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Abstract—This paper introduces a novel information hiding
technique for Flash memory. The method hides data within an
analog characteristic of Flash, the program time of individual
bits. Because the technique uses analog behaviors, normal Flash
memory operations are not affected and hidden information is
invisible in the data stored in the memory. Even if an attacker
checks a Flash chip’s analog characteristics, experimental
results indicate that the hidden information is difficult to
distinguish from inherent manufacturing variation or normal
wear on the device. Moreover, the hidden data can survive
erasure of the Flash memory data, and the technique can be
used on current Flash chips without hardware changes.
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I. INTRODUCTION

Flash memory has become a pervasive element in today’s

computing landscape. Flash is arguably the most widely used

medium for standalone data storage as in USB memory

sticks and SD cards. Virtually all mobile devices such as

smartphones and tablets rely on Flash memory as their non-

volatile storage. Similarly, embedded devices commonly use

on-chip Flash memory to store instructions and data. Flash

memory is also moving into laptop and desktop computers,

replacing mechanical hard drives.

This paper introduces a technique to hide information

in analog characteristics of Flash memory in a way that

the hidden bits are not visible at all from the viewpoint

of normal Flash memory content. More specifically, our

technique encodes a hidden bit in the program time of a

group of Flash cells; a fast program time encodes bit ’1’

and a slow program time encodes bit ’0’. We found that

writing 0 into a Flash cell incurs more stress on the cell than

writing 1, which in turn results in a larger decrease in the

program time of the corresponding cell. While the program

time of individual cells cannot be accurately controlled, our

experiments demonstrate that bits can be reliably encoded

in the program time using many cells collectively.

While a number of steganography techniques have been

developed previously, our Flash-based technique provides

unique benefits compared to typical digital steganography

schemes where information is hidden in another form of

digital content such as images and documents. In particular,

the hidden information in Flash memory is decoupled from

the Flash memory content and instead tied to the physical

object. The following summarizes the main benefits of our

scheme compared to digital steganography.

• Covert: The proposed technique does not change nor-

mal Flash operations or content at all. As a result, in-

specting the Flash memory content does not reveal any

hidden information. All Flash memory operations can

still be performed without any change, even with hidden

information. In fact, our experimental results suggest

that even analog characteristics of Flash memory such

as page program/erase time do not change noticeably.

• Erase tolerant: The hidden information in Flash mem-

ory remains intact even if the entire Flash memory

is erased and programmed with new content. In fact,

our experiments show that the hidden information can

survive even hundreds of program/erase operations.

• Copy tolerant: In typical digital steganography, the

cover text with hidden information can be easily copied

and stored so that it can be analyzed over time. The

hidden information in our technique, however, is tied

to physical Flash memory and can only be accessed by

measuring the program time of individual memory cells

while the Flash memory is in one’s possession. Because

modern Flash memory chips often contain tens or hun-

dreds of billions of memory cells, fully characterizing

a Flash chip without knowing the location of hidden

bits is quite time consuming.

In a sense, the proposed information hiding technique

is similar to physical steganography methods where infor-

mation is hidden in physical objects. For example, people

have used secret inks to write messages on blank parts

of other messages [4]. However, the proposed technique

provides a couple of key benefits over traditional physical

steganography methods thanks to being electrical.

• No hardware modification: The proposed technique

works on unmodified Flash chips using the standard

interface. In fact, the technique can be implemented as a

software program as long as a low-level Flash interface

is exposed.

• High capacity: Thanks to the high capacity of Flash

memory, our technique provides a fairly high capacity

compared to traditional physical steganography tech-

niques. For example, even if we hide one bit for every

512 Flash cells, a 8GB Flash chip can contain 16MB
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Figure 1. Overview of the information hiding operation.

of hidden information.

Given the ubiquity of Flash memory and the easy ap-

plicability of the proposed scheme on commercial Flash

chips, we believe that the technique can enable a number

of interesting applications. An obvious application of the

information hiding in Flash is a secure and covert storage

of data. For example, a user can hide sensitive information

in the Flash memory of a smartphone with confidence that

others cannot retrieve the information even when the phone

is lost or stolen. Information hiding provides an additional

layer of protection on top of typical encryption by preventing

an adversary from reading or even copying the ciphertext.

On the other hand, the capability to covertly communicate

may be misused to bypass legitimate access control policies.

For example, in the business world, the hidden information

in Flash may be misused to export trade secrets. In this

sense, this study points out the potential danger.

Another traditional application of information hiding is

watermarking. In particular, given that the hidden informa-

tion is tied to a physical Flash memory chip, the proposed

technique can be used to embed watermarking in devices

with Flash memory. For example, mobile or embedded

devices may be watermarked to help retrieve them when

lost or stolen. Similarly, the watermarks can be used to

distinguish genuine devices from low-quality counterfeits.

The rest of the paper is organized as follows. Section II

discusses the high-level overview of the proposed informa-

tion hiding approach along with assumptions. Section III

provides basic background on the Flash memory. Based

on this understanding, Section IV describes the algorithms

to hide information in Flash memory and recover it later

through standard Flash interfaces. Then, Section V studies

the effectiveness and the security of the proposed method

through experimental results on real Flash chips. Section VI

discusses related work and Section VII concludes the paper.

II. OVERVIEW

A. Threat Model

Figure 1 shows the overview of the information hiding

process in Flash memory. In order to hide information

in Flash, Alice (left) first adds an error correcting code

(ECC) to her message payload and hides the payload in the

analog characteristics in Flash memory. Later, Alice (right)

can perform the reverse operations to retrieve the hidden

payload by recovering bits from the analog characteristics

and correct errors using the ECC. The information hiding

and recovery algorithms use a secret key (hiding key) to

determine where the hidden bits are stored in Flash memory.

As error correcting codes are well studied, this paper focuses

on the physical encoding and decoding of information in

Flash.

As shown in the figure, an adversary (Eve) gets temporary

access to the Flash memory after Alice hides information.

We assume that the adversary can inspect and manipulate the

memory through its normal interface, but do not consider

physical tampering of the memory. In the simple case,

the adversary can check normal Flash operations such as

program, erase, and read operations. The adversary may

also be aware of the information hiding technique and can

specifically check analog characteristics of Flash memory

that can be observed through the standard interface.

The goal of the adversary may differ depending on the

target application. In particular, the adversary may try to

• Detect the existence of hidden information,

• Retrieve the hidden information, or

• Remove the hidden information.

For example, in the traditional steganography context where

Alice is trying to establish a covert communication channel,

it is important that the adversary cannot easily detect the

existence of hidden information. On the other hand, in the

context of storing sensitive information, it is more important

that the adversary cannot retrieve information without know-

ing the hiding key. For watermarking, it should be difficult

to erase the hidden information.

Given an unlimited amount of time with the Flash chip, an

adversary can break the information hiding scheme by trying

the retrieval algorithm on all pages with all possible hiding

key values because we assume that an adversary knows our

hiding algorithm. Therefore, the goal of the hiding technique

is to make the detection, retrieval, and removal of hidden

information sufficiently time consuming for an attacker.
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Figure 2. Flash memory cell based on a floating gate transistor.

B. Flash Interface Requirements

The proposed technique is designed to work with Flash

or other floating-gate non-volatile memory, as long as one

can control read, program (write), and erase operations to

specific memory locations (pages and blocks), issue the

RESET command, and disable internal ECC (if there is

any). For example, our experiments use off-the-shelf Flash

chips that use the Open NAND Flash Interface (ONFI) [7],

which is used by many major Flash vendors including Intel,

Hynix, Micron, and SanDisk. Other Flash vendors such as

Samsung and Toshiba also use similar interfaces to their

chips. In many embedded and mobile devices, the required

interface functions are already exposed to the software layers

so that the proposed technique can be simply implemented

as a software update.

III. FLASH MEMORY BACKGROUND

This section provides background material on Flash mem-

ory and its operating principles to aid understanding of our

Flash-based information hiding scheme.

A. Floating Gate Transistors

Flash memory is composed of arrays of floating-gate

transistors. A floating-gate transistor is a transistor with

two gates, stacked on top of each other. One gate is

electrically insulated (floating). Figure 2 shows an example

of a floating-gate device. The control gate is on top. An

insulated conductor, surrounded by oxide, is between the

control gate and the channel. This conductor is the floating

gate. Information is stored as the presence or absence of

trapped charge on the floating gate. The trapped negative

charge reduces the current flowing through the channel when

the N-type MOS transistor is on. This current difference is

sensed and translated into the appropriate binary value.

Flash cells without charge on their floating-gate allow

full current flow in the channel and hence are read as a

binary “1”. The presence of charge on the floating-gate will

discourage the presence of current in the channel, making the

cell store a “0”. Effectively, the charge on the floating-gate

increases the threshold voltage (Vth) of a transistor. Single-

level cells (SLC) store one bit of information per cell by

using two threshold voltage levels. Multi-level cells (MLC)

store more than one bit by more finely dividing the threshold

voltage levels: for example, four levels can be used to store

two bits per cell.

B. Flash Organization and Operation

At a high-level, Flash memory provides three major

operations: read, erase, and program (write). In order to read

a bit in a Flash cell, the corresponding transistor is turned on

and the amount of current is detected. A write to a Flash cell

involves two steps. First, an erase operation pushes charge

off the floating-gate by applying a large negative voltage on

the control gate. Then, a program (write) operation stores

charge on the floating-gate by selectively applying a large

positive voltage if the bit needs to be zero.

An important concept in Flash memory operation is that

of pages and blocks. Pages are the smallest unit in which

data is read or written, and are usually 2KB to 8KB. Blocks

are the smallest unit for an erase operation and made up of

several pages, usually 32 - 128 pages. Note that Flash does

not provide bit-level program or erase. To read an address

from a Flash chip, the page containing the address is read.

To update a value, the block that includes the address must

be first erased. Then, the corresponding page is written with

an update and other pages in the block are restored.

C. Aging

Flash requires high voltages to store and erase informa-

tion. The voltages involved place great stress on the device

oxide; each program operation and each erase operation

slightly damages the oxide, wearing out the device. After

thousands of program and erase cycles, the oxide could have

sustained enough damage to render the bit non-operational,

leaving it in a stuck-at state or in a leaky state that cannot

reliably hold information over a period of time. Flash is

usually guaranteed by the manufacturer up to a certain

number of program and erase cycles.

Even before failures, the stress causes the cell’s analog

characteristics to change. In particular, the program time that

is required to flip a state from ’1’ to ’0’ for a cell tends to

reduce as the number of program/erase (PE) cycles increases

for that cell. We exploit this program time shift in order to

hide information.

D. Partial Programming

Our information hiding scheme relies on the measurement

of program time, the time it takes to program a Flash

cell, at individual cell granularity. However, the standard

Flash memory interface requires all bits in a page to be

programmed together. Normally, a program operation on

a page is held for a long enough time that any cell level

variation within a page is overcome. Therefore, the normal

program time only reveals how long programming the entire

page takes, not how long it takes to program individual bits.

To find the program time on a per-cell basis, we use a

technique called “partial programming” [16]. The standard
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Figure 3. Raw partial program number for each bit in an example page.

Flash memory interfaces allow the “partial program” of a

cell by aborting a program operation before completion. If

the program operation is interrupted, the Flash cell may be

in an unreliable state that could be interpreted as 1 or 0.

Further “partial programs” will accumulate charge on the

floating gate and eventually result in the cell entering a

stable programmed state, as if a full program was applied.

Effectively, the number of partial program operations to flip

a bit from 1 to 0 represents the program time for the bit.

In this sense, we use the “partial programming” technique

to to find program time for individual cells. After a partial

program to a page, we read the page and record the state of

each bit. When a bit changes to the programmed state (from

1 to 0), we note the number of partial programs required to

flip the bit as the bit’s program time.

IV. INFORMATION HIDING ALGORITHM

This section describes the encoding (hiding) and decoding

(recovery) algorithms for our information hiding scheme and

the rationale for them.

A. Overview

Our scheme hides information in the program time of

individual bits of Flash. The program time is the time it

takes for a bit to change from the erased state (1) to the

programmed state (0). Normally, a Flash memory controller

performs a program operation at a page granularity, and

the latency of this program operation is determined by the

slowest bit in a page to be successfully written. In order

to determine the program time for each bit, which we refer

to as per-bit program time, we use the partial programming

technique that is described in the previous section.

Figure 3 shows per-bit program times for a page. The

plot shows the number of partial program operations to flip

state from 1 to 0 for each bit in a page. Because of process

variations, the program time varies widely from bit to bit as

shown in the figure. The per-bit program time distribution

for the page is shown in Figure 4. The wide distribution and

noisy appearance of per-bit program times suggest that small

Figure 4. Partial program time distribution for bits in a page.

changes to each bit’s program time would go unnoticed, and

could be used to carry a covert payload.

However, in order to hide information using the program

time, we need to be able to intentionally change and control

each bit’s program time. Interestingly, in this context, previ-

ous work has observed that program time tends to decrease

as a Flash cell becomes more worn-out [3], [9]. In this

work, we also found that how worn-out each bit is can be

controlled by selectively stressing a bit. Although one can

only program an entire page together, we can stress some

bits within a page more than others by controlling the value

that we write. During an erase operation, every bit in a page

is reset to an erased state (for example, assume that the

erased state represents ’1’). On a program operation, only

bits that switch to 0 experience the program stress. When

these bits are later erased, they also experience erase stress as

they are reverted to the 1 state. Therefore, bits that undergo

both switches (1 to 0 and 0 to 1) see the full program and

erase stress from one program and erase cycle. However, bits

that store 1 will not be switched to the 0 state by a program

operation. These bits see much less program and erase stress

than their counterparts which are programmed to 0 because

their states do not need to change. Therefore, by deciding

whether to write a 1 or a 0 to each bit location in a page,

we can control which bits are stressed more relative to other

bits in the same page.

In theory, if every bit had a similar program time without

much variation, we could hide one bit of information in

every Flash bit by simply stressing or not stressing the bit

so that its program time encodes the hidden bit. However, in

practice, the program times of individual bits vary signifi-

cantly due to manufacturing variations, and intentional stress

is often not sufficient to overcome the inherent variations;

inherently slow bits will be likely to be still slower than

inherently fast bits even after being deliberately stressed.

To address this issue, we choose to encode 1 bit of hidden

information using many bits in Flash memory. For each

bit to hide, we choose a group of Flash bits and program
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Figure 5. The distribution of the average program time of a group with a
correct key.

Figure 6. The distribution of the average program time of a incorrect
group.

them to the same value, either 1 or 0. Effectively, this

process encodes a bit in the collective program time of

the group. The averaging effect reduces variations among

different groups and allows the hidden bit to be more reliably

recovered.

The use of a group also improves the security of the hiding

scheme. In our scheme, we use a key (hiding key) to select

which Flash bits will be grouped together for each hidden

bit. If an attacker does not know the correct key, he or she

cannot accurately identify which bits form a group together.

Because an incorrect group is likely to contain both more

stressed and less stressed bits, the average program time of

an incorrect group of bits will not show a clear bias towards

either 1 or 0.

For example, Figure 5 shows the distribution of the

average program time of a correct group. In the experiment,

we randomly selected 5,120 groups, each of which has 128

bits from a page, and hid either 1 or 0. As shown in the

figure, these is an obvious gap in the distribution between

the fast and slow groups. Therefore, the value of hidden bits

can be easily recovered through a simple thresholding.

On the other hand, Figure 6 shows the distribution of the

Algorithm I: Encoding

Part A – Composing the message
1 For each selected page in a block
2 Generate the group for each message bit via the page hiding key
3 Assign each group 0 or 1 according to the embedded data
4 For each bit
5 If its group will represent a message ”1”
6 Set it to be programmed 0
7 Else
8 Set it to be programmed 1
9 End if
10 End for
11 End for

Part B – Writing the message to Flash
1 For each selected block
2 For i = 1, 2, .., N (N is the number of Hiding PE cycles)
3 Erase the block
4 Program every selected page
5 End for
6 End for

Figure 7. An algorithm to encode (hide) a payload into Flash memory
program time.

average program time when the hiding key is unknown. In

this experiment, we used a randomly selected hiding key. As

shown in the figure, the average program time of a group

shows a normal distribution without any clear separation.

This result suggests that it is difficult for an adversary

to recover hidden information without correct groupings

because each group is likely to have both more and less

stressed bits.

B. Hiding Algorithm

Figure 7 describes our methodology for hiding a payload

in program time of Flash memory. The algorithm is split

into two parts: (A) composing the payload by assigning bits

of the message to groups of bits in Flash, and then (B) the

actual process of writing the payload to Flash by repeated

program and erase stress.

For a given message, we first choose a set of pages and

blocks in which to encode the message based on the hiding

key and the number bits that need to be hidden. Then, we

divide the bits within each page into fixed size groups. Each

group is used to store one message bit. The page, block, and

group selections are based on the hiding key in a way that

cannot be predicted without the key. In our implementation,

we used RC4 to choose the Flash bit locations for each

message bit.

Then, the algorithm determines which value (0 or 1) needs

to be written to each bit location based on the message bit

to be encoded. If a group is to store a “1” value, we will

program (write a 0) the bits in the group, and the group will

experience full program and erase stresses. If a group is to

store a “0” value, the bits in the group will be set to 1, and

will see less stress.

With the payload mapped to bits in Flash memory, we

perform the actual write (program/erase) to Flash (Part B).

We decide on a set number of stresses N to exert on the

Flash. N is chosen to ensure an acceptable bit error rate

without causing excessive stress. Each page is programmed
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Algorithm II: Decoding

Part A – Reading the program time from Flash
1 For each selected block
2 Erase the block
3 Program every bit in the block to 0
4 Erase the block
5 For each selected page
6 For i = 1, 2, ...,M
7 Partial program the page to 0 (abort a program operation after time T )
8 Read the page
9 For each bit in the page
10 If the bit changed from 1 to 0
11 Set programtime for this bit to i
12 End if
13 End for
14 End for
15 For each bit
16 If the bit did not flip
17 Set its programtime to be M + 1
18 End if
19 End for
20 End for
21 Erase the block
22 End for

Part B – Extracting the payload message
1 For each selected block
2 For each selected page
3 Calculate the median X of the program times for all the bits
4 For each bit
5 If its programtime > (X/2)
6 Set programtime to 1
7 Else
8 Set programtime to 0
9 End if
10 End for
11 Generate the group for each message bit with the page hiding key
12 For each group
13 Calculate the average program time for the group
14 If the average is less than Th
15 Recover the message bit: 1
16 Else
17 Recover the message bit: 0
18 End if
19 End for
20 End for
21 End for

Figure 8. An algorithm to decode (recover) a payload from Flash memory
program time.

N times in order to imprint the payload into the Flash. In

our experiments, we found that several hundred to a few

thousand PE cycles are sufficient for SLC chips. An even

smaller amount of PE cycles are enough for MLC chips.

C. Recovery Algorithm

Figure 8 describes our algorithm to decode a payload

hidden by our encoding algorithm in Flash bit program

time. Again, the algorithm is divided into two parts: (A)

physically reading the per-bit program time from Flash,

and (B) recomposing the payload from the program time

distribution.

To read the hidden information, we must measure the

program times for every bit in the pages containing the

hidden bits. To do so, we use the partial programming

algorithm described in the previous section. We choose M
such that at the end of M partial programs, more than half

of the bits, are programmed. The program time of a bit is

expressed as the number of partial program cycles needed

to flip the bit from 1 to 0. For the bits that do not flip after

the M partial program operations, their program times are

set to be a constant above M (i.e. M + 1).

To reconstruct the payload from the per-bit program times,

we apply two thresholding steps. First, we compute the

median program time X across all bits within each page.

Then, the program time of each bit within a page is quantized

based on the median; if a bit’s program time is above half

the median program time (X/2), then its program time is set

to 1; otherwise it is set to 0. (X/2) was chosen empirically.

The bits are then divided into the groups specified by the

hiding key. Within each group, the average of each individual

bit’s program times (now consisting of only 1 and 0) is

computed, and the second thresholding step is performed.

Each bit in the payload is set to 1 if the average program

time of the corresponding group is below the threshold Th.

Otherwise, the bit is set to 0.

In practice, with sufficient hiding PE cycles, we saw that

there exists an obvious gap between the average program

times of the more-stressed and less-stressed groups. As

a result, it is straightforward to set the threshold Th to

distinguish the two types of groups. For each page, we first

sort the average program time of each group. Suppose the

sequence of sorted program times is X0, X1, X2, ..., XN .

Then we calculate the intervals between the sorted average

program times and get X1−X0, X2−X1, .... Suppose the

maximum interval is XM −XL, then we set the threshold

to be in the middle of that interval; Th = (XM+XL)/2. In

this way, we can get a per-page threshold. For the cases with

low hiding PE cycles, where there is no clear gap between

the two clusters, the threshold is set to be a constant across

pages based on the histogram of the average program times

from multiple blocks.

For simplicity, we describe and evaluate the algorithm for

the case where all bits within a selected page are used to

hide bits. In order to make detection more difficult, it is also

possible to only use a small subset of bits within a page. We

leave this variant for future work.

V. EVALUATION

In this section we evaluate the proposed scheme through

experiments on Flash chips. In addition to validating correct

operation of the encoding and decoding algorithms, we

also study the robustness across various design parameters,

performance, detectability, recovery without the hiding key,

and erase tolerance.

A. Evaluation Setup

1) Testbed Device: Our experiments use a custom Flash

test board as shown in Figure 9. The board is made entirely

with commercial off-the-shelf (COTS) components with a

custom PCB. There is a socket to hold a Flash chip under

test, an ARM microprocessor to issue commands and receive

data from the Flash chip, and a Maxim MAX-3233 chip
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Figure 9. Flash test board.

Manufacturer Part Number Size Qty Process
Hynix HY27UF084G2B 4 Gbit 1 5xnm class

SLC

Micron MT29F2G08ABA 2 Gbit 5 34nm
EAWP-IT:E4 SLC

Micron MT29F4G08ABA 4 Gbit 15 34nm
DAWP:D SLC

Micron MT29F16G08CB 16 Gbit 1 –
ACAWP:C MLC

Numonyx NAND04GW 4 Gbit 1 57nm
3B2DN6 SLC

Table I
TESTED FLASH CHIPS.

to provide a serial (RS-232) interface. USB support is

integrated into the ARM microcontroller. We also wrote the

code to test the device. The setup represents typical small

embedded platforms such as USB Flash drives, sensor nodes,

etc. This device shows that the techniques can be applied to

commercial off-the-shelf devices with no custom integrated

circuits (ICs).

2) Flash Memory Chips: The experiments in this paper

were performed with five types of Flash memory chips from

Numonyx, Micron, and Hynix. Table I shows their details.

We primarily performed experiments with Micron 4Gbit

chips. Experiments using other models will be marked.

In most experiments, we only used the first 4,096 bits

of 16,896-bit pages to avoid performance overheads given

the limited amount of memory in the microcontroller. We

will refer to the first 4,096 bits as a “page” in the following

discussion. For the analyses of per-page read/program time

and per-block erase time, we used the entire page.

B. Robustness - Bit Error Rate

In this subsection, we first study whether the proposed

scheme can reliably hide and recover bits in the program

time characteristics. Here, we use the bit error rate (BER)

as the metric for measuring robustness. To measure the BER,

we hid a randomly generated message into Flash memory

and compared the retrieved message with the original.

In the baseline experiment, we used the first 4,096 bits

of a page and divided them into 32 groups (128 bits each)

based on a randomly selected hiding key. Then, we selected

Figure 10. Influence of hiding stress on BER.

Figure 11. Influence of group size on BER.

multiple pages and blocks across a Flash chip to form 5,120

groups, which represent 5,120 hidden bits, and stored bits

using 5,000 program and erase (PE) cycles in the encoding

process. In this case, we got a bit error rate (BER) of 0.0029

(0.29%).

Figure 10 shows the BER as a function of hiding stress,

which is the number of program/erase (PE) cycles used to

stress each group in the hiding process. The blue line shows

the average BER using a single Micron 4Gbit chip. For each

data point in the figure, the BER is computed over 5,120 bits

of hidden information with the group size of 128 bits. For

hiding stress levels of 2,500 and 5,000 PE cycles, we also

show the statistics across 15 Flash chips; the red triangles

show the average BER and the error bars show the maximum

and minimum BERs across the 15 chips. We can see that the

BER decreases as the hiding stress increases. More stress

increases the program time difference between bits hiding

1s and 0s. However, the incremental benefit after 5,000 PE

cycles is rather small. Note that the typical lifetime of an

SLC Flash chip from the datasheet is 100,000 PE cycles.

There is also a trade-off between the robustness of the

scheme and its hiding capacity. When more physical bits

are included in a group, the capacity decreases. On the other

hand, the statistical variations among groups will decrease as
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Figure 12. Influence of page interval on BER.

Figure 13. Influence of initial stress level on BER.

the group size increases. Therefore, the BER decreases with

an increasing group size, as shown in Figure 11. It is also

observed that neighboring pages have a strong influence on

each other; stressing one page may also cause some stress

in a neighboring page. To solve this problem, only a subset

of pages with a specific interval K can be used within a

block. If K is 4, then only page 0, page 4, page 8, and so

on are used to hide information while the rest is not used.

The influence of this page interval on the BER is shown in

Figure 12. The experimental results suggest that there is not

much benefit to using a group size beyond 128 and a page

interval beyond 4 for these chips. Figure 11 and Figure 12

were generated from the 2Gbit Micron chips, but we found

that the group size of 128 and page interval of 4 also work

well for the 4 Gbit chips.

The effectiveness of the method on moderately used Flash

chips is also studied. The influence of the initial stress

level before the encoding process on the BER is shown in

Figure 13. Here, we aim to simulate the normal usage of

the Flash chip. So, in each program operation for the initial

stress, random data are programmed. For example, the BER

at the initial stress level of 10 PE cycles shows the error rate

when bits are hidden after 10 PE cycles of programming

random data. It can be observed that as the initial stress

5,000 Hiding PE 10,000 Hiding PE

BER after zero retention 0.0029 0.0021
(1 post PE cycle)

BER after 2-day retention 0.0141 0.0035
(3 post PE cycles)

BER after 3-day retention 0.0187 0.0045
(5 post PE cycles)

BER after over a month 0.0178 0.0031
retention(7 post PE cycles)

Table II
RETENTION CHARACTERISTICS OF THE HIDDEN MESSAGE.

level increases, the BER also increases. However, a higher

initial stress level can be tolerated by increasing the stress

level in the encoding process. Note that the error rate is

still manageable (less than 10-15%) even after hundreds of

normal PE cycles.

The retention characteristics of the hiding scheme are

shown in Table II. Note that since each decoding performs

2 PE cycles, these retention characteristics include impacts

from additional PE cycles in addition to the time between

information hiding and retrieval. In the first three rows of

Table II, the BER increases as retention time and post-

hiding PE cycles increase. In the last row, the BER actually

decreases a little compared to the third row. The results

suggest that the retention time has little effect on the BER.

Intuitively, given that the hiding scheme utilizes cell aging,

this result is also supported by the fact that a worn-out Flash

memory does not recover greatly even after having been left

unattended for a long time.

C. Performance

In our experiments, when a whole page is used for hiding,

it takes about 123.6 seconds to perform 5,000 PE cycles

of hiding stress on a block, which embeds 2,048 bits of

information in the block. The hiding throughput is around

16.6 bits/second. The upper limit of the throughput can

also be calculated using the page program time and block

erase time given in the Flash memory chip datasheet. The

typical page program time is 200 microseconds and the

typical block erase time is 700 microseconds. With 2,048

hidden bits in 16 pages of a block, the 5,000 PE cycles

will take (0.2 ∗ 16 + 0.7) ∗ 5, 000/1, 000 = 19.5 seconds.

The throughput will be about 105 bits/second. This is the

ideal case which does not include program data transfers

and microcontroller overhead. The hiding throughput will

also be higher if we use a smaller number of PE cycles for

stressing, or if we use smaller groups.

In order to read the hidden information, one needs to

obtain per-bit program times using partial programming.

The characterization speed depends on the number of partial

programs, M , used in the decoding algorithm. For reading

hidden bits (decoding), we only need to perform partial

programs until more than half of the bits flip. In our

experiment, M for decoding is around 30, and it takes

around 3.63 seconds to characterize 16 pages, which contain

2,048 hidden bits. Therefore, the read throughput is about
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564 bits/second. The read throughput will be higher if the

hiding scheme uses a smaller number of Flash bits to encode

each hidden bit.

For a detailed analysis to detect hidden bits (see V-D3),

one needs to obtain a complete program time distribution

with a large M . In our testbed, it takes 612.6 seconds to

characterize a block using M = 1, 200 even if we ignore

data transfer from the microcontroller to the host computer

and processing time on the host. A 4Gbit Flash memory

chip has 4,096 blocks, so obtaining the complete program

time distribution of the whole chip will take around 29

days. Higher capacity chips will take even more time to

characterize for detection and decoding. For comparison,

simply reading the digital content from the 4Gbit Flash

chip will take approximately 4 minutes. Therefore, fully

characterizing the entire Flash chip without knowing where

hidden information is located is quite time consuming.

D. Detectability

The previous subsection shows that the per-bit program

time in Flash memory can be controlled sufficiently to

reliably store hidden information. Here, we discuss whether

an attacker with access to a Flash chip can detect the

existence of hidden information. In essence, the question

is whether variations in Flash memory characteristics due to

information hiding can be distinguished from variations due

to normal use.

The proposed information hiding scheme uses per-bit

program time, which is not visible from the digital content

in a Flash memory device. Also, the hiding operation does

not change normal Flash functions; users can still read,

erase, and write Flash memory in the expected manner.

Therefore, the hidden information cannot be detected from

the inspection of digital content. Instead, an attacker needs to

rely on checking the analog properties of the Flash memory.

The following list summarizes the steps that an attacker

needs to take in order to analyze the analog properties, and

in particular, the timing properties, of Flash memory.

1) Check for anomalies in timing of normal Flash oper-

ations.

2) Pick pages/blocks for more detailed analysis.

3) Collect per-bit program time for a selected page.

4) Analyze the per-bit program time distribution of a

page.

5) Repeat Steps 2 to 4.

In order to determine whether a Flash chip contains

hidden information or not, an attacker can start by checking

the timing of normal Flash operations such as per-page

program time and per-block erase time, which can easily

be obtained from normal operation. If these operations do

not show any anomaly – their timing is within the range

of timing characteristics for normal use – then the attacker

needs to obtain and analyze per-bit program time by picking

a page for detailed analysis, collecting per-bit program times

through partial programs, and then running an analysis. If

there is no way to identify suspicious pages and blocks from

normal operations, in the worst case, the attacker will need

to perform the detailed analysis for every single page in

Flash memory, which will take a long time.

In the rest of the subsection, we will discuss each step

that the attacker needs to take and whether the information

that is hidden can be detected in each step.

1) Anomalies in Normal Flash Operations: Stressing a

Flash chip may affect the analog characteristics of normal

memory operations such as page read time, page program

time, and block erase time. If these characteristics change

significantly due to our scheme, an attacker could use that

to detect the existence of hidden information. Therefore, we

first study the impact of information hiding and normal Flash

use on the page read time, page program time, and the block

erase time.

Using the Micron 4Gbit chips, we tested six hiding PE

cycle counts (625, 1,250, 2,500, 5,000, 7,500, and 10,000)

and five normal PE cycle counts (0, 32, 64, 128, 256) on

4 different chips. On each chip, we used 20 blocks, each

containing 64 pages. Because we hide data once every fourth

pages, only 16 pages within each block are used to hide

information. A normal PE cycle is performed by writing

randomly generated data to every page in a block, then

erasing that block, simulating wear from normal usage.

To study the impact of information hiding on the page read

time, we measured the time to read pages (after performing

an erase) when they were fresh as well as after 5,000 hiding

PE cycles. The read times were virtually identical before and

after the hiding stress, showing that the read time would not

be a good indicator for the existence of hidden information.

Figure 14 shows the program times for individual pages in

two blocks from one chip, one fresh block and the other with

hidden information. As shown in the figure, even though

our hiding algorithm only uses every fourth page in a block,

there is no visible pattern in per-page program time. The

figure also shows that the program time of a page shows

distinct values. The distribution between the distinct program

times may change as a page wears out with PE cycles.

However, we found that the possible program time values

for each chip stay the same across the range of stress levels

in both normal usage and information hiding cases.

Figure 15 shows the program time distributions across

four chips for three different stress levels: fresh, 5,000 hiding

PE cycles, and 32 normal PE cycles. The figure again shows

that the program time falls into a small set of distinct

values even though there are more distinct values across

4 chips. More importantly, pages with and without hidden

information share the same set of program time values. Also,

unlike per-bit program time, the experimental results show

that the page program time does not change significantly

with stress, at least for the particular 4Gbit chips that we

tested. This is likely due to the fact that the page program
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Figure 14. Program time for pages within a block.

Figure 15. Program time histogram for three stress levels.

time is determined by the control circuit based on the slowest

bit within a page. Therefore, each page’s program time by

itself does not show whether the page has hidden information

or not.

Figure 16 and Figure 17 illustrate the block erase time

distribution within a chip and across 4 chips, respectively.

Similar to the program time, the erase time also falls into

a few distinct levels, which are common across different

stress levels. On the other hand, the figures show that the

erase time tends to increase as the stress level increases. As

a result, blocks with hiding stress are more likely to have a

long erase time compared to fresh block without any stress.

In that sense, the erase time may be used to distinguish fresh

Figure 16. Erase time for 20 blocks within a chip.

Figure 17. Erase time histogram for three stress levels (across 4 chips).

pages from blocks with hidden bits. However, because both

normal PE cycles and hiding PE cycles increase the erase

time, it is unclear how to distinguish blocks with hidden

information from blocks with normal PE stress based on the

erase time distribution (see Figure 17). We also found that

there exist fairly large chip-to-chip variations. For example,

some fresh chips may have over 50% of blocks that show a

long erase time even without any PE stress.

The experimental results so far show that there is no

obvious pattern in program time and erase time distributions

to distinguish pages or blocks with hidden information from

pages or block with normal PE stress. Yet, it may be possible

that there exists a pattern that is difficult to detect in human
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Figure 18. SVM accuracy for detecting hidden information (per-page
analysis).

Figure 19. SVM accuracy for detecting hidden information (per-block
analysis).

eyes. To further study detectability of hidden information

based on normal Flash operations timings, we tried a support

vector machine (SVM) to predict whether a page or a block

has hidden information. A support vector machine is a

machine learning model that is widely used to recognize

patterns and classify data sets. We used libsvm, a popular

SVM software package [1].

For the SVM experiments, we constructed multiple data

sets using pages/blocks with hidden information as well as

pages/blocks with normal stress, combining data from one

hiding stress level and one normal stress level. We used

two hiding stress levels (2,500 and 5,000 PE cycles) and

five normal stress levels (0, 32, 64, 128, 256 PE cycles),

collected from 4 Flash chips. Then, for each data set,

the SVM was trained with data from 3 chips and then

tested on data from one remaining chip. This construction

represents an idealistic scenario for an attacker. In practice,

the attacker will need to consider all possible stress levels

for both normal uses as well as hiding, which will add more

variations.

Figure 18 shows the prediction accuracy when the SVM

is given the program time and erase time for each page

individually without a notion of blocks. The SVM performs

relatively well when distinguishing fresh pages and pages

with hiding stress. However, the accuracy drops significantly

when comparing pages with hiding stress and pages with

moderate levels of normal PE stress. In such cases, the

accuracy is not much better than random guesses (50%).

The SVM performs better again for cases with high normal

stress levels beyond 128 PE cycles because the normal stress

exceeds the hiding stress level. In essence, the results suggest

that the SVM can distinguish pages with different stress

levels, but not pages with hiding stress and normal stress.

Figure 19 shows the accuracy of another SVM construc-

tion where the input vectors were organized by block. In

this design, each input is a vector of program and erase

time pairs for each page within a block, allowing the SVM

to see a pattern within a block instead of handling each page

separately. The goal of this SVM is to identify blocks with

hidden information. The accuracy of this SVM was similar

to that of the per-page SVM. The SVM could distinguish

more stressed blocks from less stressed blocks, but not the

hiding stress from the normal stress.

While not shown here, we also tested cases where data

from all stress levels were combined together to form a large

data set. We found that dealing with multiple stress levels

significantly reduces SVM prediction accuracy for both the

page-granularity analysis and the block-granularity analysis.

The SVM predictions were no better than random guesses.

The experimental results so far show that it is diffi-

cult to distinguish pages/blocks with hiding stress from

pages/blocks with normal stress even on one particular Flash

model (Micron 4Gbit). In practice, an adversary will also

need to deal with diversity and variations among multiple

Flash manufacturers and models, which will make detecting

hidden bits even more difficult.

In fact, we found that analog characteristics of Flash

memory varies significantly from model to model. For

example, we tested 2Gbit Flash chips from Micron, which

have an identical specification with the 4Gbit chips except

for the capacity. Surprisingly, the 2GBit chips, although only

a generation apart from the 4Gbit chips, showed a markedly

different behavior compared to the 4Gbit chips. For 2Gbit

chips, the PE stress had little impact on block erase time

while noticeably changing page program time. In essence,

the 2Gbit chips showed the opposite type of behavior as the

4Gbit chips where the erase time shows a significant shift.

In both cases, we still found that it is difficult to distinguish

the impact of hiding stress from that of normal stress.

The significant variations across Flash models imply that

an attacker will need to build and train an SVM model

for each Flash chip model in order to use the SVM for

determining the existence of hidden data on a particular chip.

Obviously, this would require a significant investment on the

part of the attacker. Even then, as we have shown above,

there is no guarantee that an SVM model using normal Flash
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Figure 20. Partial program number distribution curve averaged over 5
blocks.

operations will be able to determine the existence of hidden

data with a high probability.

2) Page Selection and Per-Bit Program Time Collection:
The study of normal Flash operations shows that an ad-

versary cannot simply determine whether a Flash chip has

hidden information or not based on measurements of normal

Flash operation times. In essence, the hiding stress cannot be

effectively distinguished from normal PE stress. As a result,

an attacker needs to perform a more detailed analysis on per-

bit program times in an attempt to determine the existence

of hidden data, which we will discuss next.

To perform the detailed analysis of each page, the attacker

will have to characterize each page. However, characteriz-

ing per-bit program time for every page is quite a time-

consuming process. As discussed in Section V-C, a 4 Gbit

Flash memory chip requires around 29 days to characterize.

For larger chips, which are common today, the per-bit

characterization will take even longer.

To avoid expensive characterization of every page, an

attacker may be able to use normal Flash operation times to

select candidate pages for the detailed analysis. For example,

for the 4Gbit Micron chips, an attacker may consider blocks

with a higher erase time to be more likely to have hidden

information. However, the study in the previous subsection

suggests that pages and blocks with hiding stress can be

hidden by stressing other blocks on the chip with a moderate

number of normal PE cycles.

3) Per-Bit Program Time Analysis: A more detailed de-

tectability analysis involves analyzing the partial program

time distribution for bits within a page. In normal usage,

the bits are programmed 0s and 1s randomly over time. In

the hiding scheme, some bits are always programmed 0s

and others are always programmed 1s. However, the hiding

scheme does not cause an obvious bimodal distribution due

to large intrinsic variations of bits in a page. Figure 20 shows

the partial program time distribution averaged over 5 blocks.

It can be seen that they are very similar to each other.

To statistically analyze the distributions, we turned to

Figure 21. SVM accuracy for detecting pages with hidden information
(using raw data).

Figure 22. SVM accuracy for detecting pages with hidden information
(using statistical moments).

support vector machines again. To train an SVM for the

per-bit analysis, we prepared pages across 2 different hiding

PE stress levels (2,500 and 5,000) and 8 different normal

wear stress levels (32, 64, 128, 256, 512, 1,024, 2,048, and

4,096 PE cycles). We used 5 blocks on each chip, 16 pages

per block, for a total of 80 pages per chip, at each stress

level; i.e. on one chip, there are 80 pages with a hidden

message stressed at 2,500 hiding PE cycles, 80 pages with a

hidden message stressed at 5,000 hiding PE cycles, 80 pages

without hidden data stressed 32 normal PE cycles, and so on.

We characterized pages across 15 different chips. Each page

represents a data point in the SVM. The SVM had access to

the complete raw data for each page: the vector representing

a page and an entry for each bit, with the entry’s value as

the partial program time.

We then grouped the data from all chips into multiple

sets, combining one hiding stress level and one normal stress

level. For example, one data set comprises the hidden data

with 2,500 hiding PE cycles and the data with 128 normal

PE cycles, another data set used 5,000 PE hidden data and

4,096 normal PE cycles, and so on, with a data set for each

combination of hiding and normal PE cycles.
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Figure 23. Receiver operating characteristic curve for data set including
2500 hiding PE and 128 normal PE stresses.

For each data set we labeled the hidden pages and non-

hidden pages appropriately, trained the SVM with data from

chips 1-10, and then used the resulting SVM to predict data

from chips 11-15. Overall prediction accuracy of the SVM

on test data from chips 11-15 is shown in Figure 21 and

Figure 22.

Each data set is represented by a point in Figure 21.

Normal PE stress level is shown on the X-axis. The data sets

sharing 2,500 hiding PE stress are connected by a solid line;

the data sets sharing 5,000 hiding PE stress are connected

by a dashed line. Accuracy is shown on the Y-axis.

Overall accuracy is slightly better than random (50%) for

all data sets, with increased accuracy near the extremes of

normal PE stress cycles. This matches the expectation that a

given page with a certain hiding PE stress level looks similar

to a page with a certain normal PE stress level. The further

the normal PE stress level varies from the matching hidden

PE stress level, accuracy should increase.

The data sets in Figure 22 show the SVM accuracy using

a different representation for page characteristics. Instead of

using the partial program count for every single bit in a page,

a page was summarized by several statistical parameters:

minimum, maximum, average, variance, skew, and kurtosis.

We can see that prediction accuracy is similar to the SVM

using the raw bit-level data.

Figure 23 shows a more detailed analysis of the SVM

accuracy using the data set for 2,500 hiding and 128 normal

stresses levels. The receiver operating characteristic (ROC)

curve plots the true positive rate versus the false positive rate,

and gives an indication of how accurate the SVM prediction

is, for a given false positive rate. The graph shows that the

SVM prediction cannot achieve a high true positive rate

without incurring a large percentage of false positives.

We also note that detecting hidden information is likely to

be even more difficult in practice. For example, the hiding

scheme may only use a subset of a page instead of every

Figure 24. BER as a function of the percentage of correct group members.

bit. Also, a classifier such as an SVM will need to deal with

multiple stress levels together. We found that SVM accuracy

is lower when a data set contains multiple stress levels.

E. Retrieval without the Hiding Key

Without the hiding key, one can still attempt to extract

the hidden information. By estimating (through random

guessing if necessary) which bits are grouped together, an

attempt at extraction could reveal data if enough of the

estimate is correct. Figure 24 shows the bit error rate versus

the percentage of correctly guessed group bits.

With a large enough group and page size, it is difficult to

correctly guess enough of the group members. For our group

size of 128, the probability that 10% (13) of the bits in a

randomly selected group of 128 bits belong to the desired

group is approximately
(
128
13

) ∗ (1/32)13; or 0.5%. As there

are 32 groups of 128 bits in a 4,096 bit page, each bit

has a 1/32 chance of being in the desired group. Even at

10%, the bit error rate is approximately 0.4. The chance of

guessing 20% of the bits in a randomly selected group drops

precipitously; it is 7.3e-11%. In addition, an attacker would

have to try several group sizes.

Group size is a security parameter that one can adjust in

order to provide greater or lesser protection against brute

force group selection.

F. Erase Tolerance

To test the erase tolerance of the scheme, we deliberately

stress the chip after hiding information on the chip. For

this post-hiding stress, we program every bit of the page

to 0, in order to put the maximum stress on the bits. The

influence of post-hiding stress on the BER versus the number

of PE cycles performed after hiding information is shown

in Figure 25. From the figure, we can see that the BER

increases as the post PE stress level increases. However, the

BER of hidden information is quite reasonable, even after

hundreds of post PE cycles. For example, with 5,000 hiding

PE cycles, the BER is less than 10% even after 500 post-

hiding stress cycles.
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Figure 25. Influence of post hiding PE cycles.

G. Different Flash Models

To ensure that our scheme applies more generally, we

tested several different Flash memory models (shown in

Table I). On all of the chips, we were able to successfully

hide and recover information. We noticed that chips from

the same manufacturer tend to perform similarly. For the

Micron 2Gbit chips, 5 chips are tested using 10,000 hiding

PE stress and 128-bit groups. The mean BER for these five

chips is 0.0030. The maximum BER and minimum BER

are 0.0041 and 0.0016, respectively. Chips from different

manufacturers perform differently. The tested Hynix chip

has a similar BER, 0.0021, as the Micron chips in the same

experiment. However, for the Hynix chips, page 0 is different

from other pages in a block and, in the decoding process,

a different threshold Th is needed to convert the average

program time into the final binary bit for this page. The

tested Numonyx chip has a very large gap for the group

averages with the correct hiding key, making its BER 0 in

our experiment.

We also included a multi-level cell (MLC) chip in our

testing, as these chips are commonly used. MLC chips map

multiple bits to each memory cell. As a result, one needs

to know the mapping of bits to Flash cells to selectively

stress certain cells. For the Micron MLC chip we tested, we

only used the upper page in a pair of pages (as specified

from the datasheet). We programmed 0 to the bits which

we want to stress and 1 to the rest of the bits. Then, we

programmed all of the bits to 1. Interestingly, we found that

bits within a page split into a fast group and a slow group in

this MLC chip, and only the faster programming bits worked

for information hiding. The MLC chip required significantly

fewer PE cycles to achieve the same level of BER compared

to the SLC chips. For example, we used 2,000 PE cycles for

our experiments and got a BER of zero – there was a large

gap between the more stressed and less stressed groups.

VI. RELATED WORK

This section briefly summarizes prior work in steganog-

raphy technologies and hardware security functions, and

discusses how they are related to the information hiding

technique in this paper.

A. Steganography

With the advent of information technology, digital

steganography has become the subject of considerable study.

A large body of work has focused on hiding information

within digital files, such as images, videos, audio files, text,

and others [2], [10], [8]. These schemes usually hide data in

unused meta-data fields, or by exploiting noise in the digital

content itself; i.e. altering colors slightly in an image or fre-

quency components in an audio file. In all cases the hidden

data is tied to the data in the digital file. A recent proposal [5]

takes a different approach: using the fragmentation pattern

of digital files in a file system as a covert channel, avoiding

tampering with the digital content itself. However, hidden

data is still innately tied to the existence of a digital file.

Also, modifying hard drive firmware has been investigated

as a potential way to hide information [14]. Data is hidden

in sectors marked as unusable at the firmware level (instead

of the OS or filesystem level), which renders the sectors

inaccessible to most software and complicates recovery, as

it is difficult to tell legitimately bad sectors from ones used

for hiding.

Our proposed scheme for Flash memory shares the con-

cept of exploiting noise to hide data, in the sense that

intentionally created biases are hidden in inherent variations

in Flash program time. However, unlike the above methods,

in which hidden information depends upon plainly visible

digital files, our information hiding scheme uses analog

properties of Flash. As a result, hidden information is decou-

pled from the digital content and instead tied to a physical

object. The use of physical properties makes detecting,

copying, or erasing of hidden information difficult because it

requires detailed and time-consuming analog measurements.

Some steganographic techniques hide information where

it is not encoded in plainly visible digital files. For example,

there exist methods to hide information in the noise of

wireless and optical transmissions by modifying the physical

layer protocol [6], [15], [11]. Our work presents a new

way to hide information in Flash memory. Unlike previous

techniques, which often require special tools or modifica-

tions to existing protocols, the proposed information hiding

technique can be applied to Flash memory chip through a

standard interface without any hardware modification.

To make the steganographic functions available in the

embedded domain, Stanescu et al. proposed to use an FPGA

to efficiently process steganographic algorithms [12]. Our

technique gives embedded platforms the ability to hide info

within the device at a level not visible to the file system,

and requires no additional hardware, as Flash memory is

common on embedded platforms.
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B. Flash Based Security

We hide a message in the per-bit program times of

Flash memory. Given the popularity of Flash memory in

computing systems, there have been studies on analog

characteristics of Flash memory [3]. While we have gained

insight from the previous work, it primarily focuses on using

analog variations to build more efficient computing systems

rather than enhancing security.

Recently, there have been proposals to use noise and

variations in Flash memory for security by generating true

random numbers and unique chip fingerprints [9], [16]. We

use the partial programming technique that was proposed

by the previous study. However, this paper proposes a

completely new application of Flash memory in the context

of information hiding instead of random number generation

and fingerprinting.

C. Physical Unclonable Functions

Physical Unclonable Functions (PUFs) exploit process

variation to provide unique fingerprints for logic circuits

[13]. Special circuits are built that vary their output de-

pending on the process variation specific to one instance

of the chip. This work is related to PUFs in the sense that

we exploit physical properties and process variations for

security purposes. However, unlike PUFs, our information

hiding scheme uses process variations to hide information

instead of generating device-specific fingerprints and keys.

Also, our information hiding technique can be applied using

standard Flash chips and does not require any custom

circuitry.

VII. CONCLUSION

In this paper, we demonstrate a technique to hide in-

formation using the program time of individual bits in

Flash memory. Program time is an analog characteristic

of Flash and is not visible from digital content, does not

affect normal memory operation, and survives Flash data

erasure. Measuring program time can be done over the

standard Flash interface (with no hardware modification)

via partial programming. Using groups of bits to store

one bit of payload allows the technique to effectively hide

information robustly with low bit error rates, and makes

detection difficult to prove unless one knows the hiding

key. Without the key, measuring analog characteristics of

the Flash chip reveals nothing that cannot be explained

by normal wear or manufacturing variation. We note that

retaining a copy of the entire analog characteristics of the

Flash memory requires a large amount of time.
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