for a lift rule on the right of an
assignment (i.e., v1[v2] = (m : v3)

0
99K (m : v1[v2] = v3)),

since the flow from v3 is direct.

212

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

Example 4: Recall Example 1. Suppose we add markers
to each of the components of the if. The evaluation trace
now becomes:

(if((H : true)){(L : false)} else{(I : 1)}, ε)
0−→∗ if((H : true)){((L : false), ε)} else{((I : 1), ε)}
0−→ (H : (if(true){((L : false), ε)} else{((I : 1), ε)}))
0−→ (H : ((L : false), ε))
0−→∗ (H : (L : false))

Note how the markers H and L in the result indicate that it
depends on the marked values (H : true) and (L : false).

Example 5: Here is an example of marked evaluation
with functions:

(((fun(x){I : (fun(y){x})})(H : 1))(L : 2), ε) 0−→∗(I : (H : 1))

Observe that the result depends on I because the function
(I : (fun(y){x})})) was used to compute it, but not on L, as
(L : 2) is discarded by that function.

Simulation: Consider a function unmark, defined in the
obvious way, which strips an expression of all markers.
Clearly if unmark(e1) = f1

n−→ f2, then for some e2 such
that e1

n−→∗e2, we have unmark(e2) = f2.

III. INFORMATION FLOW ANALYSIS FOR SLAMJS

A. Overview

Before we can define an information flow analysis, we
need to define what information flow is. Following Pottier
and Conchon [12], we use the idea that if information does
not flow from a marked expression into a value resulting
from evaluation, then erasing that marked expression or
replacing it with a dummy value should not affect the result
of evaluation. (We use only their proof technique; their type-
based analysis is not applicable to our language.) We begin
in Section III-B by defining erasure and establishing some
results about its behaviour.

Our information flow analysis is built on top of a 0CFA-
style analysis capable of handling our staging constructs.
Two variants of such an analysis are explained in Sec-
tion III-C; mechanised correctness proofs in Coq are avail-
able online.

In Section III-D, we present the information flow analysis
itself. A key idea in CFA is that control flow influences data
flow and vice versa. Information flow depends on control
and data flow, but the reverse is not true. Therefore it is
possible to treat information flow analysis as an addition
to CFA, rather than a completely new combined analysis.
We have two versions of the CFA, each of which yields an
information flow analysis. We sketch a correctness proof of
the simpler analysis; complete mechanised proofs of both
are available online.

Finally, in Section III-E, we prove soundness of the
information flow analysis. We also discuss its relationship
with noninterference.

B. Erasure and Stability

1) Erasure and Prefixes: We extend the language with a
“hole” that behaves like an unbound variable:

Expressions e ::= . . . |
Values vn ::= . . . |

(, ρ)
n
99K

Now for M ⊆ Marker, define the M -erasure of e, written
becM , to be: e with any subexpression (m : e′) where m /∈
M replaced by . A full definition is in Appendix A.

2) Prefixing and Monotonicity: We say that e1 is a prefix
of e2 or write e1 4 e2 if replacing some subexpressions of
e2 with gives e1.

Evaluation is monotonic with respect to prefixing: if e1 4
e2 and e1

◊−→∗f , where f contains no , then e2
◊−→∗f .

Lemma 1 (Step Stability): If e1
n
99K e2, then either

be1cM
n
99K be2cM or the reduction rule applied to derive

this is a lift (LIFT-*) of a marker m /∈M .
Proof: By induction over the rules defining

n
99K.

Theorem 1 (Stability): Consider an expression e1 (which
may use) and a -free expression e2 such that e1

◊−→∗e2.
Then for every M ⊆ Marker such that be2cM = e2, it
follows that be1cM

◊−→∗be2cM .
Proof: Consider any e2 and M with be2cM = e2. Aim

to prove, for any e1 with e1
◊−→∗e2, that be1cM

◊−→∗e2. Argue
by induction over the length k of derivations of e1

◊−→∗e2.
Base case: k = 0. So e1 = e2. We have be2cM = e2, so

trivially be1cM = e2.
Inductive step: k = k′ + 1. Given e1

n−→ e
◊−→k′

e2, aim
to prove be1cM

◊−→∗e2. Assume by the induction hypothesis
that becM

◊−→k′
e2. Let e1 = Cmn 〈f1〉 and e = Cmn 〈f〉 with

f1
n
99K f . Case split on if f1

n
99K f is a lift of a marker

m /∈M .
If it is such a lift, then let f = (m : f ′). Now bfcM = ,

so bfcM 4 bf1cM . Thus bCmn 〈f〉cM 4 bCmn 〈f1〉cM ; that
is, becM 4 be1cM . We already have (from the induction
hypothesis) that becM

◊−→k′
e2. Now, applying Monotonicity,

we get be1cM
◊−→∗e2.

Otherwise, apply the Step Stability Lemma to get
bf1cM

n
99K bfcM . It follows that bCmn 〈f1〉cM

n−→
bCmn 〈f〉cM ; that is, be1cM

n−→ becM . Using the induction
hypothesis gives be1cM

n−→ becM
◊−→k′

e2, as required.
Example 6: Recall that in Example 5, the result depended

on H and I, but not L. Applying b−c{H,I} and evaluating the
initial expression gives:

(((fun(x){I : (fun(y){x})})(H : 1))(), ε) 0−→∗(I : (H : 1))

That is, the result of evaluation is unchanged.

213

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

C. 0CFA for SLamJS

We use a context-insensitive, flow-insensitive control flow
analysis (0CFA [4]) to approximate statically the set of
values to which individual expressions in a program may
evaluate at runtime.

As far as 0CFA is concerned, the only non-standard
feature of SLamJS is its staging constructs. Roughly speak-
ing, box and unbox/run act like function abstraction and
application, except that they use a dynamic (instead of static)
scoping discipline.1

We present two variants of 0CFA for SLamJS: a simple,
but somewhat imprecise formulation that does not distin-
guish like-named variables bound by different abstractions,
and a more complicated one that does.

Simple Analysis: Following Nielson, Nielson and Han-
kin [14], we formalise our analysis by means of an ac-
ceptability judgement of the form Γ, % |= e, where Γ is
an abstract cache associating sets of abstract values with
labelled program points, and % is an abstract environment
mapping local variables and record fields to sets of abstract
values. Intuitively, the purpose of this judgement is to ensure
that Γ(`) soundly over-approximates all possible values to
which the expression at program point ` can evaluate, and
% does the same for variables and record fields.

More precisely, we assume that all expressions in the
program are labelled with labels drawn from a set Label. An
abstract cache is a mapping Label→ P(AbsVal) associating
a set of abstract values with every program point; similarly,
an abstract environment % : AbsVar → P(AbsVal) maps
abstract variables to sets of abstract values, where an abstract
variable is either a simple name x (representing a function
parameter), or a field name of the form `.p, where ` is a
label representing a record, and p is the name of a field of
that record.

Our domain of abstract values (Fig. 6) is mostly standard,
with, e.g., an abstract value NULL to represent the concrete
null value, an abstract NUM value representing any number,
and abstract values FUN(x, e), BOX(e) and REC(`) represent-
ing, respectively, a function value, a quoted piece of code,
and a record allocated at program point `. For an abstract
environment % and a label ` we define proto(`)% to be the
smallest set P ⊆ Label such that ` ∈ P and for every p ∈ P
and REC(`′) ∈ %(p." proto ") also `′ ∈ P .

The acceptability judgement is now defined using syntax-
directed rules, some of which are shown in Fig. 7 (the re-
maining rules, which are standard, are given in Appendix A
of the extended version of this paper [15]).

We write t` to represent an expression of the syntactic
form t, labelled with `. Thus, k` means an expression
consisting of a literal k labelled `, and the first rule simply

1This intuition is made more precise in Choi et al.’s work on static
analysis of staged programs [9], where staging constructs are translated
into function abstraction and application; we prefer to work directly on the
staged language for simplicity.

says that in order for Γ and % to constitute an acceptable
analysis of k`, Γ(`) must contain the abstract value dke
representing k. Similarly, the second rule requires Γ and % to
be consistent in the abstract values they assign to variables
and references to them. The rules for dealing with function
abstractions and records are standard and so are elided here
for brevity.

The rule for box e requires Γ and % to be an acceptable
analysis of the single sub-expression e, and for Γ(`) to
include an abstract value ν approximating box e, which is
written as Γ, % |= ν ≈ box e. This judgement holds if
ν = BOX(e), but we must be slightly more flexible: during
evaluation, unboxing may splice new code fragments into
e, changing its syntactic shape to some new expression e′.
In order for the flow analysis to be effectively computable,
we want the set of abstract values to be finite, so we
cannot expect every such BOX(e′) to be part of our abstract
domain. Instead, we close the approximation judgement
under reduction, that is, if Γ, % |= ν ≈ t and t` n−→ t′`

′
, then

also Γ, % |= ν ≈ t′; the full definition of the approximation
judgement appears in Fig. 8.

The rule for unbox e is surprisingly simple: all that is
required is that for any abstract value BOX(e′) that the
analysis thinks can flow into lbl(e) (i.e., the label of ex-
pression e) every abstract value flowing into its body e′ also
flows into the unboxing expression. Note that this models
the name capture associated with dynamic scoping, since
our abstract environment % does not distinguish between
different variables of the same name. The rule for run is
the same as for unbox.

Finally, we show the rule for if, which is standard: any
abstract value that either of the branches can evaluate to is
also a possible result of the entire if expression.

To show this acceptability judgement makes sense, we
prove its coherence with evaluation:

Theorem 2 (CFA Coherence): If Γ, % |= e and e
n−→ e′,

then Γ, % |= e′.
The proof of this theorem is fairly technical and is elided

here. A full formalisation in Coq is available online in our
supporting material.

Owing to its syntax-directed nature, the definition of the
acceptability relation can quite easily be recast as constraint
rules; by generating and solving all constraints for a given
program, an acceptable flow analysis can be derived.

Note that, while there may be infinitely many abstract
values of the form BOX(e) and FUN(e) that are relevant
to a particular program, the closure of the approximation
judgement under reduction means that the analysis need
only consider those corresponding to subexpressions e
of the original program, not those that may arise during
execution. That is, the analysis need only solve a finite set
of constraints over a finite set of abstract values and a finite
set of labels and abstract variables, so it can be guaranteed
to terminate.

214

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

Abstract values ν ∈ AbsVal ::= NULL | UNDEF | BOOL | NUM | STR
| FUN(x, e) | BOX(e) | REC(`)

Abstract variables ξ ∈ AbsVar ::= x | `.p
Abstract caches Γ : Label→ P(AbsVal)
Abstract environments % : AbsVar→ P(AbsVal)

Figure 6. Abstract domains

Γ, % |= k` if dke ∈ Γ(`)
Γ, % |= x` if %(x) ⊆ Γ(`)
Γ, % |= (box e)` if Γ, % |= e

and ∃ν ∈ Γ(`).Γ, % |= ν ≈ box e
Γ, % |= (unbox e)` if Γ, % |= e

and ∀BOX(e′) ∈ Γ(lbl(e)).Γ(lbl(e′)) ⊆ Γ(`)
Γ, % |= (if(e1){e2} else{e3})` if Γ, % |= e1 ∧ Γ, % |= e2 ∧ Γ, % |= e3

and Γ(lbl(e2)) ⊆ Γ(`) ∧ Γ(lbl(e3)) ⊆ Γ(`)

Figure 7. Some rules for the 0CFA acceptability judgement

Γ, % |= dke ≈ k for any literal k
Γ, % |= FUN(x, e) ≈ fun(x){e}
Γ, % |= BOX(e) ≈ box e

Γ, % |= REC(`′) ≈ {s : t`} if ∀i.∃νi ∈ %(`′.si).Γ, % |= νi ≈ ti
Γ, % |= ν ≈ t′ if Γ, % |= ν ≈ t ∧ t` n−→ t′`

Γ, % |= ν ≈ (t, ρ) if Γ, % |= ν ≈ t ∧ Γ, % |= ρ

For a literal k, let dke be its abstract value:
dnulle = NULL
dundefe = UNDEF
dbe = BOOL for boolean b
dne = NUM for number n
dse = STR for string s

Figure 8. The approximation judgement Γ, % |= ν ≈ t and the abstract value operation dke

Example 7: Recall again Example 5. Our implementation
of the analysis labels the expression as follows:

(((fun(x){(I : (fun(y){x0})1)2})3(H : 14)5)6(L : 27)8)9

By generating and solving constraints it gives the following
solution for Γ:

0 7→{NUM} 1 7→{FUN(y, (x)0)} 2 7→{FUN(y, (x)0)}
3 7→{FUN(x, ((I : (fun(y){(x)0})1)2)}4 7→{NUM}
5 7→{NUM} 6 7→{FUN(y, (x)0)} 7 7→{NUM}
8 7→{NUM} 9 7→{NUM}

while % = {x 7→ {NUM}, y 7→ {NUM}}. As expected, the
result of evaluation (labelled 9) is a number.

Improved Analysis: The analysis presented so far is not
very precise, since abstract environments do not distinguish
identically named parameters of different functions. Ordi-
narily, this is not a problem, as one can rename them apart,
but this is not possible for SLamJS, which does not enjoy
alpha conversion.

To restore analysis precision in the absence of alpha
conversion, we introduce an abstract context Ξ that keeps
track of name bindings. In a single-staged language, such
an abstract context would simply map a name x to the
innermost enclosing function abstraction whose parameter
is x. In a multi-staged setting, we need to distinguish
between bindings at different stages, hence the abstract

context maintains one such mapping per stage. Thus Ξ is
a stack of frames, one for each stage; a frame maps each
variable name to the label of its binding context.

For instance, the two uses of x in the SLamJS expression
fun(x){box(fun(x){(unboxx)(x)})} are at different stages,
and hence bound by different abstractions: the first x by the
outer abstraction, the second by the inner one.

The acceptability judgement for the improved analysis is
now of the form Γ, %,Ξ |= e, and the derivation rules include
additional bookkeeping to adjust Ξ when analysing subex-
pressions at different stages. While conceptually simple, this
change somewhat complicates the formalism, so we do not
present it in detail here; a full formalisation is available in
the supporting material.

D. Information Flow for SLamJS

Assume we have already analysed a program using 0CFA
and found environments Γ, % that over-approximate the val-
ues flowing to each labelled expression. We use information
about which functions and boxed values may occur to assist
in determining what direct and indirect flows occur between
labels of the expression.

By recursing over the structure of an expression, we
generate constraints on a relation ;:

; : (Label]Name]Marker)→ (Label]Name]Marker)

215

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

Expression e Subexpressions Direct Flows Indirect Flows
|=IF e holds: if: and: and:
k` − − −
x` − x ` −
fun(x){t`1}`2 |=IF t

`1 − −
(t`11 (t`22))` |=IF t

`1
1 ∧ |=IF t

`2
2 ∀FUN(x, t`33) ∈ Γ(`1) .`2 x ∧ `3 ` `1 # `

(if(t`11){t`22 } else{t`33 })`4
∧3
i=1 |=IF t

`i
i `2 `4 ∧ `3 `4 `1 # `4

(t1, ρ)`1 |=IF t1
`1 ∧

∧
(x 7→t`)∈ρ |=IF t

` − −
(m : t`1)`2 |=IF t

`1 `1 `2 ∧m `2 −
(t`11 [t`22])` |=IF t

`1
1 ∧ |=IF t

`2
2 ∀REC(`′) ∈ Γ(`1) .∀`′′ ∈ proto(`′)% . `1 # `

∀s .`′′.s ` `2 # `

{s1 : t`11 , . . . , sn : t`nn }`
∧n
i=1 |=IF en ∃REC(`′) ∈ Γ(`) .∀i .`i `′.si −

(t`11 [t`22] = t`33)`
∧3
i=1 |=IF t

`i
i `1 ` ∧ ∀REC(`′) ∈ Γ(`1) .∀s .`3 `′.s `2 # `

(del t`11 [t`22])` |=IF t
`1
1 ∧ |=IF t

`2
2 `1 ` `2 # `

(box t`1)`2 |=IF t
`1 − −

(unbox t`1)`2 |=IF t
`1 ∀BOX(t′`

′
) ∈ Γ(`1) .`′ `2 `1 # `2

(run t`1)`2 |=IF t
`1 ∀BOX(t′`

′
) ∈ Γ(`1) .`′ `2 `1 # `2

(run t`1 in ρ)`2 |=IF t
`1∧ |=IF ρ ∀BOX(t′`

′
) ∈ Γ(`1) .`′ `2 `1 # `2

Figure 9. Rules for generating information flow constraints

As an expression, the labels, variable names and markers
occurring within an expression and the abstract values in the
results of 0CFA for an expression are all finite, the process
will terminate.

We express constraints between labels, variable names and
markers as either direct flows (x y =⇒ x ; y) or
indirect flows (x # y =⇒ x ; y). (The distinction
between direct and indirect is for clarity of exposition; there
is no practical difference between them with regard to the
resulting analysis.)

Note that if instead we interpret x y and x # y as
(elements of) relations and define ; = ∪#, then ;
satisfies the constraints.

We say that Γ, %,;|=IF e if Γ, % |= e and the conditions
in Fig. 9 hold. As Γ, % and ; are constant throughout the
definition, we abbreviate Γ, %,;|=IF e to |=IF e for clarity.

We now prove the coherence of our information flow
analysis with evaluation. Like the corresponding proof for
our 0CFA, this is lengthy and technical, so we only sketch
it here. A mechanisation of the proof is available online.

Lemma 2 (Reduction Preserves Satisfaction): If we have
Γ, %,;|=IF t`11 and also t`11

n
99K t`22 , then Γ, %,;|=IF t`22 .

Furthermore, `2 ;∗ `1.
Proof: By case analysis on the rules defining

n
99K.

Theorem 3 (Information Flow Coherence): If we have
Γ, %,;|=IF e1 and also e1

m−→ e2, then Γ, %,;|=IF e2.
Furthermore, lbl(e2) ;∗ lbl(e1).

Proof: Sketch: Unfolding the definition of m−→, we let

4 5 x 0 7 8 y

H I 3 # 6 # 9 L

1 2

Figure 10. Information flow constraints for Example 5

e1 = Cmn 〈t
`1
1 〉 and e2 = Cmn 〈t

`2
2 〉 with t`11

n
99K t`22 .

Observe that Γ, %,;|=IF t`11 and hence, applying
Lemma 2, Γ, %,;|=IF t

`2
2 , with `2 ;∗ `1. Observe further

that constraints generated by Cmn and the contents of its
hole interact only at that hole, labelled `2 or `1. Thus, using
`2 ;∗ `1, they must be satisfied in the conclusion, giving
Γ, % ;|=IF C

m
n 〈t

`2
2 〉 as required.

The claim that lbl(e2) ;∗ lbl(e1) is trivial for all non-
empty contexts, as lbl(e2) = lbl(e1). For the empty context,
it follows directly from the similar claim in Lemma 2.

Note that, while the 0CFA and information flow analysis
phases are conceptually distinct, correctness of the latter
depends on correctness of the former. Therefore, for the
sake of simplicity, our mechanisation of the proof concerns a
combined formulation of the analyses in which both phases
are performed simultaneously.

Example 8: Recall once more Example 5. Using the
results of 0CFA, our implementation generates the relations
 and # as depicted in Fig. 10.

Setting ;= ∪ #, we have H ;∗ 9 and I ;∗ 9 and
L 6;∗9. As expected, this means the result (labelled 9) has
information flows from H and I, but not L.

216

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

E. Information Flow Soundness

Theorem 4 (Information Flow Soundness): Suppose
Γ, %,;|=IF t

`. Then if t` ◊−→∗v`′ , where v is a stage-0 value
composed only of markers and constants, then bvcM = v
where M = {m ∈Marker | m ;∗ `}.

Proof: First show that Γ, %,;|=IF v`
′

with `′ ;∗ `.
Argue by a simple induction over the derivation of t` ◊−→∗v.

Base case: Γ, %,;|=IF t
` follows immediately from the

theorem’s premise.
Inductive step: Assume that Γ, %,;|=IF e1 and

lbl(e1) ;∗ `, with e1
◊−→ e2 the next step in the deriva-

tion. Apply Theorem 3 to show that Γ, %,;|=IF e2 and
lbl(e2) ;∗ lbl(e1); hence lbl(e2) ;∗ `.

Now we have Γ, %,;|=IF v and `′ ;∗ `. Observe from
the definition of bvcM that if for every marker m that occurs
in v we have m ∈M , then bvcM = v.

But v is a value composed only of markers and constants,
so for every marker m that occurs in v (by examination of
the |=IF constraint rules) it must be the case that m ;∗ `′.
Thus, as `′ ;∗ `, m ;∗ `. Hence, from the definition of
M , m ∈M . So it is indeed true that bvcM = v.

Relationship with Noninterference: Our information flow
analysis can be used to verify the security property nonin-
terference. Noninterference asserts that the values of any
“high-security” inputs must not affect the values of any
“low-security” outputs. In order for this assertion to be
meaningful, we must have notions of input, output and high-
and low-security levels.

For example, assume elements of Marker represent dif-
ferent levels of security, such as L for low security and H

for high security. For input, assume two relations low−→ and
high−→, which take an expression and set the values of low and
high inputs respectively. For low-security output, just take
the value to which an expression evaluates.

Say that expression t` satisfies noninterference analysis if
Γ, %,;|=IF t

` and H 6;∗`. Further, require that low−→ and
high−→

satisfy the following conditions:

Γ, %,;|=IF t
` ∧ t low−→ t′ =⇒ Γ, %,;|=IF t

′`

Γ, %,;|=IF t
` ∧ t high−→ t′ =⇒ Γ, %,;|=IF t

′`

Γ, %,;|=IF t
` ∧ t high−→ t′ =⇒ btc{L} = bt′c{L}

Claim: If t` satisfies noninterference analysis, then in the
following situation:

t`
low−→ t′` t′`

high−→ t`1 t′`
high−→ t`2 t`1

◊−→∗u`′

where u`
′

is a value composed only of markers and con-
stants, it follows that t`2

◊−→∗u`′ . That is, the low output u is
independent from the values of the high inputs for t selected
using

high−→.
Proof: By the condition on low−→, observe we have

Γ, %,;|=IF t
′. By the first condition on

high−→, it then follows

that Γ, %,;|=IF t`1 and Γ, %,;|=IF t`2. As H 6;∗`, by
soundness of information flow, we have u = buc{L}. So
using stability, we get bt1c{L}

◊−→ ∗u. But, by the second

condition on
high−→, we have bt′c{L} = bt1c{L} = bt2c{L}. So

bt2c{L}
◊−→∗u. Then by monotonicity, t2

◊−→∗u.

The conditions on low−→ and
high−→ seem reasonable. As

an example, low−→ and
high−→ that can only replace constants

marked as L and H respectively and can only replace them
with constants of the same type (integer, boolean or string)
satisfy these conditions.

IV. EVALUATION

We have implemented our analysis in OCaml and tested
it on a range of examples. The most expensive part of the
analysis computationally is 0CFA, which runs in time O(n3)
in the size of the program [16]; consequently, it runs quickly
on all our examples and we expect it to scale well to large
programs. The source code for our analysis tool and the
examples are available online. We now present some of these
examples.

For each example, we list the markers on which our
simple analysis says the result may depend. Where the
improved analysis gives a more precise result, we list that
too. To improve readability, we write let x = v in e as
a shorthand for fun(x){e}v. Our implementation extends
SLamJS (and its analysis) as presented in this paper with
primitive arithmetic, equality and typeof operators, which
we use in some of our examples. It can also handle mu-
table references in the style of λJS and a subset of actual
JavaScript syntax. Many of our examples are inspired by
patterns of eval usage common in Web applications, as
surveyed by Richards et al. [8] and discussed by Jensen
et al. [10].

Example 9: Depends on: H, L.
if(H : true){L : false} else{1}
We begin with a classic example where branching on a value
introduces an indirect flow from it. As our analysis does not
track specific boolean values, it would give the same result
if the branch were on (H : false). We could resolve this
imprecision by extending our abstract value domain with
abstract values for true and false.

Example 10: Depends on: H, I, L. Depends (improved): H, L.
let ctrue = fun(x){fun(y){x}} in
let cif = fun(x){fun(y){fun(z){(x(y))(z)}}} in
((cif (H : ctrue))(L : false))(I : 1))
Conversely, if we present the previous example using the
standard Church-encodings of if and true as functions, our
analysis is precise enough to determine that the result does
not depend on I. Note that we need the improved analysis
to distinguish the bindings of x and y in ctrue and cif .

217

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

Example 11: Depends on: L.
let x = if(true){box f} else{box g} in
let f = fun(y){1} in
let g = fun(z){L : true} in
run (box ((unbox x)(H : undef)))
This is modelled on the following JavaScript usage [10]:
if (...) x = "f"; else x = "g";
eval(x + "()");
f and g are bound to functions; x is set to a code value
of either f or g; a function argument is added to the code
value and the result executed. In this example, both f and
g ignore their argument (H : undef), so the result does not
depend on H; our analysis correctly identifies this.

Example 12: Depends on: H, L. Depends (improved): L.
let c = box x in
let x = L : 1 in
let eval = fun(b){run b} in
let x = H : 2 in
eval(c)
JavaScript programmers sometimes use eval to execute code
within a different scope. SLamJS does not aim to emulate
all the quirks of eval, but scoping of staged code can still
have interesting behaviour, as shown in this example. In the
scope of the definition of the function bound to eval , x is 1.
So when it evaluates the code value c, which contains just
the variable x, this is the value it returns; note that x was
not bound at all where c was defined. The second binding
of x is unused; our analysis correctly determines this.

Example 13: Depends on: H, I, L.
let i = I :
{" proto " : null,"x" : (H : 1),"y" : (L : 2)} in
let s = fun(id){let f = box (i[unbox id]) in run f} in
s(box "y")
Some programmers use eval to construct variable names, as
in (var n = 5; eval ("f_" + n);) to access f_5.
We cannot express this directly in SLamJS as there are no
facilities to manipulate variable names. Another common
practice is to use eval to access object properties, often be-
cause of the programmer’s ignorance of JavaScript’s indirect
object field access syntax; this example models that practice
in SLamJS. Because our analysis does not model the values
strings may take, its handling of field reads and writes is
rather coarse, so it cannot tell the result will not depend on
H; this could be addressed refining our abstract value domain.

Example 14: Depends on: H.
let fst = fun(x){fun(y){x}} in
let f = if(false){fst} else{box fst} in
let x = (H : 1) in
let y = (L : true) in
if(typeof f = "function"){(f(x))(y)}
else{run (box (((unbox f)(x))(y)))}
This example models the JavaScript usage pattern:

if (f instanceof Function) f(x);
else eval (f + "(x)");
which may arise when using eval to emulate higher-order
functions. Here, our analysis shows the same precision on a
boxed value representing a function as when dealing with a
real function.

Example 15: Depends on: H, L. Depends (improved): L.
let pair = fun(x){fun(y){fun(z){run z}}} in
let fst = fun(z){z(box x)} in
let snd = fun(z){z(box y)} in
let bp = box ((pair(L : (box (1))))(H : (box (true)))) in
let boxfst = box ((fst)(unbox bp)) in
run (run (boxfst))
Most examples of staged metaprogramming in the literature
do not use more than one level of staging. This example,
which pairs and unpairs two values in a rather roundabout
way, illustrates that we can handle higher levels too.

Example 16: Depends on: H.
fun(n){(fun(x){(x(x))(n)})
(fun(x){fun(y){if(y = 0){true} else{(x(x))(y − 1)}}})
}(H : 5)
This program loops n times (where n is (H : 5) in this
instance) before returning true. In this sense, the result
is independent of n: if n were a high-security input and
the output low, the program would satisfy noninterference,
although the duration of execution may leak information
about n. However, n must be examined in order to execute
the program, so there is an information flow from n to the
result, in the sense captured by our augmented semantics.
That is, no noninterference analysis based on a sound over-
approximation of the behaviour of such a semantics could
ever show the program to be noninterfering [17].

Example 17: Depends on: L.
let fst = fun(x){fun(y){x}} in
let a = box x in
let b = box (fun(x){fun(y){fst(unbox a)(y)}}) in
(run b)(L : 1)(H : 2)
This program, based on an example from Choi et al. [9],
splices a variable name into a code template to produce code
that takes two arguments and returns the first. Our analysis
correctly determines that the result depends only on the first.

Example 18: Depends on: L, H.
let fst = fun(x){fun(y){x}} in
let a = fun(p){p["x"]} in
let b = (fun(h){fun(p){fun(x){fun(y){
fst(h((p["x"] = x)["y"] = y))(y)}}}})(a) in
b({"__proto__" : null})(L : 1)(H : 2)
By applying Choi et al.’s unstaging translation to the core of
the previous example, we obtain this unstaged one. Note that
while the result of the program is the same, we lose precision
by analysing this version instead of working directly on the
staged version.

218

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

Example 19: Depends on: L, H. Depends (improved): L.
let blank = fun(get){get(null)(null)} in
let getx = fun(x){fun(y){x}} in
let gety = fun(x){fun(y){y}} in
let setx = fun(env){fun(newx){
fun(get){get(newx)(env(gety))}}} in
let sety = fun(env){fun(newy){
fun(get){get(env(getx))(newy)}}} in
let fst = fun(x){fun(y){x}} in
let a = fun(p){p(getx)} in
let b = (fun(h){fun(p){fun(x){fun(y){
fst(h(sety(setx(p)(x))(y)))(y)}}}})(a) in
b(blank)(L : 1)(H : 2)
Here we have applied the unstaging translation, as in the
previous example, but using higher order functions to encode
environments instead of records. In this case, we can recover
the lost precision, but at the cost of an O(n2) increase in the
size of the source program, making the combined analysis
O(n6) instead of O(n3).

V. RELATED WORK

A. From SLamJS to JavaScript Applications

The application that guided our work is information
flow analysis for JavaScript in Web applications. We now
consider some of the features of this scenario that we have
not addressed and how they have been handled by others.
We claim that most of the problems have been addressed,
although combining them into a single analysis system
would require further effort.

Handling of Primitive Datatypes As demonstrated in
some of our examples, our analysis models its primitive
datatypes (such as strings and booleans) very coarsely; our
abstract domains are too simple. Fortunately, more refined
abstractions for these datatypes have been well-studied [18].

Imperative Control Flow and Exceptions JavaScript has
several features not found in SLamJS, including typical
imperative control flow features (such as for loops) and
exceptions, but there are CFA-style analyses for JavaScript.
Perhaps most notable is the recent CFA2 analysis [5], which
was developed for JavaScript and features significantly better
analysis of higher order flow control.

JavaScript Semantics A bigger problem in producing a
sound analysis of JavaScript is the complexity and quaint-
ness of its semantics [7]. Guha et al. attempt to simplify this
problem by producing a much simpler “core calculus” for
JavaScript called λJS and a transformation from JavaScript
into λJS [3]. They have mechanised various proofs about
their language in Coq. As Web applications execute in the
context of a webpage in a browser, an analysis must also
model how a webpage interacts with code via the DOM.

Code Strings vs Staged Code Perhaps the most relevant
difference between JavaScript and SLamJS is our metapro-
gramming constructs: JavaScript eval runs on strings, while,
in an effort to develop a more principled analysis, our staged

metaprogramming follows the tradition of Lisp quotations.
To analyse uses of eval with our techniques, we would
need a sound transformation into staged metaprogramming.
Jensen et al. use the result of a string analysis produced by
the tool TAJS to replace certain uses of eval with unstaged
code where it is safe to do so [10]; the transformed program
is then fed back into the analysis tool. We propose to handle
a wider range of use cases with the more general approach
of transforming eval on strings into staged code and then
analysing the staged code [19].

Reactive Systems A practical Web application is not sim-
ply a program that takes inputs, runs once, then gives output:
it may interleave input and output throughout its execution,
which might not terminate. Bohannon et al. consider the
consequences of this for information security in their work
on reactive noninterference [20].

Infrastructural Issues In applying an information flow
analysis to a Web application, several infrastructural issues
need to be addressed. Would the code be analysed before
being published by on a webserver, in the browser running it
or by some proxy in between? Will the entire code be avail-
able in advance, or must it be analysed in fragments [21]?
Who would set the security policies that the analysis should
enforce? Li and Zdancewic argue that noninterference alone
is too strict a policy to enforce and that a practical policy
must allow for limited declassification [22].

B. Information Flow Analysis

Early work on information flow security focused on mon-
itoring program execution, dynamically marking variables
to indicate their level of confidentiality [23]. However, the
study of static analysis for information flow security can es-
sentially be traced back to Denning, who introduced a lattice
model for secure information flow and critically considered
both direct and indirect flows [24]. Denning and Denning
developed a simple static information flow analysis that
rejected programs with flows violating a security policy [25].

Noninterference Goguen and Meseguer introduced the
idea of noninterference [1] (the inability of the actions of one
party, or equivalently data at one level, to influence those of
another) as a way of specifying security policies, including
enforcement of information flow security. Noninterference
and information flow security became almost synonymous,
although Pottier and Conchon were careful to emphasise the
distinction between the two [12].

Security Type Systems Security type systems became a
common way of enforcing noninterference policies and
proving the correctness of noninterference analyses, pro-
gressing from a reformulation of Denning and Denning’s
analysis [26] to Simonet and Pottier’s type system for
ML [6]. Unfortunately, the requirement that the program
analysed follow a strict type discipline makes it impractical
to apply these ideas to dynamically typed languages such
as JavaScript. Perhaps as a consequence, information flow

219

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

in untyped and dynamically typed languages is relatively
poorly understood.

Dynamic Analyses Dynamic information flow analysis cir-
cumvents the need for a type system or other static analysis
by tracking information flow during program execution, and
enforcing security policies by aborting program execution
if an undesired flow is detected; examples of such analyses
for JavaScript are presented by Just et al. [27] and Hedin
and Sabelfeld [28]. Indeed, the problems they address and
their motivations are very similar to ours, but our methods
are very different.

Dynamic vs Static A dynamic analysis only observes
one program run at a time, so dynamic code generation
is easy to handle. However, care has to be taken to track
indirect information flow due to code that was not executed
in the observed run. Strategies to achieve this include, for
instance, the no-sensitive upgrade check [29], which aborts
execution if a public variable is assigned in code that is
control dependent on private data. As a rule, however, such
strategies are fairly coarse and could potentially abort many
innocuous executions; thus it is commonly held that static
analyses are superior to dynamic ones in their treatment of
indirect flows [30], although there has been a resurgence of
interest in dynamic analyses [31].

Hybrid Approaches As a compromise, Chugh et al. [21]
propose extending a static information flow analysis with a
dynamic component that performs additional checks at run-
time when dynamically generated code becomes available.
The static part of their analysis is similar to ours (minus
staging), although they do not formally state or prove its
soundness. Their study of JavaScript on popular websites
suggests the static part is precise enough to be useful.
Because the additional checks on dynamically generated
code occur at runtime, they must necessarily be quick and
simple to avoid performance degradation. Consequently,
these checks are limited to purely syntactic isolation proper-
ties, with a corresponding loss of precision. Our fully static
analysis does not suffer from these limitations.

Going in the other direction, Austin and Flanagan [32]
have proposed faceted execution, a form of dynamic analysis
that explores different execution paths and can thus recover
some of the advantages of a static analysis.

C. Static Analysis of Staged Metaprogramming

Many different approaches to staged metaprogramming
have been proposed. Our language’s staging constructs are
modelled after the language λS of Choi et al. [9]. How-
ever, our semantics of variable capture are different. For
example, we allow the program (fun(x){run (box x)}(1)),
which behaves much like this JavaScript program:
(function (x) {return eval("x")})(1);

Control flow analysis for a two-staged language has been
investigated by Kim et al. [33]. Their approach is based on

abstract interpretation, putting particular emphasis on infer-
ring an over-approximation of all possible pieces of code to
which a code quotation may evaluate. This information is not
explicitly computed by our analysis, so it is quite possible
that their analysis is more precise than ours. However it does
not seem to have been implemented yet.

Choi et al. [9] propose a more general framework for
static analysis of multi-staged programs, which is based
on an unstaging translation that replaces staging constructs
with function abstractions and applications. Under certain
conditions, analysis results for the unstaged program can
then be translated back to its staged version.

There are some limitations to their work. Most signif-
icantly, many interesting programs, such as the one men-
tioned earlier, are not valid in λS and hence cannot be
unstaged using their translation; this limits its applicability
to JavaScript. Furthermore, as shown in Examples 17–19,
the precision of the resulting combined analysis is highly
sensitive to the target language encoding used in the transla-
tion and the behaviour of the target language analysis. While
their approach is useful as a quick way of adding staging
to an existing language and analysis, we argue that staging
constructs are sufficiently important and complex that we
should aim to analyse them directly.

Inoue and Taha [34] consider the problem of reasoning
about staged programs; in particular, they identify equiv-
alences that fail to hold in the presence of staging, and
develop a notion of bisimulation that can be used to prove
extensionality of function abstractions, and work around
some of the failing equivalences. Their language differs from
ours in that it avoids name capture.

Some work on analysing metaprogramming focuses on
its application to optimising compilation of programs with
metaprogramming. For example, Smith et al. [35] consider
using static analysis to optimise compilation in a cut-down
version of Cyclone, a type-safe, C-style language with run-
time code generation. Their analysis is based around a
relatively coarse over-approximation of control flow between
code blocks in a program, but this suits their application
because their language does not have first-class functions.

VI. CONCLUSIONS

We have presented a fully static information flow anal-
ysis based on 0CFA for a dynamically typed language
with staged metaprogramming, implemented it and for-
mally proved its soundness. We believe our approach is
transferrable to other CFA-style analyses and applicable to
JavaScript.

Progressing from here, there are three obvious lines of
work. The first is to improve the precision of the analysis
by applying its ideas to CFA2 or using results from abstract
interpretation. The second is to extend the language to
handle more features, such as imperative control flow and
exceptions. The third and most important, which we are

220

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

already pursuing [19], is to apply string analysis techniques
to produce a sound transformation from a language with eval
on code strings to a language with staged code values.

All the pieces are now in place for an interesting, sound
and principled analysis of JavaScript with eval, but it will
take significant effort to bring them together.

Acknowledgments: We thank our anonymous reviewers
for their comments and suggestions.

REFERENCES

[1] J. A. Goguen and J. Meseguer, “Security Policies and Security
Models,” in IEEE Symposium on Security and Privacy, 1982,
pp. 11–20.

[2] I.-S. Kim, K. Yi, and C. Calcagno, “A polymorphic modal
type system for lisp-like multi-staged languages,” in POPL,
2006, pp. 257–268.

[3] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The Essence of
JavaScript,” in ECOOP, 2010, pp. 126–150.

[4] O. Shivers, “Control-Flow Analysis in Scheme,” in PLDI,
1988, pp. 164–174.

[5] D. Vardoulakis and O. Shivers, “CFA2: a Context-Free
Approach to Control-Flow Analysis,” Logical Methods in
Computer Science, vol. 7, no. 2, 2011.

[6] F. Pottier and V. Simonet, “Information Flow Inference for
ML,” TOPLAS, vol. 25, no. 1, pp. 117–158, 2003.

[7] S. Maffeis, J. C. Mitchell, and A. Taly, “An Operational
Semantics for JavaScript,” in APLAS, 2008, pp. 307–325.

[8] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The Eval
That Men Do — A Large-Scale Study of the Use of Eval in
JavaScript Applications,” in ECOOP, 2011.

[9] W. Choi, B. Aktemur, K. Yi, and M. Tatsuta, “Static Analy-
sis of Multi-staged Programs via Unstaging Translation,” in
POPL, 2011, pp. 81–92.

[10] S. H. Jensen, P. A. Jonsson, and A. Møller, “Remedying the
Eval that Men Do,” in ISSTA, 2012, pp. 34–44.

[11] D. V. Horn and M. Might, “An analytic framework for
javascript,” CoRR, vol. abs/1109.4467, 2011.

[12] F. Pottier and S. Conchon, “Information Flow Inference for
Free,” in ICFP, 2000.

[13] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke, “A Core
Calculus of Dependency,” in POPL, 1999, pp. 147–160.

[14] F. Nielson, H. R. Nielson, and C. Hankin, Principles of
Program Analysis. Springer, 1999.

[15] M. Lester, C.-H. L. Ong, and M. Schäfer, “Information flow
analysis for a dynamically typed functional language with
staged metaprogramming,” CoRR, vol. abs/1302.3178, 2013.

[16] N. Heintze and D. A. McAllester, “On the cubic bottleneck
in subtyping and flow analysis,” in LICS. IEEE Computer
Society, 1997, pp. 342–351.

[17] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive
security analysis,” in CSF, 2010, pp. 186–199.

[18] T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh, “A Practical
String Analyzer by the Widening Approach,” in APLAS, 2006,
pp. 374–388.

[19] M. Lester, “Position paper: The science of boxing —
analysing eval using staged metaprogramming,” in PLAS,
2013, in press.

[20] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic, “Reactive Noninterference,” in Computer and
Communications Security, 2009, pp. 79–90.

[21] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged
Information Flow for JavaScript,” in PLDI, 2009, pp. 50–62.

[22] P. Li and S. Zdancewic, “Downgrading policies and relaxed
noninterference,” in POPL, 2005, pp. 158–170.

[23] J. S. Fenton, “Memoryless subsystems,” Comput. J., vol. 17,
no. 2, pp. 143–147, 1974.

[24] D. E. Denning, “A Lattice Model of Secure Information
Flow,” CACM, vol. 19, no. 5, pp. 236–243, 1976.

[25] D. E. Denning and P. J. Denning, “Certification of Programs
for Secure Information Flow,” CACM, vol. 20, no. 7, pp. 504–
513, 1977.

[26] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound
type system for secure flow analysis,” Journal of Computer
Security, vol. 4, no. 2/3, pp. 167–188, 1996.

[27] S. Just, A. Cleary, B. Shirley, and C. Hammer, “Information
Flow Analysis for JavaScript,” in PLASTIC, 2011.

[28] D. Hedin and A. Sabelfeld, “Information-flow security for a
core of javascript,” in CSF, S. Chong, Ed. IEEE, 2012, pp.
3–18.

[29] S. Zdancewic, “Programming Languages for Information Se-
curity,” Ph.D. dissertation, Cornell University, 2002.

[30] A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 1, pp. 5–19, 2003.

[31] A. Sabelfeld and A. Russo, “From Dynamic to Static and
Back: Riding the Roller Coaster of Information-Flow Control
Research,” in Ershov Memorial Conf., 2009.

[32] T. H. Austin and C. Flanagan, “Multiple Facets for Dynamic
Information Flow,” in POPL, 2012, pp. 165–178.

[33] T. Kim, C. Lee, K. Lee, S. Baik, and K. Yi, “A Control Flow
Analysis for 2-staged Programming Languages,” ROSAEC,
Techreport ROSAEC-2009-005, 2009.

[34] J. Inoue and W. Taha, “Reasoning About Multi-stage Pro-
grams,” in ESOP, 2012.

[35] F. Smith, D. Grossman, J. G. Morrisett, L. Hornof, and T. Jim,
“Compiling for template-based run-time code generation,” J.
Funct. Program., vol. 13, no. 3, pp. 677–708, 2003.

221

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

APPENDIX
SLAMJS SEMANTICS DEFINITIONS

(k, ρ)
n
99K k

({s : e}, ρ)
n
99K {s : (e, ρ)}

(x, ρ)
n+1
99K x

(fun(x){e}, ρ)
n+1
99K (fun(x){(e, ρ)})

(e1(e2), ρ)
n
99K ((e1, ρ)((e2, ρ)))

(box e, ρ)
n
99K (box (e, ρ))

(unbox e, ρ)
n
99K (unbox (e, ρ))

(run e, ρ)
0
99K (run (e, ρ) in ρ)

(run e, ρ)
n+1
99K (run (e, ρ))

(if(e1){e2} else{e3}, ρ)
n
99K (if((e1, ρ)){(e2, ρ)} else{(e3, ρ)})

(e1[e2], ρ)
n
99K ((e1, ρ)[(e2, ρ)])

(e1[e2] = e3, ρ)
n
99K ((e1, ρ)[(e2, ρ)] = (e3, ρ))

(del e1[e2], ρ)
n
99K (del (e1, ρ)[(e2, ρ)])

Figure 11. Environment propagation rules

Cmn ::= [] ∈ Cnn
| ({s : vm, s : Cmn , s : e}) ∈ Cmn
| (fun(x){Cm+1

n }) ∈ Cm+1
n

| (Cmn (e)) ∈ Cmn
| (vm(Cmn)) ∈ Cmn
| (box Cm+1

n) ∈ Cmn
| (unbox Cmn) ∈ Cm+1

n

| (run Cmn) ∈ Cmn
| (if(Cmn){e} else{e}) ∈ Cmn
| (if(vm+1){Cm+1

n } else{e}) ∈ Cm+1
n

| (if(vm+1){vm+1} else{Cm+1
n }) ∈ Cm+1

n

| (Cmn [e]) ∈ Cmn
| (vm[Cmn]) ∈ Cmn
| (Cmn [e] = e) ∈ Cmn
| (vm[Cmn] = e) ∈ Cmn
| (vm[vm] = Cmn) ∈ Cmn
| (del Cmn [e]) ∈ Cmn
| (del vm[Cmn]) ∈ Cmn
| (run Cmn in ρ) ∈ Cmn

Figure 12. Evaluation contexts

APPENDIX
0CFA FOR SLAMJS

A. Labelled Semantics

We extend the syntax of SLamJS with labels to indicate
program points. The labels have no effect on the result of
computation, but are used to track which values may occur at
which points. Consequently, it is important for the soundness

b cM =
bkcM = k

b{s : e}cM = {s : becM}
bxcM = x

bfun(x){e}cM = fun(x){becM}
be1(e2)cM = be1cM (be2cM)
bbox ecM = box becM

bunbox ecM = unbox becM
brun ecM = run becM

bif(e1){e2} else{e3}cM = if(be1cM){be2cM} else{be3cM}
be1[e2]cM = be1cM [be2cM]

be1[e2] = e3cM = be1cM [be2cM] = be3cM
bdel e1[e2]cM = del be1cM [be2cM]
b(e, ρ)cM = (becM , bρcM)

brun e in ρcM = run becM in bρcM
bρcM (x) = bρ(x)cM
bm : ecM = m : becM if m ∈M
bm : ecM = if m /∈M

Figure 13. Definition of becM , the M -erasure of e

of the corresponding analysis that the semantics correctly
tracks labels.

We reformulate the syntax of SLamJS to distinguish
between terms (expressions in the unlabelled semantics) and
expressions (which are labelled terms):

Expressions e ::= t`

Terms t ::= k | {s : e} | x | fun(x){e} | e(e)
| box e | unbox e | run e
| if(e){e} else{e} | e[e] | e[e] = e
| del e[e] | (t, ρ) | run e in ρ

Values remain expressions, so they include labels at the outer
level. For example, k` is a value, rather than k. Contexts
other than the empty context also gain labels at the outer
level, so we have (Cmn 〈e〉)` rather than (Cmn 〈e〉).

The labelling of the reduction rules is a little more
complicated, so we list them in full in Fig. 14, 15 and 16.
For an expression e = t`, we write e`

′
as a shorthand for

t`
′

and (e, ρ)`
′

for (t, ρ)`
′
. Note that we use this in the rules

(LOOKUP), (UNBOX), (RUN) and (READ1).

B. Analysis

The abstract domains of the analysis are defined in Fig. 6.
Abstract variables of the form x represent function parame-
ters; abstract variables of the form `.p represent record fields.
Note that e, `, x and p only range over expressions, labels
and names occurring in the program to be analysed, hence
the abstract domains are finite.

In the extended version of the paper [15], we give full
definitions of three acceptability judgements Γ, % |= e;
Γ, % |= ρ and Γ, % |= ν ≈ t by mutual induction.

222

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

(k, ρ)`
n
99K k`

({s : t`}, ρ)`
′ n
99K {s : (t, ρ)`}`′

(x, ρ)`
n+1
99K x`

(fun(x){t`}, ρ)`
′ n+1
99K (fun(x){(t, ρ)`})`′

(t`11 (t`22), ρ)`
n
99K ((t1, ρ)`1((t2, ρ)`2))`

(box t`, ρ)`
′ n
99K (box (t, ρ)`)`

′

(unbox t`, ρ)`
′ n
99K (unbox (t, ρ)`)`

′

(run t`, ρ)`
′ 0
99K (run (t, ρ)` in ρ)`

′

(run t`, ρ)`
′ n+1
99K (run (t, ρ)`)`

′

(if(t`11){t`22 } else{t`33 }, ρ)`0
n
99K (if((t1, ρ)`1){(t2, ρ)`2} else{(t3, ρ)`3})`0

(t`11 [t`22], ρ)`0
n
99K ((t1, ρ)`1 [(t2, ρ)`2])`0

(t`11 [t`22] = t`33 , ρ)`0
n
99K ((t1, ρ)`1 [(t2, ρ)`2] = (t3, ρ)`3)`0

(del t`11 [t`22], ρ)`0
n
99K (del (t1, ρ)`1 [(t2, ρ)`2])`0

(m : t`11 , ρ)`
n
99K (m : (t1, ρ)`1)`

Figure 14. Labelled environment propagation rules

(LOOKUP) (x, ρ)`
0
99K v` where ρ(x) = v

(APPLY) ((fun(x){t`1}, ρ)`2(v))`3
0
99K (t, ρ[x 7→ v])`1

(UNBOX) (unbox (box v1)`1)`2
1
99K (v1)`2

(RUN) (run (box v1)`1 in ρ)`2
0
99K (v1, ρ)`2

(IFTRUE) (if(true){t`11 } else{t`22 })`
0
99K t`11

(IFFALSE) (if(false){t`11 } else{t`22 })`
0
99K t`22

(READ1) ({s : v, si : vi, s : v′}`1 [s`2i])`3
0
99K v`3i

(READ2) ({s : v," proto " : {s : v′}`′1 , s : v′′}`1 [s`2x])`3
0
99K ({s : v′}`′1 [s`2x])`3 if sx 6∈ s ∪ s′′

(READ3) ({s : v," proto " : null`
′
1 , s : v′′}`1 [s`2x])`3

0
99K undef`3 if sx 6∈ s ∪ s′′

(WRITE1) ({s : v, si : vi, s : v′}`1 [s`2i] = v′i)
`3

0
99K {s : v, si : v′i, s : v′}`3

(WRITE2) ({s : v}`1 [s`2x] = vx)`3
0
99K {s : v, sx : vx}`3 if sx 6∈ s

(DEL1) (del {s : v, si : vi, s : v′}`1 [s`2i])`3
0
99K {s : v, s : v′}`3

(DEL2) (del {s : v}`1 [s`2x])`3
0
99K {s : v}`3 if sx 6∈ s

Figure 15. Labelled proper reduction rules

(LIFT-APP) (((m : t`1), ρ)`2(v))`3
0
99K (m : ((t, ρ)`1(v))`3)`3

(LIFT-IF) (if((m : v)`0){t`11 } else{t`22 })`
0
99K (m : (if(v){t`11 } else{t`22 })`)`

(LIFT-UNBOX) (unbox (m : v)`1)`2
1
99K (m : (unbox v)`2)`2

(LIFT-RUNIN) (run (m : v)`1 in ρ)`2
0
99K (m : (run v in ρ)`2)`2

(LIFT-READSEL) (v1[(m : v2)`1])`2
0
99K (m : (v1[v2])`2)`2

(LIFT-READREC) ((m : v1)`1 [v2])`2
0
99K (m : (v1[v2])`2)`2

(LIFT-WRITESEL) (v1[(m : v2)`1] = v3)`2
0
99K (m : (v1[v2] = v3)`2)`2

(LIFT-WRITEREC) ((m : v1)`1 [v2] = v3)`2
0
99K (m : (v1[v2] = v3)`2)`2

(LIFT-DELSEL) (del v1[(m : v2)`1])`2
0
99K (m : (del v1[v2])`2)`2

(LIFT-DELREC) (del (m : v1)`1 [v2])`2
0
99K (m : (del v1[v2])`2)`2

Figure 16. Labelled lifts

223

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:55:43 UTC from IEEE Xplore. Restrictions apply.

