
The Parrot is Dead:

Observing Unobservable Network Communications

Amir Houmansadr Chad Brubaker Vitaly Shmatikov

The University of Texas at Austin

Abstract—In response to the growing popularity of Tor
and other censorship circumvention systems, censors in non-
democratic countries have increased their technical capabilities
and can now recognize and block network traffic generated by
these systems on a nationwide scale. New censorship-resistant
communication systems such as SkypeMorph, StegoTorus, and
CensorSpoofer aim to evade censors’ observations by imitating
common protocols like Skype and HTTP.

We demonstrate that these systems completely fail to achieve
unobservability. Even a very weak, local censor can easily
distinguish their traffic from the imitated protocols. We show
dozens of passive and active methods that recognize even a
single imitated session, without any need to correlate multiple
network flows or perform sophisticated traffic analysis.

We enumerate the requirements that a censorship-resistant
system must satisfy to successfully mimic another protocol and
conclude that “unobservability by imitation” is a fundamentally
flawed approach. We then present our recommendations for the
design of unobservable communication systems.

Keywords-Censorship circumvention; unobservable commu-
nications; Tor pluggable transports

I. INTRODUCTION

Censorship-resistant communication systems such as the

Tor anonymity network1 are increasingly used by people in

non-democratic countries to bypass restrictions on Internet

access, share information, browse websites prohibited by the

regime, etc. In response, government censors have greatly

improved their technical capabilities and are now able to

perform real-time deep-packet inspection and traffic analysis

on ISP-level volumes of network traffic (see Section IV-C).

This increase in censors’ power threatens to make anony-

mous communication systems unavailable to users who need

them the most. Tor, in particular, has faced frequent blocking

even after deploying private “bridges” [17] that hide the

addresses of Tor relays in order to circumvent IP address

filtering. The problem is that Tor traffic remains recognizable

by its characteristic patterns and content signatures.

The continuing availability of low-latency, censorship-

resistant communications thus critically depends on their

unobservability. This has motivated an entire class of cir-

cumvention systems that aim to achieve unobservability

by imitating popular applications such as Web browsers

and Skype clients. In the rest of this paper, we refer to

1https://www.torproject.org/

them as parrot circumvention systems. For example, Skype-

Morph [41] hides Tor traffic by mimicking Skype video

calls, CensorSpoofer [59] mimics SIP-based Voice-over-IP,

and StegoTorus [60] mimics Skype and/or HTTP.

Our contributions. We present the first in-depth study of

unobservability in censorship-resistant communication sys-

tems. We develop a taxonomy of adversaries and a detailed

list of technical requirements that a parrot system must

satisfy to successfully mimic another protocol.

We analyze the recently proposed parrot systems, includ-

ing SkypeMorph, StegoTorus, CensorSpoofer and their vari-

ants, and show that they completely fail to achieve unobserv-

ability. We demonstrate multiple techniques to distinguish

their traffic from the protocols they attempt to imitate and

prove that all of these techniques work in practice.

Most of our methods assume a much weaker adversary

than considered by the designers of these parrot systems.

They aim to foil large-scale statistical traffic analysis by

ISP-level adversaries, yet even a single traffic flow generated

by any of their systems can be recognized at a low cost

by a local network adversary (e.g, a censor in control

of a Wi-Fi access point or local router) because of the

glaring discrepancies between their crude imitations and the

behavior of genuine protocol implementations.

To give just one example, SkypeMorph and StegoTorus

take great care to generate datagrams whose size distribu-

tions mimic a Skype video chat session, yet forget to mimic

the TCP control channel that always accompanies a genuine

Skype session. These imitation mistakes are numerous and

in many cases unfixable. Even plausible-looking fixes (e.g.,

“add an imitated TCP channel”) do not help in practice

because they do not correctly mimic the complex, dynamic

dependences exhibited by the genuine protocols.

We argue that the entire approach of “unobservability by

imitation” is fundamentally flawed. Convincingly mim-

icking a sophisticated distributed system like Skype, with

multiple, inter-dependent sub-protocols and correlations, is

an insurmountable challenge. To win, the censor needs only

to find a few discrepancies, while the parrot must satisfy a

daunting list of imitation requirements. Furthermore, it is not

enough to mimic some protocol; the parrot must plausibly

mimic a specific implementation of the protocol down to

every quirk and implementation-specific bug. For example,

2013 IEEE Symposium on Security and Privacy

© 2012, Amir Houmansadr. Under license to IEEE.

DOI 10.1109/SP.2013.14

65

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



StegoTorus’s imitation of an HTTP server does not look like

any known Web server and is thus easily recognizable.

We conclude with the lessons and recommendations for

designing unobservable communication systems. A promis-

ing alternative to parrots is offered by systems that operate

higher in the protocol stack [28, 29]: for example, instead of

imitating Skype, they run genuine Skype and transport their

traffic in the encrypted voice or video payloads.

II. UNOBSERVABILITY BY IMITATION

Intuitively, unobservability means that a censor can nei-

ther recognize the traffic generated by the circumvention

system, nor identify the endpoints engaged in circumvention.

Parrot circumvention systems aim to achieve unobservability

by mimicking a widely used, uncensored target protocol.

Popular imitation targets include HTTP, Skype, and IETF-

based VoIP. It is essential that the target be a common

protocol which the censor may be unwilling to block for

political or economic reasons. Imitating an unpopular pro-

tocol is futile because the censor will simply block both the

genuine protocol and its imitations.

Skype. Skype is a very popular Voice-over-IP (VoIP) system

based on a P2P overlay network of users running Skype

software. Skype’s proprietary design has been extensively

studied and reverse-engineered (see Appendix A).

A Skype client is an ordinary user who makes calls

and sends messages. Users are authenticated by a central

login server. A Skype supernode is a resource-rich user

with a public IP address and sufficient CPU, memory, and

network bandwidth [1, 5]. Supernodes relay media and

signals between clients that cannot communicate directly due

to network address translation (NAT) and firewalls.

IETF-based VoIP. IETF has several standards for VoIP

protocols, including network discovery to connect to the

VoIP network, session control to set up and tear down calls,

and media transmission to communicate voice datagrams.

Session Initiation Protocol (SIP) [51] is a popular session

control protocol. SIP is an application-layer protocol and can

run over TCP or UDP. A SIP system comprises user agents,

location services, registrar servers, and proxy servers. User

agents have registered SIP IDs and run SIP client software. A

location service is the VoIP provider’s database listing users,

their SIP IDs and network locations, etc. Registrar servers

are network machines operated by the VoIP provider that

receive SIP registration requests from user agents and update

their information in the location service. Proxy servers

receive call requests from user agents and forward them

either to the requested callees, or to other SIP proxies.

Once a VoIP session is established between two SIP

user agents, they use a media transmission protocol to

communicate the call traffic, e.g., audio data. Real-time

Transport Protocol (RTP) [53] is an IETF standard for

media transmission. Real-time Transport Control Protocol

(RTCP) is a sister protocol that controls an established RTP

connection by exchanging out-of-band statistics and control

information. Both RTP and RTCP run over UDP and have

encrypted versions, called SRTP and SRTCP, respectively.

If SRTP/SRTCP is used, an additional protocol is needed to

establish a shared key, e.g., MIKEY [3], or else user agents

may use pre-established keys.

Session Traversal Utilities for NAT (STUN) [50] is a set

of methods that allows a VoIP client behind NAT to discover

this fact and connect to a VoIP network.

III. PARROT CIRCUMVENTION SYSTEMS

A. SkypeMorph

SkypeMorph [41] is a pluggable transport [46] for Tor

intended to make the traffic between a Tor client and a Tor

bridge [17] look like a Skype video call.

The client obtains the bridge’s Skype ID in advance, e.g.,

through Tor’s BridgeDB [13]. The bridge logs into Skype

and picks a high UDP port. The client logs into Skype, picks

a high UDP port, and waits until the bridge’s ID is online,

then sends a Skype text message to the bridge containing the

client’s IP address, UDP port, and public key. The bridge

replies with a Skype message containing its own IP address,

UDP port, and public key. The exchanged public keys are

used to derive a shared secret key.

The client simulates the start of a video call by sending

a Skype ring signal to the server and then dropping the

call. The bridge does not “answer” this call. Instead, it

listens on its own UDP port for incoming SkypeMorph

messages and responds to the client’s UDP port. These

messages are encrypted with the shared secret key. Once

the encrypted UDP connection starts, both the client and

the bridge terminate their Skype runtime.

B. StegoTorus

StegoTorus [59] is a pluggable Tor transport derived from

Obfsproxy [44]. It adds chopping and steganography to

Tor clients and bridges. The chopper aims to foil statistical

analysis by changing packet sizes and timings. It carries Tor

traffic over links comprised of multiple connections. Each

connection is a sequence of blocks, padded and delivered

out of order. The steganography module aims to hide traffic

contents by mimicking HTTP, Skype, and Ventrilo.

Embed steganography. StegoTorus-Embed aims to mimic

a P2P connection such as Skype or Ventrilo VoIP. The

StegoTorus prototype uses a database of genuine, previously

collected Skype and Ventrilo packet traces to shape its traffic,

but users can supply their own traces. To ensure that traffic

patterns match, a StegoTorus client sends packet timings

and sizes to the StegoTorus server at the beginning of the

connection. In addition, StegoTorus emulates application

headers to match the traffic payload. The current prototype

generates application headers “by hand” because neither

Skype, nor Ventrilo are open-source.

66

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



HTTP steganography. StegoTorus-HTTP aims to mimic

unencrypted HTTP traffic by using a client-side request

generator and a server-side response generator. Both rely

on a pre-recorded trace of HTTP requests and responses.

Unlike StegoTorus-Embed, clients and servers use indepen-

dent HTTP traces; neither trace is temporally arranged.

The request generator picks a random HTTP GET request

from the trace and hides the payload produced by the

chopper in the <uri> and <cookie> fields of the request

by encoding the payload into a modified base64 alphabet

and inserting special characters at random positions to make

it look like a legitimate URI or cookie header.

The response generator picks a random HTTP response

consistent with the request and hides the data in the files

carried by this response. The StegoTorus prototype uses

PDF, SWF, and JavaScript files for this purpose.

C. CensorSpoofer

Unlike StegoTorus and SkypeMorph, which are pluggable

Tor transports, CensorSpoofer [59] is a standalone system

that (1) uses IP spoofing to obfuscate the server’s identity,

and (2) mimics VoIP traffic to obfuscate traffic patterns.

CensorSpoofer is mainly designed for censorship-resistant

Web browsing, where the upstream flow (requested URLs)

requires much less bandwidth than the downstream flow (po-

tentially large HTTP responses). Therefore, CensorSpoofer

decouples upstream and downstream connections. A Cen-

sorSpoofer client uses a low-capacity channel such as email

or instant messaging to send requests to the CensorSpoofer

server. The server hides HTTP responses by mimicking P2P

traffic from an oblivious dummy host. The CensorSpoofer

prototype focuses on mimicking UDP-based VoIP traffic,

thus dummy hosts are chosen by port-scanning random IPs

and picking the ones whose SIP ports are open.

A CensorSpoofer client initiates a SIP connection with

the CensorSpoofer server by sending a SIP INVITE to the

appropriate SIP ID. The CensorSpoofer spoofer replies with

a SIP OK message spoofed to look as if its origin is the

dummy host. Once the client receives this message, it starts

sending encrypted RTP/RTCP packets with random content

to the dummy host. At the same time, the spoofer starts

sending spoofed, encrypted RTP/RTCP packets to the client

ostensibly from the dummy host’s address.

To browse a URL, the client sends it through the upstream

channel. The spoofer fetches the contents and embeds them

in the spoofed RTP packets to the client. To terminate,

the client sends a termination signal upstream. The spoofer

replies with a spoofed SIP BYE message, the client sends a

SIP OK message and closes the call.

IV. ADVERSARY MODELS

A. Capability classification

Passive attacks involve observing and analyzing network

traffic and the behavior of Internet entities. Typical tech-

niques are statistical traffic analysis, deep-packet inspection,

and behavioral analysis.

Active attacks involve manipulation of network traffic.

Typical techniques are delaying, dropping, or injecting pack-

ets into existing connections, modifying packet contents,

throttling bandwidth, and terminating connections.

Proactive attacks aim to identify network entities involved

in circumvention by sending probes that are crafted to elicit

recognizable responses. For example, a censor may try to

discover Tor bridges by initiating connections to random

or suspected IP addresses [40]. By contrast, active attacks

perturb already existing connections.

B. Knowledge classification

Local adversary (LO) controls at most a few network

devices and can only observe a small number of connec-

tions. Examples include compromised home routers or Wi-Fi

access points, corporations monitoring employees, etc.

By contrast, a state-level adversary observes large vol-

umes of network traffic. Examples include malicious ISPs

and government censors. We further subdivide state-level

adversaries into two categories based on their resources.

State-level oblivious adversary (OB) has limited com-

putational and/or storage resources. He can neither keep

network traces for a long time, nor perform heavyweight

traffic analysis. An OB censor may possess capabilities like

deep-packet inspection (DPI), but can only apply them at

close to line speeds to short observations of network traffic:

for example, to individual packets but not across packets.

State-level omniscient adversary (OM) has ample process-

ing and storage resources. He can aggregate data collected

at different network locations and store all intercepted traffic

for offline, computationally expensive analysis.

C. Real-world censors

Repressive states like China, Iran, Cuba, Syria, and North

Korea have deployed the most aggressive Internet censor-

ship [16, 31, 38, 49], but censorship is practiced even by

Australia [4] and Italy [33], as well as enterprise networks

and search engines [35]. Some government censors are

“passive OB” in our classification, but the number of active

and proactive OM censors is growing [31].

The “Great Firewall of China” employs both active and

proactive censorship. Chinese censors proactively scan for

Tor bridges [61], even resorting to IP spoofing on occa-

sion [63]. In 2011, they were able to identify new Tor

bridges in less than 10 minutes [12] by actively probing SSL

traffic [56, Slide 41]. Once a Chinese Tor user connects to a

bridge for the first time, several probes requesting connection

are sent from different IP addresses inside China to verify

that this is indeed a bridge [63]. Chinese censors actively

enumerated all bridges offered on Tor’s website through

human interaction over several weeks [55, 56]. They also

67

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



enumerated and blocked all bridge IP addresses provided via

Gmail, leaving Tor with only the social network distribution

strategy and private bridges [56, Slide 24].

Iranian censors perform sophisticated deep-packet inspec-

tion. In 2011, they managed to detect and block all Tor

traffic for several weeks by noticing the difference between

the Diffie-Hellman moduli in “genuine” SSL and Tor’s

SSL. Later, they used the lifetime of Tor’s SSL certificates

to recognize Tor traffic [56, Slide 38]. Furthermore, Iran

repeatedly blocks all encrypted traffic [32].

Censors can even unplug an entire country from the

Internet, as in Egypt and Libya [56, Slides 29 and 31].

D. Adversary models of parrot circumvention systems

To infer the adversary models of the existing parrot

circumvention systems, we use the statements made in the

papers that describe their respective designs.

SkypeMorph. SkypeMorph acknowledges “probes per-

formed by hosts located in China, aimed quite directly at

Tor bridges” [41, §1, ¶4] and claims unobservability against

“a state-level ISP or authority,” able to “capture, block or

alter the user’s communications based on pre-defined rules

and heuristics” [41, §3, ¶1]. We infer that the SkypeMorph

censor can perform passive, active, and proactive attacks.

SkypeMorph also claims unobservability against powerful

censors who can perform statistical analysis and deep-

packet inspection. For example, the designers state that “the

censorship arms race is shifting toward the characteristics

of connections” [41, §1, ¶5], acknowledging the feasibility

of resource-intensive analysis. They also consider “behav-

ioral heuristics” to “detect a user’s attempt to circumvent

censorship” [41, §3, ¶2], including detection of proxy con-

nections by port knocking: “a TCP SYN packet following

a UDP packet to the same host” [41, §3]. We infer that the

SkypeMorph censor is OM in our classification.

SkypeMorph assumes that the censor’s activities are lim-

ited so as not to interfere with the normal use of the

Internet by “benign” users (similar to CensorSpoofer), and

that the censor does not have prior information about the IP

addresses and Skype IDs of SkypeMorph servers.

StegoTorus. Censors can perform IP, content, and statistical

filtering but only “in real time on a tremendous traffic

volume” [60, §2.2.2, ¶1]. StegoTorus “is not expected to

resist sophisticated, targeted attacks that might be launched

by a nation-state adversary.” The StegoTorus censor is thus

OB in our classification.

StegoTorus considers their threat model to be “similar

to previous research like Telex” [60, §2.2, ¶1]. The Telex

censor can perform passive, active, and proactive attacks,

although the following statement implies that the StegoTorus

censor is not the Telex censor: “. . . potential application-

level attack that involves serving malicious content and then

observing a distinctive traffic pattern; although relevant, we

are more interested in passive attacks that could be carried

out on a large scale” [60, §7].

CensorSpoofer. CensorSpoofer considers a “state-level ad-

versary” who has “sophisticated censorship capabilities of IP

filtering, deep packet inspection, and DNS hijacking, and can

potentially monitor, block, alter, and inject traffic anywhere

within or on the border of its network,” [59, §3.1, ¶1] “can

rent hosts outside of its own network, but otherwise has no

power to monitor or control traffic outside its borders,” and

“has sufficient resources to launch successful insider attacks,

and thus is aware of the same details of the circumvention

system as are known to ordinary users” [59, §3.1, ¶3]. We

infer that the CensorSpoofer censor is OM and capable of

passive, active, and proactive attacks.

V. REQUIREMENTS FOR PARROT CIRCUMVENTION

Parrot circumvention systems aim to make their com-

munications indistinguishable from another protocol. This

requires mimicking every observable aspect of the target

protocol. Not every requirement applies to a given cir-

cumvention system, and the ability to detect discrepancies

between the parrot and the genuine article may vary from

censor to censor. Nevertheless, in Sections VII, VIII, and IX,

we demonstrate that all recently proposed parrot circumven-

tion systems fail so many requirements that their sessions are

recognizable at a low cost even by a very weak censor.

A. Mimicking the protocol in its entirety

Correct. The most basic requirement is to mimic the target

protocol correctly. The parrot’s observable behavior must be

consistent with the protocol specification.

SideProtocols. Many modern network protocols include

multiple “side” protocols and control channels that run

alongside the main session. For example, a typical VoIP

session involves three protocols: SIP for signaling the ses-

sion, RTP for streaming the media, and RTCP for controlling

the media stream. Another example is the STUN traffic

generated by VoIP clients residing behind a firewall.

The parrot must mimic all channels and side protocols of

its target. For example, even a perfect imitation of an RTP

flow is trivial to recognize if, unlike genuine RTP flows, it

is not accompanied by a concurrent RTCP connection.

IntraDepend. Multiple connections comprising a single pro-

tocol session have complex dependences and correlations.

In particular, changes in the main channel often cause

observable activity in the control channel and vice versa.

For example, a typical VoIP session starts with an ex-

change of characteristic messages between the caller and a

SIP server, followed by the initialization of RTP and RTCP

connections between the caller and the callee. The SIP con-

nection is kept alive while the RTP/RTCP connections are

active. The session ends with characteristic SIP messages.

68

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



Dropping RTP packets may cause distinct RTCP activity as

the encoding of the media stream is being adjusted.

The parrot must faithfully mimic all dynamic dependences

and correlations between sub-protocols.

InterDepend. A session of a given protocol may trigger

other protocols. For example, an HTTP request often triggers

multiple DNS queries.

The parrot must (1) trigger other protocols whenever the

target protocol would have triggered them, and (2) mimic the

target protocol’s response when triggered by other protocols.

B. Mimicking reaction to errors and network conditions

Err. One of the easiest ways to tell a parrot from a genuine

protocol implementation is to observe its reaction to errors,

whether natural (e.g., caused by a buggy endpoint) or

artificial. Errors include malformed packets, invalid requests,

unwanted traffic (e.g., packets from other sessions), etc.

The protocol standard may prescribe how certain errors

should be handled, but error handling is often underspecified

and left to the discretion of the implementation. Differences

in error handling can thus be used to fingerprint implemen-

tations of common network protocols such as HTTP [30].

Error handling is extremely difficult to mimic and most

parrots fail to do it properly or at all. First, the parrot must

produce at least some reaction to any possible error that

might occur in the target protocol (because any genuine

implementation would react in some way). The second re-

quirement is even more challenging. The parrot’s reactions to

all possible errors must be consistent: they should look as if

they were generated by a particular genuine implementation.

For example, a parrot Web server cannot react to some

erroneous requests as if it were a Microsoft IIS and to others

as if it were an Apache server.

Network. The Internet is a noisy medium, and network flows

may experience packet drops and reorders, repacketization,

high latencies caused by dynamic changes in the throughput

of certain links, etc. Some protocols prescribe standard

reactions to changes in network conditions: for example,

TCP uses sequence numbers and a congestion control mech-

anism, while live-video environments have multiple patented

automatic repeat request (ARQ) mechanisms.2 Streaming

media protocols in particular react in very distinct ways

to congestion and other network issues. In general, packet

losses and congestion cause media applications to lower

codec quality and/or adjust transmission rates.

The parrot must mimic the target protocol’s responses to

all possible changes in network conditions, whether natural

or artificially induced. Furthermore, if a side protocol is

used—for example, to signal codec renegotiation—it must

be mimicked, too (see the InterDep requirement).

2http://www.techex.co.uk/other/arq-video-packet-resend

C. Mimicking typical traffic

Content. Many network protocols have specific formats for

headers and payloads, all of which must be mimicked by

the parrot. For example, HTTP headers contain information

about the payload, while port numbers in IP headers reflect

higher-level protocols. Encryption does not conceal all of

this information. For example, headers of encrypted Skype

packets reveal their type and other information [10].

Message payloads generated by the parrot must be in-

distinguishable, too. In particular, imitated files must be

metadata-compatible with the genuine files. For example,

imitated PDF files must contain correct xref tables and other

metadata typically found in real PDF files.

Patterns. Many protocols produce characteristic patterns

of packet sizes, counts, inter-packet intervals, and flow

rates. These patterns are often stable across the network,

observable even when packet contents are encrypted, and

can be exploited for traffic analysis [42].

The parrot must produce network flows all of whose ob-

servable characteristics, including packet sizes and timings,

are indistinguishable from the genuine protocol.

Users. User behavior often produces recognizable patterns

at the network level. For example, a typical Skype user only

makes a few Skype calls at a time. A parrot making hundreds

of concurrent Skype calls thus appears very anomalous and

can be easily distinguished from a genuine Skype client.

Similarly, a typical email user only sends and receives

a certain number of messages per day [48]. Users can

be fingerprinted based on the frequency of their system

usage, number of connection peers, typical volume of traffic

associated with each use, etc.

The parrot must faithfully mimic typical user behavior.

Geo. Observable behavior of protocol endpoints—including

their routing decisions, chosen peers, and even traffic con-

tents—may depend on their geographic location. For ex-

ample, a Web server may respond differently to the same

request depending on its origin; network packets sent by a

remote peer enter a given ISP at different points depend-

ing on the peer’s location; SIP-based VoIP clients always

connect to the geographically closest SIP server, etc.

Some implementations of common protocols are country-

specific. For example, Skype users in mainland China use a

special implementation of Skype called TOM-Skype which

has built-in surveillance functionality [34]. Any parrot that

mimics a different Skype client is likely to stand out.

The parrot must mimic all geography-specific aspects of

the genuine protocol and its local implementations.

D. Mimicking implementation-specific artifacts

Soft. A protocol specification can be realized by multiple

implementations. For example, there are dozens of Web

browsers and Web servers. For inter-operability, each imple-

mentation generally complies with its (often idiosyncratic)

69

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



interpretation of the standard, but often with characteristic

quirks and tell-tale signs. Sometimes these are explicit—for

example, HTTP request headers include information about

the browser—but even unintentional discrepancies can be

used to fingerprint implementations and different versions

of the same implementation [30]. For example, different

versions of Apache Web server contain different bugs, which

can be triggered by a remote user to identify the version.

It is not enough to mimic or implement the protocol

specification. The parrot must mimic a specific version of

a specific popular implementation, down to every last bug,

whether known or unknown! Any deviation can be used to

distinguish the parrot from the known implementations.

OS. Network protocols are usually designed to be oblivious

to the endpoint’s operating system (OS), yet the latter can

often be revealed by the recognizable characteristics of

specific client and server software. For instance, the IETF

standard requires that the initial sequence number of a TCP

connection be randomly generated. Different OSes, how-

ever, use different sequence number generation algorithms,

enabling OS identification [43]. This information is also

explicitly included in HTTP headers.

The parrot must generate consistent OS fingerprints. In

particular, when mimicking a network service, OS finger-

prints should not change frequently because servers’ OSes

do not change frequently.

VI. EXPERIMENTAL SETUP

We obtained the latest implementations of all analyzed

parrot systems and their imitation targets (Skype, Ekiga, etc.)

from their respective websites and/or authors.

For all Skype and CensorSpoofer experiments, we exe-

cuted the software in VirtualBox3 virtual machines (VMs),

running on a Funtoo Linux machine with an Intel i5 CPU

and 4GB of RAM. Skype clients were executed in two

Windows 7 VMs; SkypeMorph and StegoTorus-Embed in

separate Ubuntu 12.10 VMs. The VMs were connected

through Virtual Distributed Ethernet (VDE) [58], which

provides tools for network perturbation. We developed our

own plugins for VDE that allow us to drop packets at

different rates and modify packet contents on the wire. Each

VM is connected to a separate virtual VDE switch, and the

switches are connected to a central switch, which provides

DHCP connectivity to the Internet.

Experiments with StegoTorus clients and servers in Sec-

tion VIII were executed on two physical Ubuntu 12.04

machines, using the statistics module of iptables4 to drop

packets at different rates. Our StegoTorus server uses a real

Tor bridge to connect to the Tor network. VoIP clients in

Section IX were analyzed on a Windows 7 VM, Ubuntu

12.04 VM, and Mac OS X 10.7. The SIP probing test was

3https://www.virtualbox.org/
4http://www.netfilter.org/

implemented in Python and performed over a non-firewalled

Ubuntu 12.04 server with a public IP address.

VII. DETECTING SKYPE IMITATORS

We demonstrate that parrot circumvention systems that

aim to imitate Skype—in particular, SkypeMorph and

StegoTorus-Embed5—can be easily distinguished from gen-

uine Skype and thus fail to achieve unobservability.

First, we show that their imitation of Skype is incom-

plete and can thus be recognized even by low-cost, passive

attacks. Next, we describe hypothetical improved versions

of SkypeMorph and StegoTorus, designed specifically to

imitate Skype behaviors that are missing in their current

prototypes. We then demonstrate that even these hypothetical

improvements can be easily distinguished from genuine

Skype by active and proactive attacks.

A. Passive attacks

We present two classes of passive attacks. The first uses

the Skype detection tests from Appendix A-B to recognize

partial imitations. The second exploits the fact that both

SkypeMorph and StegoTorus-Embed rely on recorded Skype

traces to mimic packet timings and sizes. All attacks have

been empirically confirmed by (1) executing SkypeMorph

and StegoTorus prototypes and (2) analyzing their code.

Exploiting deviations from genuine Skype behavior.

Skype identification tests (see Appendix A-B) are used by

ISPs and enterprise networks and can be easily performed

even by a passive, resource-constrained censor. To suc-

cessfully mimic Skype, a parrot system must pass all or

at least the majority of these tests. Unfortunately, Table I

demonstrates that both SkypeMorph and StegoTorus fail.

This indicates serious design flaws in both systems.

They claim to provide unobservability against sophisticated

statistical traffic analysis, yet can be distinguished from

Skype even by extremely basic tests which are less resource-

intensive and more effective than the hypothetical tests

considered by the designers of these systems.

StegoTorus mimics Skype’s traffic statistics, but fails to

mimic much more visible aspects of genuine Skype such

as HTTP update and login traffic. Neither SkypeMorph,

nor StegoTorus mimics Skype’s TCP channel, which is

an essential component of every genuine Skype session.

Furthermore, neither system generates SoM packet headers

(see Appendix A-B), which are present in every genuine

Skype UDP packet. These tests are (1) passive and (2)

can be performed at line speeds, thus SkypeMorph and

StegoTorus fail even against the weakest censor.

A censor can combine the tests listed in Table I into a

hierarchical detection tool. In fact, similar tools have been

proposed for real-time detection of Skype traffic [9, 23],

5StegoTorus-Embed also aims to mimic Ventrilo, but we do not consider
it in this paper because Ventrilo is not as popular as Skype, and in any case
the latest StegoTorus prototype does not fully implement Ventrilo.

70

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



Table I
PASSIVE ATTACKS TO DETECT SKYPE PARROTS.

Attack Imitation requirement Adversary SkypeMorph StegoTorus-Embed

Skype HTTP update traffic (T1) SideProtocols LO/OB/OM Satisfied Failed

Skype login traffic (T2) SideProtocols LO/OB/OM Satisfied Failed

SoM field of Skype UDP packets (T3) Content LO/OB/OM Failed Failed

Traffic statistics (T4, T5) Pattern LO/OM Satisfied Satisfied

Periodic message exchanges (T6, T7) SideProtocols LO/OB/OM Failed Failed

Typical Skype client behavior (T8) IntraDepend LO/OM Failed Failed

TCP control channel (T9) SideProtocols LO/OB/OM Failed Failed

including line-rate detectors by Patacek [47], who used these

tests in an NfSen6 plugin, and by Adami et al. [1]. These

tools can be adapted to detect Skype parrots that pass a non-

trivial fraction of the tests, but not all of them.

Exploiting re-use of pre-recorded Skype traces. Both

StegoTorus and SkypeMorph clients come with pre-recorded

traffic traces, which are used to mimic Skype by sending

packets with the exact same timings and sizes. Because the

censor also has access to the client software, he can match

observed flows against these patterns and exploit the fact

that genuine Skype traffic is unlikely to match them exactly,

while imitated traffic always will.

Such censor must be OM because he needs to allocate

resources to match every observed flow against the known

trace. This passive attack succeeds because SkypeMorph and

StegoTorus fail the Patterns requirement.

Exploiting re-use of client-generated Skype traces. To

foil the above attack, both StegoTorus and SkypeMorph

suggest that a client may generate its own Skype traces and

mimic those. This re-use can be detected by a long-term OM

censor since multiple genuine flows from the same client are

unlikely to ever repeat the exact pattern of timings and sizes.

This passive attack succeeds because SkypeMorph and

StegoTorus fail the Patterns and User requirements.

B. Hypothetical SkypeMorph+ and StegoTorus+

Imagine hypothetical systems called SkypeMorph+ and

StegoTorus+ that add the patterns and messages from Ta-

ble I which are missing from, respectively, SkypeMorph

and StegoTorus. StegoTorus+ adds an imitated Skype login

(similar to the current SkypeMorph prototype). Both Skype-

Morph+ and StegoTorus+ add the missing messages from

Appendix A-B and put appropriate SoM fields into imitated

Skype packets. To mimic Skype’s TCP channel—which is

a dead giveaway that the current prototypes of SkypeMorph

and StegoTorus are not actually running Skype—they add a

fake TCP connection to each Skype call using the TCP port

with the same number as the corresponding UDP connection,

and send regular “garbage” traffic on this connection to

mimic Skype’s control traffic.

To foil detection based on trace re-use, StegoTorus and

SkypeMorph use a Skype pattern generator instead of pre-

6http://nfsen.sourceforge.net/

recorded or pre-generated traces. This generator produces

Skype-like packet timings and sizes on the fly, thus the

resulting patterns are unique to each imitated connection.

For the sake of the argument, even imagine that this gen-

erator cannot be recognized by tools that discover covert

communications based on fabricated patterns [24].

C. Active and proactive attacks

Unfortunately, even SkypeMorph+ and StegoTorus+

would not achieve unobservability because they would suffer

from the same fundamental flaw as SkypeMorph and Stego-

Torus: they do not actually run Skype, they only try to mimic

it, futilely. Table II summarizes active and proactive attacks

that can distinguish a Skype parrot from genuine Skype.

Verifying supernode behavior.

Requirements: SideProtocols, IntraDepend

Adversary: Proactive, LO/OM

Skype supernodes (SN) relay media traffic and signaling

information for ordinary Skype clients [6]. In particular,

ordinary clients use nearby supernodes to connect to the

Skype network. The following two-stage attack enables a

censor to distinguish SkypeMorph+ and StegoTorus+ servers

from genuine Skype supernodes.

Phase 1: Supernode identification. We give two ways to

find out if a given node is (or pretends to be) a Skype

supernode. If it receives Skype calls from nodes behind

NAT in the censor’s network, then it must be a supernode

because ordinary Skype nodes cannot receive calls directly

(this supernode is either the callee, or relaying the call for an

ordinary node). Second, the censor can use the existing tools

for checking whether an IP address is performing NAT [54].

A Skype node that is not behind NAT is a supernode.

This phase filters out all genuine, ordinary Skype nodes,

leaving genuine supernodes as well as SkypeMorph+ and

StegoTorus+ parrots.

Phase 2: Supernode verification. Consider a target node

that looks like a Skype supernode after Phase-1 filtering.

The censor can run an ordinary Skype client and flush

its supernode cache, which is the list of the supernodes

discovered by that client, to force the client to use the

target node as its supernode [5, 25]. If the target is a

genuine supernode, the client will be able to connect to the

Skype network and make calls. If the target is a parrot, the

71

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



Table II
ACTIVE AND PROACTIVE ATTACKS TO DETECT IMPROVED SKYPE PARROTS.

Attack
Imitation

Adversary Skype
SkypeMorph+ and

requirement StegoTorus+

Verify supernode behavior SideProtocols Proactive, The target node serves as the adversary’s Rejects all
by flushing supernode cache IntraDepend LO/OM SN, e.g., relays his Skype calls Skype messages

Drop a few UDP packets
Network, Active, A burst of TCP packets on the
Err LO/OB/OM control channel (Fig. 1)

No reaction

Close TCP channel
IntraDepend, Active, Ends the UDP stream immediately
SideProtocols LO/OB/OM

No reaction

Delay TCP packets
IntraDepend, Active, Reacts depending on the type
SideProtocols, LO/OM of TCP messages No reaction
Network

Close TCP connection to a SN
IntraDepend, Active, Client initiates UDP probes
SideProtocols LO/OB/OM to find other SNs

No reaction

Block the default TCP port IntraDepend Active, Connects to TCP ports 80
for TCP channel SideProtocols LO/OB/OM or 443 instead

No reaction

Figure 1. Skype TCP activity with and without changes in bandwidth.

250 300 350 400 450 500 550 600 650

Time in seconds

0

2

4

6

8

10

N
u
m
b
e
r
o
f
p
a
c
k
e
ts
[p
e
r
1
0
s
e
c
o
n
d
s
]

Change in available bandwidth

With change in bandwidth

without

connection will fail because StegoTorus and SkypeMorph

only mimic the Skype protocol but cannot actually run it.

Manipulating Skype calls.

Requirements: Network, Err, IntraDepend

Adversary: Active, LO/OB/OM

This attack tampers with a Skype connection by dropping,

reordering, and delaying packets or modifying their con-

tents, then observes the endpoints’ reaction. These changes

are fairly mild and can occur naturally, thus they do not

drastically affect genuine Skype connections.

When UDP packets are dropped in a genuine Skype call,

there is an immediate, very noticeable increase in the activity

on the TCP control channel that accompanies the main UDP

connection (see Fig. 1). We conjecture that this is caused by

Skype endpoints re-negotiating connection parameters due

to perceived changes in network conditions.

Neither SkypeMorph, nor StegoTorus implements the

TCP control channel. Our hypothetical SkypeMorph+ and

StegoTorus+ add a fake TCP connection and may even send

dummy packets over it, but this is not enough. The imitated

behavior will not be correlated to the network conditions in

the same way as in genuine Skype, enabling the censor to

distinguish parrots from Skype. We argue that it is extremely

difficult to convincingly imitate dynamic dependences be-

tween network conditions and Skype’s control traffic.

This active attack does not adversely affect normal Skype

users. Dropping a few packets does not disconnect the call,

but only degrades its quality for a short period of time.

Manipulating the TCP control channel.

Requirements: IntraDepend, SideProtocols,

Network

Adversary: Active, LO/OB/OM

In the previous test, we showed that perturbing Skype’s

main UDP connection causes observable changes on the

TCP control channel. We now show that perturbing the TCP

channel causes observable changes on the UDP connection.

Close the TCP connection. Closing the TCP channel (e.g.,

by sending an RST packet) causes genuine Skype nodes to

immediately end the call. Our hypothetical parrots do not

mimic this behavior because their fake TCP channel has no

relationship to the actual call. While this attack interferes

with genuine Skype users to some extent, spurious call

disconnections are fairly common in Skype. A censor may

use this attack as a confirmation on a relatively small set of

connections suspected to be imitations.

Withhold or drop selected TCP packets. The TCP connection

sends packets with frequency varying from 30 to 60 seconds,

or when network conditions change. Tampering with these

packets causes observable changes on the genuine UDP

channel, but not on the imitated one.

Trigger a supernode probe. A Skype client keeps a TCP

connection with its supernode. If this connection is closed,

a genuine client immediately launches a UDP probe (Ap-

pendix A-A) to search for new supernodes. A parrot doesn’t.

Block a supernode port. After a successful UDP probe, a

genuine client establishes a TCP connection with the same

port of its supernode. If this port is not available, the client

tries connecting to ports 80 or 443 [5]. A parrot doesn’t.

Similar attacks include tampering with SoM fields in UDP

packet headers.

VIII. DETECTING STEGOTORUS

In Section VII, we showed how to detect StegoTorus-

Embed’s flawed imitation of Skype. In this section, we show

how to detect the chopper and StegoTorus-HTTP.

72

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. Correlated behavior of StegoTorus connections.

35 40 45 50 55 60 65 70
Time (s)

0

20

40

60

80

100

120

140

160

P
a
c
k
e
t
R
a
te

start dropping
the dashed flow

A. Attacks on StegoTorus chopper

Correlating IP addresses between links.

Requirement: Geo

Adversary: Passive, LO/OM

A StegoTorus session, called a link, comprises several con-

nections. This enables easy passive detection of StegoTorus

clients because normal users do not keep multiple, concur-

rent HTTP and Skype connections to the same server.7 A

possible countermeasure is to have different links handled

by geographically distributed servers, but this will impose

an intolerable delay on low-latency traffic (e.g., Tor) because

the servers must cooperate to reconstruct chopped packets.

Exploiting connection dependences.

Requirements: Network, User

Adversary: Passive/Active, LO/OM

Multiple connections created by the StegoTorus chopper

carry packets from the same Tor session, thus their reactions

to network conditions and perturbations are highly corre-

lated. By contrast, genuine HTTP connections to different

servers exhibit no such correlation. The correlations between

StegoTorus connections can be observed by a passive censor

or exploited for an active attack, as shown in Fig. 2: once

packets on one StegoTorus connection are dropped, the other

two belonging to the same link immediately slow down.

B. Passive attacks on StegoTorus-HTTP

The StegoTorus paper acknowledges several passive at-

tacks, including (1) discrepancies between the typical pat-

terns of GET requests and the StegoTorus imitation, and (2)

abnormal changes in cookies due to the embedding of hidden

payloads. The list in the paper is incomplete, illustrating how

difficult it is to foresee all the ways in which an imitation

may deviate from the genuine protocol.

Exploiting discrepancies in file-format semantics.

Requirement: Content

Adversary: Passive, LO/OB/OM

StegoTorus-HTTP embeds hidden traffic inside innocuous-

looking documents that appear to have been requested by the

7While the IETF standard [21] prohibits browsers from opening more
than two concurrent connections to the same server, some Web servers allow
this restriction to be circumvented [11]. Concurrent connections, however,
exhibit a characteristic pattern [2] not mimicked by StegoTorus.

client via an HTTP request. The StegoTorus prototype sup-

ports PDF, SWF, and JavaScript, but instead of generating

documents in these formats, it uses real files and replaces

specific fields with hidden content. This preserves the file’s

syntactic validity, but not its semantics. The StegoTorus

paper claims that checking file semantics at line speeds

requires a lot of resources from a state-level censor dealing

with large volumes of traffic.

This claim is false. We demonstrate that it is possible

to detect discrepancies between real files and StegoTorus’s

imitations at a very low cost and at line speed.

As a proof of concept, we show how to analyze PDF files,

but similar techniques work against any other format. The

fake-trace generator in the StegoTorus prototype produces

templates for PDF files that miss an essential object called

xref table. In a genuine PDF file, this table follows the xref

keyword and declares the number and position of various

objects. The absence of this table in StegoTorus’s imitations

is detectable via simple deep-packet inspection at line speed,

without any need to reconstruct or parse the file.

Adding a fake xref table to the PDF file will not help.

A simple script can verify the table’s (in)validity without

parsing the file by comparing the positions of PDF objects

with their xref entries. StegoTorus may try to adjust xref

tables to match the embedded hidden payload, but changing

even a single character in a PDF file results in multiple

format errors and is detectable by the most basic PDF parser.

Instead of replacing binary fields, a sophisticated steganogra-

phy module might craft PDF files that only show the hidden

content when rendered. This would complicate both the

client and the server and greatly reduce performance, making

the system unusable by Tor and other low-latency transports.

Furthermore, a simple script can extract the encoded text

from PDF files (e.g., using the pdftotext Unix command)

and perform linguistic verification, although this test may not

be feasible at line speeds.

C. Active and proactive attacks on StegoTorus-HTTP

Fingerprinting HTTP server.

Requirements: Correct, Err, Soft

Adversary: Proactive, LO/OB/OM

The HTTP module in StegoTorus does not actually run

an HTTP server. It responds to HTTP requests such as

GET, HEAD, OPTIONS, and DELETE simply by replaying

responses from its database. A censor may use an HTTP

server fingerprinting tool to submit requests to the server

and analyze its responses to determine whether (a) the

server generates a consistent software fingerprint, and (b)

the server’s reaction to erroneous and invalid requests is

consistent with its fingerprint. This test can be active (the

censor manipulates requests sent by the clients) or proactive

(the censor generates his own probe requests).

We used the httprecon tool [30] to send 9 types of

requests: GET existing - a GET request for an existing

73

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



resource like the server’s front page; GET long request - a

very long (> 1024 bytes in URI) GET request for an existing

resource; GET non-existing - a GET request for a non-

existing resource, e.g., a randomly generated file name; GET

wrong protocol - a GET request with a non-existing protocol

version, e.g., HTTP/9.8; HEAD existing - a HEAD request

for an existing resource; OPTIONS common - an OPTIONS

request, which is used by HTTP clients to determine the

options and/or requirements associated with a resource or

the server’s capabilities; DELETE existing - a request to

delete an existing resource; TEST method - a non-existing

HTTP method called TEST; Attack request - a GET request

that tries to access a URI which includes well-known attack

patterns, e.g., SQL injection and cross-site scripting.

Table III summarizes how the HTTP module of the Stego-

Torus server reacts to these 9 tests. In summary, StegoTorus

fails the tests and can be easily distinguished from any real

HTTP server. In particular, StegoTorus does not generate ap-

propriate error responses to invalid and malformed requests.

This attack is feasible even for an OB censor who can

record at line speed the IP addresses of all packets destined

to port 80 and fingerprint these addresses afterwards.

Manipulating HTTP requests.

Requirements: Err

Adversary: Active, LO/OB/OM

A censor can tamper with a suspected StegoTorus connection

and observe the server’s reaction to modified, possibly

malformed HTTP requests. Most of the proactive attacks

listed above can be carried out in this manner. For instance,

the censor can man-in-the-middle a connection and modify

the client’s request so that it asks for a non-existing URI.

If the server returns “404 Not Found,” the censor drops

the error response and replays the client’s original HTTP

request. If the server returns “200 OK,” it is a tell-tale sign

that the server is not an HTTP server but a (poor) imitation.

IX. DETECTING CENSORSPOOFER

SIP packets explicitly contain the name and version of

the SIP client. Therefore, each CensorSpoofer connection

must mimic a specific client. The CensorSpoofer prototype

mimics Ekiga.8 The attacks in this section exploit the

discrepancies between CensorSpoofer and genuine Ekiga,

but would apply to any other SIP client, too.

Manipulating the tag field.

Requirement: Soft

Adversary: Active, LO/OB/OM

SIP messages use random-looking tags in their headers to

identify a SIP session [51]. CensorSpoofer’s spoofer replaces

these tags with the hash of the spoofed IP address [59, § 6.4].

If a censor manipulates the spoofed address, the hash will

no longer verify and the CensorSpoofer client will close

the call, similar to a genuine client’s reaction to the change

8http://www.ekiga.net

of callee’s IP address. Unfortunately, this enables another,

much cheaper attack. The censor can simply change the tag

field containing the hash to a different, valid tag value. A

CensorSpoofer client will terminate the call because the new

tag is not the hash of the spoofed IP address, but a genuine

SIP client will continue the call.

SIP probing.

Requirements: SideProtocols, Soft, Err

Adversary: Active, LO/OB/OM

The SIP connection between a client and a CensorSpoofer

server is relayed through a public Ekiga registrar located

outside the censoring ISP. Because the censor cannot verify

the callee’s IP address, the CensorSpoofer server can put a

spoofed address in its SIP messages.

What the censor can do, however, is probe the callee

by sending SIP messages to this IP address and checking

whether a genuine SIP client is listening. This is the exact

attack that CensorSpoofer aimed to prevent. To choose

the IP addresses to be spoofed, the spoofer performs a

random nmap scan [59, Algorithm 1] and picks any address

that does not return either “closed” or “host seems down”

on the SIP, RTP, and RTCP ports. As mentioned in [59],

the censor cannot tell for sure whether these addresses are

running a SIP client.

Unfortunately, there is an easier way for the censor to

verify whether an IP address is running a SIP client. As

specified in the SIP standard [51], “more than one user

can be registered on a single device at the same time.”

Typical SIP clients thus respond to any SIP request that

looks for any SIP ID, even if it is not coming from the VoIP

provider’s registrar. We confirmed this behavior for several

popular SIP clients, including Ekiga, PhonerLite,9 Blink,10

and Twinkle,11 on various operating systems.

The main functionality of a SIP registrar is to discover the

current IP addresses of dynamic SIP IDs. As specified in the

SIP standard, “registration is used for routing incoming SIP

requests and has no role in authorizing outgoing requests.”

If the censor knows the current IP address of a suspected

SIP client, he can directly call it instead of going through a

registrar. This is the basis of SIP probing.

We describe several SIP probing tests. In our experiments,

all of them were effective in distinguishing a CensorSpoofer

callee from a genuine Ekiga client—see Table IV. All IP

addresses in our tests satisfy the address selection algorithm

of [59]. Some of the tests may produce different results

depending on the type of the callee’s SIP client; however,

the censor can always identify the callee’s client from the

SIP messages and adjust the tests accordingly.

Send a SIP INVITE. The censor can call a fabricated SIP

ID at the suspected IP address by sending a SIP INVITE.

9http://phonerlite.de/index en.htm
10http://icanblink.com/
11http://www.twinklephone.com/

74

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



Table III
RESPONSES TO DIFFERENT httprecon REQUESTS BY STEGOTORUS SERVER AND REAL HTTP SERVERS.

HTTP request Real HTTP server StegoTorus’s HTTP module

GET existing Returns “200 OK” and sets Connection to keep-alive
Arbitrarily sets Connection to
either keep-alive or Close

GET long request Returns “404 Not Found” since URI does not exist No response

GET non-existing Returns “404 Not Found” Returns “200 OK”

GET wrong protocol Most servers produce an error message, e.g., “400 Bad Request” Returns “200 OK”

HEAD existing Returns the common HTTP headers No response

OPTIONS common Returns the supported methods in the Allow line No response

DELETE existing Most servers have this method not activated and produce an error message No response

TEST method Returns an error message, e.g., “405 Method Not Allowed” and sets Connection=Close No response

Attack request Returns an error message, e.g., “404 Not Found” No response

Table IV
DISTINGUISHING CENSORSPOOFER FROM GENUINE SIP CLIENTS.

Attack Imitation requirement Adversary Typical SIP clients (e.g., Ekiga) CensorSpoofer

Manipulate tag in SIP OK Soft LO/OB/OM Nothing Client closes the call

SIP INVITE to SideProtocols
LO/OB/OM

Respond with “100 Trying” and “180 Ringing”,
fakeID@suspiciousIP Soft, Err “483 Busy Here”, “603 Decline”, or “404 Not Found”

Nothing

SIP INVALID SideProtocols,Err LO/OB/OM Respond “400 BadRequest” Nothing

SIP BYE with SideProtocols
LO/OB/OM

Respond “481 Call Leg/Transaction
invalid SIP-ID Soft, Err Does Not Exist”

Nothing

Drop RTP packets SideProtocols
LO/OB/OM

Terminate the call after a time period depending on
(only for confirmation) Soft, Network the client, may change codec in more advanced clients.

Nothing

A genuine SIP client returns a status message, e.g., “100

Trying” and “180 Ringing”, or “483 Busy Here”, or “603

Decline”, or “404 Not Found”. CensorSpoofer returns noth-

ing and, furthermore, cannot ever mimic the proper response

because, by design, it does not receive the censor’s INVITE.

Send an invalid SIP message. In response to any message

not defined by the SIP standard, a genuine SIP client returns

“400 BadRequest [Malformed Packet]”. CensorSpoofer re-

turns nothing. In contrast to the SIP INVITE probe, this test

is completely transparent to genuine callees.

Send a message for a non-existing call. Each SIP call has a

unique ID, which is negotiated in the call’s first packet. If the

censor sends a SIP message (e.g., BYE) for a random call

ID, a genuine SIP client returns “481 Call Leg/Transaction

Does Not Exist”. CensorSpoofer returns nothing. This test,

too, is transparent to genuine callees.

To prevent these SIP probing attacks, a CensorSpoofer

spoofer may change its IP address selection algorithm and

use similar probes to find addresses that are running genuine

SIP clients. This significantly reduces the set of addresses

that can be used for spoofing. The nmap-based selection

algorithm of [59], which is less accurate than SIP probing,

finds only 12.1% of 10, 000 random IP addresses to be

suitable for spoofing. Our SIP probes to 10, 000 random

addresses did not return a single host running IETF-based

VoIP software such as Ekiga. The main reason is that pro-

prietary VoIP services like Skype, Oovoo, and Google Voice

are significantly more popular than IETF-based services.

Instead of Ekiga, CensorSpoofer may attempt to mimic

a more popular proprietary service. This imitation will be

easily detectable due to CensorSpoofer’s use of spoofed IP

addresses. Genuine clients react in a certain way to probes

and manipulated messages, but CensorSpoofer cannot mimic

the right reaction because it does not actually receive the

probes sent to the spoofed IP address. This is a fundamental

design flaw that cannot be fixed.

Manipulating upstream packets.

Requirements: SideProtocols, Soft, Network

Adversary: Active, LO/OB/OM

According to the standard [53, § 6], the primary function

of RTCP is “to provide feedback on the quality” of RTP

sessions. This feedback may be used for “control of adaptive

encodings,” so one might expect that changes in network

bandwidth during an RTP session would result in RTCP

negotiations as clients adjust their VoIP codec. Nevertheless,

none of the tested VoIP clients, including Ekiga, Blink,

PhonerLite, and Twinkle, appear to react when RTP and

RTCP packets are dropped at various rates. Only dropping

all RTP packets for 10 seconds to 2 minutes, depending on

the client, results in the client terminating the call.

This allows easy detection of imitated sessions. Dropping

all RTP packets will cause a genuine RTP session to close,

but a CensorSpoofer session will not react. This attack is

acknowledged in [59], but described as expensive because it

interrupts genuine sessions. Note, however, that the censor

can use it only for confirmation, e.g., for calls that failed

SIP probing tests. If a more advanced implementation of

RTP/RTCP adjusts codecs according to the network condi-

tions, this behavior must be imitated, too.

X. RELATED WORK

Pfitzmann and Hansen [45] proposed definitions for

privacy-related concepts including unobservability. Unob-

servability has been interpreted as anonymity or plausible

75

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



deniability in various systems [8, 37], none of which hide

the fact that a given user is participating in the system. We

do not consider such systems in this paper because they are

easily blockable and thus not censorship-resistant.

Several proposals for unobservable systems assume that

the participants share some secret not known to the censors.

An Infranet [20] client sends a special sequence of HTTP

requests to a friendly Web server who decodes the requested

URL and steganographically hides its content inside images

returned to the client. The identities of such servers must

be hidden from the censors. In Collage [14], a client and

a server secretly agree on websites with user-generated

content, e.g., flickr.com, and use steganography to commu-

nicate through these sites. To achieve sender unobservability,

Nonesuch [26] steganographically hides data inside mes-

sages submitted to public Usenet newsgroups and dispatches

them through a cascade of mixes that probabilistically detect

and remove cover traffic until the hidden message reaches

its intended recipient. None of these systems support low-

latency communications like Web browsing.

Pluggable Tor transports. To evade IP address filtering,

many circumvention technologies rely on proxies such as

UltraSurf [57] and Tor bridges [17]. They face the problem

of distributing the proxies’ addresses to legitimate clients

while hiding them from the censors [39, 40].

With the emergence of advanced censorship techniques

like deep-packet inspection and active probing [63], hiding

the proxy’s address is not enough. A circumvention system

must also disguise is traffic contents and patterns. Tor re-

cently adopted pluggable transports [46] that aim to remove

all content and pattern signatures characteristic of Tor.

Obfsproxy [44] is the first pluggable Tor transport. It

tries to remove Tor-related content identifiers, but preserves

the patterns such as inter-packet times and packet sizes.

Therefore, it fails to achieve unobservability against today’s

censors [18]. Furthermore, Obfsproxy does not make Tor

traffic look like another, “benign” protocol. This is the main

motivation for the recently proposed pluggable transports

that try to mimic Skype and/or HTTP (see Section III).

To evade proxy blocking, Flashproxy [22] proxies the traf-

fic between a Tor client and a Tor bridge through short-term,

frequently changing proxies provided by Internet users who

visit volunteer websites helping Flashproxy. Flashproxy does

not attempt to mimic another protocol and our initial analysis

shows that it fails several requirements from Section V.

It fails Users: a Flashproxy client receives consecutive

incoming connections from geographically distributed IP

addresses and the lengths of these connections are similar

to typical Web browsing sessions. It also fails Content

and Pattern because it does not completely remove the

characteristic content and statistical patterns of Tor traffic.

Other pluggable Tor transports include Dust [62], which

defines a new format for packet-level (as opposed to

connection-level) obfuscation, and FTE [19], a system for

imitating arbitrary packet formats. As we show in this paper,

packet-level imitation is insufficient for unobservability.

Decoy routing. An alternative approach to unobservable

circumvention is decoy routing [27, 64]. In this approach,

a client steganographically hides her request to a blocked

destination inside traffic sent to non-blocked destinations. A

friendly “decoy” router intercepts this traffic, extracts the

request, and deflects it to the true destination. While not yet

implemented, traffic shaping is essential in decoy routing

systems to protect against traffic analysis [27].

In general, decoy routing systems do not mimic other

protocols and are outside the scope of our study. Further-

more, a recent study [52] shows that an adversary capable

of changing routing decisions can effectively block decoy

routing systems if they are deployed by only a few ISPs.

XI. LESSONS AND RECOMMENDATIONS

Unobservability may very well be the most important

property of censorship-resistant communication systems.

Users of these systems run a very real risk of imprisonment

and even death, and extra care must be taken to ensure that

censorship circumvention solutions offered to them provide

meaningful privacy and anonymity protection.

First, a thorough understanding of the adversaries is a

must. Systems like SkypeMorph, StegoTorus, and Censor-

Spoofer deploy ad-hoc defenses against large-scale traffic

analysis, yet leave their communications trivially recogniz-

able even by very weak, local censors. Real-world censors

are much more likely to look for tell-tale local deviations

from genuine protocols (Section IV-C) than run sophisticated

statistical algorithms on ISP-wide traffic traces.

Second, unobservability by imitation is a fundamen-

tally flawed approach, unlikely to ever succeed due to the

daunting list of requirements that an imitator must satisfy

(Section V). The failure of all proposed parrot circumvention

systems to achieve unobservability confirms this conclusion.

In particular, it is not enough to simply mimic a popular

protocol. To achieve unobservability, the parrot must mimic

a concrete implementation and be compatible with every

implementation-specific quirk and bug (a similar observation

has been made in other contexts such as HTML filtering [7]

and file parsing [36]). For example, StegoTorus’s imitated

HTTP server is very distinct from any known HTTP server

and thus trivially recognizable. Mimicking side protocols

is especially difficult due to their complex, dynamic inter-

dependences and correlations. As we demonstrated, the

absence of such dependences is a dead giveaway of an

imitation. Some imitation flaws are impossible to fix at any

cost. For example, in the asymmetric, spoofing-based design

of CensorSpoofer, the imitator cannot see the censor’s probes

and thus cannot mimic appropriate responses.

Third, partial imitation is worse than no imitation

at all. For example, Tor traffic may be recognizable by

76

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



certain traffic patterns, but this requires fairly sophisticated

analysis of multiple flows. On the other hand, the not-

quite-Skype imitation performed by SkypeMorph is easily

recognizable given even a short observation of a single flow.

Users of SkypeMorph, StegoTorus, and similar systems may

be putting themselves at greater risk than the users of plain

Tor because these ostensibly “unobservable” Tor transports

are more distinct than Tor itself!

One promising alternative is to not mimic, but run the

actual protocol, i.e., move the hidden content higher in

the protocol stack. For example, FreeWave [28] hides data

in encrypted voice or video payloads sent over genuine

Skype, while SWEET [29] embeds it in email messages.

This approach is well-known in steganography [15]: the

covert information is always encoded into the features of

an actual cover medium (e.g., an image), as opposed to

synthesizing the medium. Embedding low-latency network

services like Tor into another protocol is a challenging task,

however. As in steganography, much research is needed to

find the right balance between the unobservability of hidden

messages and communication efficiency. For example, sizes

of datagrams containing hidden messages may appear statis-

tically anomalous in comparison to regular Skype datagrams.

On the positive side, detection of such anomalies typically

requires large-scale analysis of multiple flows and thus OM

capabilities, raising the technical threshold for the censors.

Acknowledgments. We are grateful to Suman Jana for his

insights and to Zack Weinberg for helping us understand

StegoTorus. This research was supported by the Defense

Advanced Research Agency (DARPA) and SPAWAR Sys-

tems Center Pacific, Contract No. N66001-11-C-4018, NSF

grant CNS-0746888, and the MURI program under AFOSR

Grant No. FA9550-08-1-0352.

REFERENCES

[1] D. Adami, C. Callegari, S. Giordano, M. Pagano, and T. Pepe.
Skype-Hunter: A Real-Time System for the Detection and
Classification of Skype Traffic. Int. J. Communication Sys-
tems, 25(3):386–403, 2012.

[2] K. Allen. A Software Developer’s Guide to HTTP. http://
odetocode.com/articles/743.aspx.

[3] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Nor-
rman. MIKEY: Multimedia Internet KEYing. RFC 3830.

[4] Joining China and Iran, Australia to Filter
Internet. http://www.foxnews.com/scitech/2009/12/15/
like-china-iran-australia-filter-internet.

[5] S. Baset and H. Schulzrinne. An Analysis of the Skype Peer-
to-Peer Internet Telephony Protocol. In INFOCOM, 2006.

[6] S. Baset and H. Schulzrinne. Skype Relay Calls: Measure-
ments and Experiments. In INFOCOM, 2008.

[7] D. Bates, A. Barth, and C. Jackson. Regular Expressions
Considered Harmful in Client-side XSS Filters. In WWW,
2010.

[8] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes: A
System for Anonymous and Unobservable Internet Access.
In Design Issues in Anonymity and Unobservability, 2000.

[9] D. Bonfiglio and M. Mellia. Tracking Down Skype Traffic.
In INFOCOM, 2008.

[10] D. Bonfiglio, M. Mellia, and M. Meo. Revealing Skype
Traffic: When Randomness Plays With You. In SIGCOMM,
2007.

[11] R. Breen. Circumventing Browser Connection Limits for
Fun and Profit. http://www.ajaxperformance.com/2006/12/18/
circumventing-browser-connection-limits-for-fun-and-profit/,
2006.

[12] Bridge Easily Detected by GFW. https://trac.torproject.org/
projects/tor/ticket/4185, 2011.

[13] Tor BridgeDB. https://gitweb.torproject.org/bridgedb.git/tree.
[14] S. Burnett, N. Feamster, and S. Vempala. Chipping Away

at Censorship Firewalls with User-Generated Content. In
USENIX Security, 2010.

[15] I. Cox, J. Kilian, F. T. Leighton, and T. Shamoon. Secure
Spread Spectrum Watermarking for Multimedia. IEEE Trans-
actions on Image Processing, 6(12), 1997.

[16] Defeat Internet Censorship: Overview of Advanced Technolo-
gies and Products. http://www.internetfreedom.org/archive/
Defeat Internet Censorship White Paper.pdf, 2007.

[17] R. Dingledine and N. Mathewson. Design of a Blocking-
Resistant Anonymity System. https://svn.torproject.org/svn/
projects/design-paper/blocking.html.

[18] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Tunnel
Hunter: Detecting Application-layer Tunnels with Statistical
Fingerprinting. Computer Networks, 53(1):81–97, 2009.

[19] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton. Format-
Transforming Encryption: More than Meets the DPI. Cryp-
tology ePrint Archive, Report 2012/494, 2012.

[20] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and
D. Karger. Infranet: Circumventing Web Censorship and
Surveillance. In USENIX Security, 2002.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616.

[22] D. Fifield, N. Hardison, J. Ellithrope, E. Stark, R. Dingledine,
D. Boneh, and P. Porras. Evading Censorship with Browser-
Based Proxies. In PETS, 2012.

[23] E. Freire, A. Ziviani, and R. Salles. On Metrics to Distinguish
Skype Flows from HTTP Traffic. J. Netw. Sys. Management,
17(1-2):53–72, 2009.

[24] S. Gianvecchio and H. Wang. Detecting Covert Timing
Channels: An Entropy-based Approach. In CCS, 2007.

[25] S. Guha, N. Daswani, and R. Jain. An Experimental Study
of the Skype Peer-to-Peer VoIP System. In IPTPS, 2006.

[26] T. Heydt-Benjamin, A. Serjantov, and B. Defend. Nonesuch:
a Mix Network with Sender Unobservability. In WPES, 2006.

[27] A. Houmansadr, G. Nguyen, M. Caesar, and N. Borisov. Cirri-
pede : Circumvention Infrastructure Using Router Redirection
with Plausible Deniability. In CCS, 2011.

[28] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I
Want My Voice to Be Heard: IP over Voice-over-IP for
Unobservable Censorship Circumvention. In NDSS, 2013.

[29] A. Houmansadr, W. Zhou, M. Caesar, and N. Borisov.
SWEET: Serving the Web by Exploiting Email Tunnels.
CoRR, abs/1211.3191, 2012.

[30] The httprecon Project. http://www.computec.ch/projekte/
httprecon/.

[31] Internet Censorship Listed: How Does Each Country Com-
pare? http://www.guardian.co.uk/technology/datablog/2012/
apr/16/internet-censorship-country-list.

[32] Iran Reportedly Blocking Encrypted Internet
Traffic. http://arstechnica.com/tech-policy/2012/02/
iran-reportedly-blocking-encrypted-internet-traffic.

[33] Italy Censors Proxy That Bypasses BTjunkie and Pirate Bay

77

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



Block. http://tiny.cc/fcmksw.
[34] J. Knockel, J. Crandall, and J. Saia. Three Researchers,

Five Conjectures: An Empirical Analysis of TOM-Skype
Censorship and Surveillance. In FOCI, 2011.

[35] J. McNamee. The Slide from Self-regulation to Cor-
porate Censorship. http://www.edri.org/files/EDRI selfreg
final 20110124.pdf.

[36] S. Jana and V. Shmatikov. Abusing File Processing in
Malware Detectors for Fun and Profit. In S&P, 2012.

[37] D. Kesdogan, M. Borning, and M. Schmeink. Unobservable
Surfing on the World Wide Web: Is Private Information
Retrieval an Alternative to the MIX based Approach? In
PET, 2002.

[38] C. Leberknight, M. Chiang, H. Poor, and F. Wong. A
Taxonomy of Internet Censorship and Anti-censorship. http://
www.princeton.edu/∼chiangm/anticensorship.pdf.

[39] D. McCoy, J. Morales, and K. Levchenko. Proximax: A
Measurement Based System for Proxies Dissemination. In
FC, 2011.

[40] J. McLachlan and N. Hopper. On the Risks of Serving When-
ever You Surf: Vulnerabilities in Tor’s Blocking Resistance
Design. In WPES, 2009.

[41] H. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg.
SkypeMorph: Protocol Obfuscation for Tor Bridges. In CCS,
2012.

[42] S. Murdoch and G. Danezis. Low-Cost Traffic Analysis of
Tor. In S&P, 2005.

[43] S. Murdoch and S. Lewis. Embedding Covert Channels into
TCP/IP. In Information Hiding, 2005.

[44] A Simple Obfuscating Proxy. https://www.torproject.org/
projects/obfsproxy.html.en.

[45] A. Pfitzmann and M. Hansen. Anonymity, Unobservability,
and Pseudonymity: A Consolidated Proposal for Terminology.
In Design Issues in Anonymity and Unobservability, 2000.

[46] Tor: Pluggable transports. https://www.torproject.org/docs/
pluggable-transports.html.en.

[47] L. Ptáček. Analysis and Detection of Skype Network Traffic.
Master’s thesis, Masaryk University, 2011.

[48] S. Radicati and Q. Hoang. Email Statistics Report, 2011-
2015, 2011.

[49] H. Roberts, E. Zuckerman, and J. Palfrey. 2007
Circumvention Landscape Report: Methods, Uses, and
Tools. http://cyber.law.harvard.edu/sites/cyber.law.harvard.
edu/files/2007 Circumvention Landscape.pdf.

[50] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session
Traversal Utilities for NAT (STUN). RFC 5389.

[51] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
Session Initiation Protocol. RFC 3261.

[52] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper.
Routing Around Decoys. In CCS, 2012.

[53] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC
3550.

[54] D. Schwartz and B. Sterman. Method and Apparatus for
Server-side NAT Detection. US Patent US 2006/0187912 A1.

[55] Ten ways to discover tor bridges. https://blog.torproject.org/
blog/research-problems-ten-ways-discover-tor-bridges.

[56] How Governments Have Tried to Block Tor. https://svn.
torproject.org/svn/projects/presentations/slides-28c3.pdf.

[57] Ultrasurf. http://www.ultrareach.com.
[58] Virtual Distributed Ethernet. http://vde.sourceforge.net/.
[59] Q. Wang, X. Gong, G. Nguyen, A. Houmansadr, and

N. Borisov. CensorSpoofer: Asymmetric Communication

Using IP Spoofing for Censorship-Resistant Web Browsing.
In CCS, 2012.

[60] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister,
S. Cheung, F. Wang, and D. Boneh. StegoTorus : A Camou-
flage Proxy for the Tor Anonymity System. In CCS, 2012.

[61] T. Wilde. Knock Knock Knockin on
Bridges Doors. https://blog.torproject.org/blog/
knock-knock-knockin-bridges-doors, 2012.

[62] B. Wiley. Dust: A Blocking-Resistant Internet Transport
Protocol. http://blanu.net/Dust.pdf.

[63] P. Winter and S. Lindskog. How the Great Firewall of China
Is Blocking Tor. In FOCI, 2012.

[64] E. Wustrow, S. Wolchok, I. Goldberg, and J. Halderman.
Telex: Anticensorship in the Network Infrastructure. In
USENIX Security, 2011.

APPENDIX A.

BACKGROUND ON SKYPE

A. Overview of Skype protocol

Skype client start up. Every time the Skype application

launches, the Skype client (SC) checks for a Skype HTTP

update by connecting to ui.skype.com. The next step is

selecting the neighbor supernode (NSN). The client goes

through its supernode cache (also called host cache), which

is the “shared.xml” file with the list of nearby supernodes

(SNs), and sends batches of UDP probes. The first SN who

returns a positive response is selected as the NSN. A Skype

UDP probe is an exchange of messages between SC and SN

to discover the Skype network and its characteristics. There

are two kinds of UDP probes, long and short, consisting of

four- and two-packet exchanges, respectively. These packets

have characteristic sizes [1] and contents [47].

SC then connects to the Skype network by opening a TCP

connection to the selected NSN, using the same port as UDP

probing. If the port is blocked, SC tries ports 80 and 443. If

TCP connection establishment fails, SC reruns UDP probes

to find another NSN. SC and NSN then perform Skype TCP

handshake, which involves six messages. Their payloads

are encrypted, but the handshake packets have characteristic

sizes and the TCP PSH flag set [1, Fig. 2].

The final step is Skype TCP authentication. SC connects

over TCP to Skype’s central login server (LS) to get a

certificate that SC uses to authenticate to other Skype nodes.

This exchange involves several messages with the PSH flag

set. The number of messages varies for different LSes and

under different network conditions [47], but they exhibit

characteristic sizes and patterns [5].

Making Skype calls. To make a call, a Skype client uses its

TCP connection with the neighbor supernode (NSN) to find

the callee’s IP address and Skype port. The caller then uses

UDP probes to check network connectivity—in particular,

whether its own UDP port is open and whether its host

is behind NAT. If the callee is not behind NAT, then the

caller initiates a TCP connection to the callee and sends the

ringing signal. Finally, if the callee accepts the call, a UDP

connection is established for transferring the call data [47].

78

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 



If the callee is behind NAT, then the caller, using the

SN as a relay, tells the callee to send a UDP packet to the

caller’s IP address/Skype port in order to add a NAT entry

for the call. The call then proceeds as without NAT. If both

the caller and the callee are behind NAT, they use the SN

to send UDP packets to each other. If Skype cannot bypass

NAT/firewall, the call is handled by a relay and all traffic is

encapsulated in an encrypted TCP stream.

Unrestricted connection (both SCA and SCB have public IP

addresses). After probing multiple peers with UDP probes,

SCA establishes a TCP connection to SCB and sends

several signaling messages over it. This TCP connection is

kept alive until the end of call. Voice and/or video contents

are sent over a UDP connection between SCA and SCB .

NAT/firewall connection (SCA and/or SCB are located

behind a NAT or a firewall). In this case, SCA sends the

signaling information to SCB through the SNs. If only

SCA is behind NAT, SCA and SCB are usually able to

establish a direct UDP connection after the signaling [47].

Otherwise, SCA finds appropriate relay nodes, and SCA

and SCB directly connect to a relay which exchanges traffic

between them. For fault tolerance and backup, several relays

are typically used [47]. Most calls use different relays for

the caller-to-callee and callee-to-caller flows [6].

If the Skype TCP connection used for signaling is closed,

the UDP connection also closes. Furthermore, Skype clients

periodically send Skype UDP pings, which consist of two

keep-alive packets, in order to preserve their “online” status

in the Skype network. These packets can be identified by

the “0x02” string in their function field.

B. Passive detection of Skype traffic

There are many techniques for detecting Skype traf-

fic [1, 5, 6, 10, 47]. They recognize characteristic strings sent

unencrypted during Skype sessions (content analysis) and/or

characteristic traffic patterns such as packet sizes (pattern

analysis). The tests below work against all versions of Skype.

T1: HTTP update messages. When the Skype client (SC)

starts up, it makes an HTTP connection to ui.skype.com to

check for updates to the client software [47].

T2: Login messages. In order to authenticate itself, SC

needs to obtain a certificate from Skype’s login server (which

could be a Skype supernode) confirming the client’s Skype

identity. Unlike software update messages, logins are not

handled by a single, known server, thus login messages

cannot be easily detected by IP address matching. They can

be recognized, however, by characteristic sizes and contents.

In particular, the second message in a login TCP connection

carries the header 0x170301 in plaintext.

T3: Start of Message (SoM) fields in UDP packets.

Skype uses special headers, so called SoM fields, for its

UDP packets [10]. The SoM fields are present in both UDP

probes and UDP packets carrying the media stream. They

are not encrypted and have specific values for different

kinds of packets. In particular, ID and Fun fields are easily

recognizable in a SoM header [10].

The first two bytes of SoM contain an ID that uniquely

identifies that message. This value is randomly generated

by the sender and copied in the receiver’s reply. Fun is a 5-

bit field obfuscated into the third byte of SoM and revealed

by applying the 0x8f bitmask. Previous research [10, 47]

investigated the values of Fun for different messages. For

instance, ox02, 0x03, 0x07, and 0x0f indicate signaling

messages during the login process and connection manage-

ment, while 0x0d indicates a data message, which may

contain encoded voice or video blocks, chat messages, or

data transfer chunks.

T4: Packet sizes. A UDP probe consists of four packets [1].

The second packet is 11 bytes long, while the length of the

fourth packet reveals the outcome of that UDP probe.

A Skype TCP handshake consists of six messages with

the PSH flag set and payload sizes of 27 and 4 bytes for the

fourth and sixth packets, respectively.

Authentication messages from a Skype client to the login

server include four or more packets with the PSH flag set;

the first two have 5-byte payloads.

An HTTP update request returns a single unencrypted

packet from ui.skype.com. This packet has a fixed value in

the first 29 bytes for the Linux version of Skype and another

fixed value in bytes 95-124 for the Windows version [47].

T5: Packet timings and rate. Skype audio and video traffic

exhibits a characteristic packet timing pattern, depending on

the codec used. SILK, Skype’s audio codec, samples at 8,

12, 16, or 24 KHz, resulting in four ranges of data rates for

UDP flows carrying Skype audio [47, Fig. 3.6]. While Skype

voice packets are about 150 bytes, video packets are around

1380 bytes. Sample inter-packet gaps and size distribution

for a Skype video call can be found in [47, Fig. 3.10].

T6: NAT traversal. Once SC starts up, it performs a

sequence of tests to detect whether it is behind NAT or

a firewall. SCs use different variants of the STUN [50]

protocol for NAT traversal.

T7: Periodic message exchanges. Skype is a P2P system,

and SCs frequently exchanges messages with other Skype

nodes to detetermine their online/offline status [47]. In par-

ticular, each SC establishes about five short TCP connections

per hour and performs UDP probes on approximately thirty

Skype peers per hour [47, Fig. 3.4].

T8: Typical Skype client behavior. Each typical task

performed by a SC, like searching for a contact or placing

a call, generates characteristic traffic (Appendix A-A).

T9: TCP control channel. Skype uses various TCP control

channels. In particular, each call is accompanied by a TCP

signaling connection, described in Appendix A-A, which

remains active during the call.

79

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 01,2024 at 06:14:05 UTC from IEEE Xplore.  Restrictions apply. 


