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†INRIA, CNRS and LIX, École Polytechnique, France, {kostas,catuscia}@lix.polytechnique.fr
‡Florida International University, USA, smithg@cis.fiu.edu

Abstract—This paper introduces g-leakage, a rich general-
ization of the min-entropy model of quantitative information
flow. In g-leakage, the benefit that an adversary derives from
a certain guess about a secret is specified using a gain function
g. Gain functions allow a wide variety of operational scenarios
to be modeled, including those where the adversary benefits
from guessing a value close to the secret, guessing a part of the
secret, guessing a property of the secret, or guessing the secret
within some number of tries. We prove important properties of
g-leakage, including bounds between min-capacity, g-capacity,
and Shannon capacity. We also show a deep connection between
a strong leakage ordering on two channels, C1 and C2, and
the possibility of factoring C1 into C2C3, for some C3. Based
on this connection, we propose a generalization of the Lattice
of Information from deterministic to probabilistic channels.

I. INTRODUCTION

A fundamental concern in computer security is to control

information flow, whether to protect confidential information

from being leaked, or to protect trusted information from

being tainted. In view of the pragmatic difficulty of prevent-

ing undesirable flows completely, there is now much interest

in theories that allow information flow to be quantified, so

that “small” leaks can be tolerated. (See, for example, [1],

[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].) For

any leakage measure, a key challenge is to establish its

operational significance, so that a certain amount of leakage

implies a definite security guarantee.

Min-entropy leakage [10], [13] is a leakage measure based

on the amount by which a channel increases the vulnerability
of a secret to being guessed correctly in one try by an

adversary.1 This clear operational significance is a strength

of min-entropy, but it also leads to questions about whether

min-entropy leakage is relevant across the wide range of

possible application scenarios. For instance, what if the

adversary is allowed to make multiple guesses? Or what if

the adversary could gain some benefit by guessing the secret

only partially or approximately?

With respect to guessing the secret partially, we can note

that we could in fact analyze a sub-channel that models

the processing of whatever piece of a larger secret that we

wish to consider. While this can be useful, it is clumsy to

need to analyze multiple sub-channels of the same channel.

Also, such an analysis is misleading in the case of a channel

1The precise definition is reviewed in Section II.

that poses little threat to any particular piece of the secret,

yet is very likely to leak some piece of the secret. To

illustrate, suppose that the secret is an array X containing

10-bit, uniformly-distributed passwords for 1000 users. Now

consider the following probabilistic channel, which leaks

some randomly-chosen user’s password:

u
?← {0..999};

Y = (u,X[u]);
(Ex1)

If we analyze the min-entropy leakage of (Ex1), we find

that the prior vulnerability is 2−10000, since there are 10000

completely unknown bits, while the posterior vulnerability

is 2−9990, since Y reveals 10 of the bits. The min-entropy

leakage is the logarithm of the ratio of the posterior and

prior vulnerabilities:

L = log
2−9990

2−10000
= log 210 = 10 bits.

If we instead analyze the sub-channel focused on any partic-

ular user i’s password, the prior vulnerability is 2−10, and the

posterior vulnerability is 0.001 · 1+0.999 · 2−10 ≈ 0.00198,

since with probability 0.001, the adversary learns user i’s
password from Y , and with probability 0.999, he must still

make a blind guess. Thus the min-entropy leakage of the

sub-channel is log 2.023 ≈ 1.016 bits. Hence we see that

the threat of (Ex1) is not well described by min-entropy

leakage—the whole channel leaks just 10 bits out of 10000,

and the sub-channel just 1.016 bits out of 10, even though

some user’s password is always leaked completely.

In light of the wide range of possible operational threat

scenarios, there is growing appreciation that no single leak-

age measure is likely to be appropriate in all cases. For

this reason, in this paper we introduce a generalization of

min-entropy leakage, called g-leakage. The key idea is to

generalize the notion of vulnerability to incorporate what

we call a gain function g that models the benefit that the

adversary gains by making a certain guess about the secret. If

the adversary makes guess w when the secret’s actual value

is x, then g(w, x) models the benefit that the adversary gains

from this guess, ranging from 0 (if w has no value at all)

to 1 (if w is ideal). Given gain function g, g-vulnerability is

defined as the maximum expected gain over all guesses.

As we will see in Section III, gain functions let us

model a wide variety of scenarios, including those where
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the adversary benefits from guessing a value close to the

secret, guessing a part of the secret, guessing a property of

the secret, or guessing the secret within k tries. We can also

model the case when there is a penalty for incorrect guesses.

Thus g-leakage seems fruitful in addressing a great number

of practical situations.

In addition to introducing the new concept of g-leakage,

we also make significant technical contributions, principally

in Sections V and VI.

In Section V, we establish important bounds on capacity,

the maximum leakage over all prior distributions. We prove

that min-capacity is an upper bound on g-capacity, for any
gain function g—this means that a channel with small min-

capacity is (in a sense) safe in every possible scenario.

Moreover, we prove that min-capacity is also an upper bound

on Shannon capacity, settling a conjecture in [14].

In Section VI, we consider the problem of comparing
two channels, C1 and C2, asking whether on every prior the

leakage of C1 is less than or equal to that of C2. Yasuoka

and Terauchi [15] and Malacaria [16] recently explored this

strong ordering in the case where C1 and C2 are determin-
istic, focusing on the fact that deterministic channels induce

partitions on the space of secrets. They showed that the

orderings produced by min-entropy leakage and Shannon

leakage are the same and, moreover, they coincide with the

partition refinement ordering � in the Lattice of Information
[17]. Since partition refinement applies only to deterministic

channels but leakage ordering makes sense for any channels,

this equivalence suggests an approach to generalizing the

Lattice of Information to probabilistic channels.

Our first result in Section VI identifies a promising

generalization of partition refinement �. We show that on

deterministic channels, C1 � C2 iff there exists a factoriza-
tion of C1 into a cascade: C1 = C2C3, for some channel

C3. In this case we say that C1 is composition refined by

C2, written C1 �◦ C2. In the most technically challenging

part of our paper, we show a deep connection between �◦
and leakage ordering. We show first in Theorem 6.2 that

C1 �◦ C2 implies that C1’s g-leakage is less than or equal

to C2’s, for every prior and every g; we denote this by

C1 ≤G C2. We conjecture that the converse implication,

C1 ≤G C2 implies C1 �◦ C2, is also true, but it turns out to

be extremely subtle and we have been unable so far to prove

it in full generality. We have proved it in important special

cases (e.g. when C2’s columns are linearly independent)

even limiting to a very restricted kind of gain function; we

have also shown that the unproved case is inherently harder,

in that much richer gain functions are required.

The rest of the paper is structured as follows. Sections II,

III, and IV present preliminaries, define g-leakage, and show

its basic properties. Sections V and VI present our results on

capacity and on comparing channels. Finally, Sections VII

and VIII discuss related work and conclude.

II. PRELIMINARIES

In this section, we briefly recall the basic definitions of

information-theoretic channels [18], vulnerability, and min-

entropy leakage [10], introducing the non-standard notation

that we will use.

A channel is a triple (X ,Y, C), where X and Y are finite

sets (of secret input values and observable output values) and

C is a channel matrix, an |X |×|Y| matrix whose entries are

between 0 and 1 and whose rows each sum to 1; the intent

is that C[x, y] is the probability of getting output y when

the input is x. Channel C is deterministic if each entry of C
is either 0 or 1, implying that each row contains exactly one

1, which means that each input produces a unique output.

Given a prior distribution π on X , we can define a joint
distribution p on X×Y by p(x, y) = π[x]C[x, y]. This gives

jointly distributed random variables X and Y with marginal

probabilities p(x) =
∑

y p(x, y), conditional probabilities

p(y|x) = p(x,y)
p(x) (if p(x) is nonzero), and similarly p(y) and

p(x|y). As shown in [19], p is the unique joint distribution

that recovers π and C, in that p(x) = π[x] and p(y|x) =
C[x, y] (if p(x) is nonzero).

We now define vulnerability, introducing a new notation.2

Definition 2.1: Given prior π and channel C, the prior
vulnerability is given by

V (π) = max
x∈X

π[x],

and the posterior vulnerability is given by

V (π,C) =
∑
y∈Y

max
x∈X

π[x]C[x, y].

We assume in this paper that the prior distribution π and

channel C are known to the adversary A. Then V (π) is the

prior probability that A could guess the value of X correctly

in one try. To understand posterior vulnerability, note that

V (π,C) =
∑

y maxx p(x, y)

=
∑

y p(y)maxx p(x|y)
=

∑
y p(y)V (pX|y)

making it the (weighted) average of the vulnerabilities of

the posterior distributions pX|y .

We convert from vulnerability to min-entropy by taking

the negative logarithm (to base 2):

Definition 2.2:

H∞(π) = − log V (π)

H∞(π,C) = − log V (π,C).

Note that vulnerability is a probability, while min-entropy

is a measure of bits of uncertainty.

2We deviate from the standard notation V (X) and V (X|Y ) used in
[14] and elsewhere, because we wish to express explicitly the dependence
on X’s prior distribution.
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Next we define min-entropy leakage L(π,C) and min-
capacity ML(C):

Definition 2.3:

L(π,C) = H∞(π)−H∞(π,C) = log
V (π,C)

V (π)

ML(C) = sup
π
L(π,C).

The min-entropy leakage L(π,C) is the amount by which

channel C decreases the uncertainty about the secret; equiv-

alently, it is the logarithm of the factor by which C increases

the vulnerability. The min-capacityML(C) is the maximum

min-entropy leakage over all priors π; it can be seen as the

worst-case leakage of C.

Finally, we recall [13] that the min-capacity of C is easy

to calculate, as it is simply the logarithm of the sum of the

column maximums of C:

Theorem 2.1: ML(C) = log
∑

y maxx C[x, y], and it is

realized on a uniform prior π.

III. GAIN FUNCTIONS, g-VULNERABILITY, AND

g-LEAKAGE

We now develop the theory of gain functions and the

leakage measures that they give.

Implicit in the definition of prior and posterior vulnerabil-

ity V (π) and V (π,C) is the assumption that the adversary

benefits only by guessing the entire secret exactly. But,

as motivated in Section I, there are certainly situations

where this assumption is not appropriate. This leads us to

introduce what we call gain functions as abstract models of

the particular operational scenario. The idea is that in any

such scenario, there will be some set of guesses that the

adversary could make about the secret, and for any guess w
and secret value x, there will be some gain that the adversary

gets by choosing w when the secret’s actual value is x. A

gain function g will specify this gain as g(w, x), using scores

that range from 0 to 1.

A first question, however, is what should be the set of

allowable guesses. One might be tempted to assume that this

should just be X , the set of possible values of the secret.

But given our desire to model scenarios where the adversary

gains by guessing a piece of the secret, or a value close to

the secret, or some property of the secret, we instead let a

gain function use an arbitrary set W of allowable guesses.

Definition 3.1: Given a set X of possible secrets and a

finite, nonempty setW of allowable guesses, a gain function
is a function g :W ×X → [0, 1].

Sometimes it is convenient to represent a gain function g
as a |W|×|X | matrix G, where G[w, x] = g(w, x); the rows

of G correspond to guesses and the columns to secrets.

We now adapt the definition of vulnerability to take

account of the gain function:

Definition 3.2: Given gain function g and prior π, the

prior g-vulnerability is

Vg(π) = max
w∈W

∑
x∈X

π[x]g(w, x).

The idea is that adversary A should make a guess w that

maximizes the expected gain; we therefore take the weighted

average of g(w, x), for every possible value x of X .3

Definition 3.3: Given gain function g, prior π, and chan-

nel C, the posterior g-vulnerability is

Vg(π,C) =
∑
y∈Y

max
w∈W

∑
x∈X

π[x]C[x, y]g(w, x)

=
∑
y∈Y

max
w∈W

∑
x∈X

p(x, y)g(w, x)

=
∑
y∈Y

p(y)Vg(pX|y)

Now we define g-entropy, g-leakage, and g-capacity in

exactly the same way as in Section II:

Definition 3.4:

Hg(π) = − log Vg(π)

Hg(π,C) = − log Vg(π,C)

Lg(π,C) = Hg(π)−Hg(π,C) = log
Vg(π,C)

Vg(π)

MLg(C) = sup
π
Lg(π,C)

In Section IV, we will explore the mathematical properties

of g-leakage. But first we present a number of example gain

functions that illustrate the usefulness of g-leakage.

A. The identity gain function

One obvious (and often appropriate) gain function is the

one that says that a correct guess is worth 1 and an incorrect

guess is worth 0:

Definition 3.5: The identity gain function gid : X ×X →
[0, 1] is given by

gid(w, x) =

{
1, if w = x,

0, if w �= x.

Note that for gid we assume that W = X , since there is

no gain to be had from a guess outside of X . In terms of

representing a gain function as a matrix, gid corresponds to

the identity matrix I|X |. Also notice that gid is the Kronecker
delta, since gid(w, x) = δwx.

Now we can show that g-vulnerability is a generalization

of ordinary vulnerability:

Proposition 3.1: Vulnerability under gid coincides with

vulnerability:

Vgid(π) = V (π).

3We remark that our assumption that gain values are between 0 and 1 is
unimportant. Allowing g to return a value in [0, a], for some constant a,
just scales all g-vulnerabilities by a factor of a and therefore has no effect
on g-leakage.
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Proof: Note for any w,
∑

x π[x]gid(w, x) = π[w]. So

Vgid(π) = maxw π[w] = V (π).
This means that gid-leakage coincides with min-entropy

leakage.

B. Gain functions induced from metrics or other distance
functions

Exploring other gain functions, one quite natural kind of

structure that X may exhibit is a notion of distance between

secrets. That is, there may be a metric d on X , which is a

function

d : X × X → [0,∞)

satisfying the properties

• (identity of indiscernibles) d(x1, x2) = 0 iff x1 = x2,

• (symmetry) d(x1, x2) = d(x2, x1), and

• (triangle inequality) d(x1, x3) ≤ d(x1, x2)+ d(x2, x3).

Given a metric d, we can first form a normalized metric d̄
by dividing all distances by the maximum value of d, and

then we can define a gain function gd by

gd(w, x) = 1− d̄(w, x).

(Note that here we are taking W = X .) In this case we say

that gd is the gain function induced from metric d.4

Metrics induce a large class of gain functions—note in

particular that the identity gain function is induced by the

discrete metric, which assigns distance 1 to any two distinct

values. However, there are several reasons why it is useful

to allow more generality.

For one thing, it may make sense to generalize to a metric

on a set W that is a superset of X . To see why, suppose

that the space of secrets is the set of corner points of a

unit square: X = {(0, 0), (0, 1), (1, 0), (1, 1)}. Suppose that

we use the gain function g(w, x) = 1− d̄(w, x), where the

metric d̄ is the normalized Euclidean distance:

d̄((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2

2

Now,

Vgd(π) = max
w

∑
x

π[x](1− d̄(w, x))

and if π is uniform, then it is easy to see that any of the

four corner points are equally-good guesses, giving

Vgd(π) =
1

4
(1 + 2(1− 1√

2
) + 0) ≈ 0.3964

But the adversary could actually do better by guessing

(12 ,
1
2 ), a value that is not in X , since that guess has

normalized distance 1
2 from each of the four corner points,

giving Vgd(π) = 1
2 , which is larger than the previous

vulnerability.

4However, it is also rather natural to define a gain function from a metric
by g(w, x) = e−d(w,x); note that here we would actually want d to be
an extended metric, so that a gain of 0 becomes possible.

Moreover, the assumption of symmetry is sometimes in-

appropriate. Suppose that the secret is the time (rounded to

the nearest minute) that the last RER B train will depart

from Lozère back to Paris.5 The adversary (i.e. the weary

traveler) wants to guess this time as accurately as possible,

but note that guessing 23:44 when the actual time is 23:47

is completely different from guessing 23:47 when the actual

time is 23:44! If we normalize so that a wait of an hour

or more is considered intolerable, then we would want the

distance function

d(w, x) =

{
x−w
60 if x− 60 < w ≤ x

1 otherwise

and the gain function

g(w, x) = 1− d(w, x).

But d(w, x) is not a metric, because it is not symmetric.6

C. Binary gain functions

The family of gain functions that return either 0 or 1

(and no values in between) are of particular interest, since

we can characterize them concretely. For given such a gain

function, each guess exactly corresponds to the subset of X
for which that guess gives gain 1. (Moreover we can assume

without loss of generality that no two guesses correspond to

the same subset of X , since such guesses may as well be

merged into one.) Hence we can use the subsets themselves
as the guesses, leading to the following definition:

Definition 3.6: Given W ⊆ 2X , W nonempty, the binary
gain function gW is given by

gW(W,x) =

{
1, if x ∈W
0, otherwise.

Now we can identify a number of interesting gain func-

tions by considering different choices of W .

1) 2-block gain functions: If W = {W,X \W} then we

can see W as a property that the secret X might or might

not satisfy, and gW is the gain function corresponding to

an adversary that just wants to decide whether or not X
satisfies that property.

Such 2-block gain functions are reminiscent of the cryp-

tographic notion of indistinguishability, which demands that

from a ciphertext an adversary should not be able to decide

any property of the corresponding plaintext.

2) Partition gain functions: More generally, W could be

any partition of X into one or more disjoint blocks, where

the adversary just wants to determine which block the secret

belongs to.

This is equivalent to saying that W = X/∼, where ∼ is

an equivalence relation on X .

5It is well known that RATP uses sophisticated techniques, such as the
droit de retrait, to make this time as unpredictable as possible.

6Such a function is sometimes called a quasimetric.
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There are two extremes. If ∼ is the identity relation, then

the elements ofW are all singletons, which means that g∼ =
gid. And if ∼ is the universal relation, then W consists of

a single block, W = {X}, and g∼ = g�̈, the “happy” gain

function such that g�̈(X , x) = 1, for every x.

3) The k-tries gain function: Interestingly, we can sub-

sume the theory of k-tries vulnerability, in which the adver-

sary is allowed to make k guesses, rather than just 1. For if

we define

Wk = {W ∈ 2X | |W | ≤ k}
then VgWk

(π) is exactly the probability that the adversary

could guess the value of X correctly within k tries. This

gain function is particularly appropriate for a login program

that allows the user only k tries before locking him out.

Notice that gWk
is not a partition gain function for k > 1,

since its blocks overlap.

4) General binary gain functions: In general, W can

be an arbitrary nonempty subset of 2X . In this case, each

element ofW can be understood as a property that X might

satisfy, and gW is the gain function of an adversary that

wants to guess any of those properties that X satisfies.

Given an arbitrary gain function g, we can define the

complement gain function gc by gc(w, x) = 1−g(w, x). It is

interesting to notice that if W ⊆ 2X , then gcW is essentially

the same7 as gW′ , where W ′ = {W c | W ∈ W}. For

example, for gcid we have that W ′ is the set of complements

of singletons. This means that gcid is the gain function of an

adversary that just wants to guess some value different from

the actual value of the secret; in the context of anonymity,

this corresponds to wanting to guess an innocent user.

D. A gain function and the g-leakage of the password
database example

We now show how we can craft a gain function g
appropriate for the password database example (Ex1) from

Section I. The intuition that g will implement is that the

adversary A simply wants to guess some user’s password,

with no preference as to whose it is. So we will take

W = {(u, x) | 0 ≤ u ≤ 999 and 0 ≤ x ≤ 1023}
and define

g((u, x), X) =

{
1, if X[u] = x
0, otherwise.

How does our analysis of channel (Ex1) change when we

use gain function g (rather than gid, used implicitly in min-

entropy leakage)?

We first see that the prior vulnerability is vastly higher

than before. Under the uniform prior π, it is easy to see that

the expected gain of every element (u, x) of W is 2−10,

since for every u, X[u] is uniformly distributed on [0..1023].
Hence Vg(π) = 2−10, compared with Vgid(π) = 2−10000.

7They don’t actually have the same set of guesses.

These values match our intuition that under g the adversary

just needs to guess any single 10-bit password; under gid, in

contrast, the adversary needs to guess 1000 such passwords.8

Turning now to the posterior g-vulnerability, we have

Vg(π,Ex1) = 1, since given Y = (u,X[u]), A can guess

(u,X[u]) and be sure of getting gain 1.

Hence we have

Lg(π,Ex1) = log
Vg(π,Ex1)

Vg(π)
= log

1

2−10
= 10 bits.

Curiously, the g-leakage is the same as the standard min-

entropy leakage, namely 10 bits. But the significance of

leaking 10 bits is completely different under g and under

gid. If we convert from vulnerability to entropy (see Defini-

tion 3.4), we see that Hg(π) = 10, while Hgid(π) = 10000.

In other words, channel (Ex1) leaks 10 bits out of 10

under g, as compared with 10 bits out of 10000 under

gid. In conclusion, g-leakage under gain function g allows

us to model accurately the threat to a structured secret

(like a password database), composed of “pieces” that are

individually valuable; as we saw in Section I, such threats

are not well modeled using min-entropy leakage.

Finally, it is interesting to consider a variant of chan-

nel (Ex1) that selects 10 random users and leaks just the

last bit of each of their passwords. Because the variant still

reveals 10 bits to the adversary, the min-entropy leakage

remains 10 bits. But the g-leakage is now only 1 bit: the

posterior g-vulnerability is now 2−9 since (at least) 9 bits of

each user’s password remain unknown. In other words, gain

function g captures the structure of the password database,

where certain sets of bits are worth more than others.

E. Gain functions that distinguish two channels

We conclude this section by revisiting two example chan-

nels from [10]:

if (X % 8 == 0) Y = X; else Y = 1; (Ex2)

Z = X | 07; (Ex3)

Assuming that X is a uniformly-distributed 64-bit unsigned

integer, both channels have min-entropy leakage of 61.000

bits, even though they present quite different threats: (Ex2)

leaks all of X one-eighth of the time and leaks almost

nothing seven-eights of the time, while (Ex3) always leaks

all but the last three bits of X .

8It is interesting to notice that we would get a much bigger prior
vulnerability if we used a gain function g′ that allows A to guess just
a password x, without specifying whose it is, and which gives a gain of 1
if x is correct for any of the users. For then we would have

Vg′ (π) = 1−
(
1023

1024

)1000

≈ 0.6236

But g′ is not such a reasonable gain function, since really a password is
valuable only with respect to a particular user.
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We now show how these two channels can be distin-

guished by gain functions that model different attack sce-

narios, showing that each channel can sometimes be worse

than the other.

Consider first the 3-try gain function from Section III-C3.

Because gW3 gives a gain of 1 if the adversary can guess

X within 3 tries, the prior vulnerability is tripled:

VgW3
(π) = 3 · 2−64.

Allowing 3 tries also triples the posterior vulnerability for

(Ex3):

VgW3
(π,Ex3) =

3

8
,

so LgW3
(π,Ex3) remains 61 bits. But allowing 3 tries hardly

helps (Ex2):

VgW3
(π,Ex2) =

1

8
· 1 + 7

8
· 3 · 2−64 ≈ 1

8
,

so the gW3
-leakage of (Ex2) becomes smaller:

LgW3
(π,Ex2) ≈ log

2−3

3 · 2−64
≈ 59.4

Thus (Ex3) is worse than (Ex2) under gW3
.

But now suppose that making a wrong guess triggers a

penalty (say, opening a trap door to a pit of tigers). This

scenario can be modeled through a gain function gtiger using

W = X ∪{⊥}, where the special value ⊥ is used to opt not

to make a guess:

gtiger(w, x) =

⎧⎨
⎩

1, if w = x
1
2 , if w = ⊥
0, otherwise.

Now we get

Vgtiger(π) = Vgtiger(π,Ex3) =
1

2

since A’s best choice is ⊥ both a priori and also given Z,

since knowing Z gives only a 1
8 probability of guessing X ,

and 1
8 < 1

2 . In contrast,

Vgtiger(π,Ex2) =
1

8
· 1 + 7

8
· 1
2
=

9

16
.

Hence the gtiger-leakage of (Ex3) is 0, while that of (Ex2)

is log 1.125 ≈ 0.17, showing that (Ex2) is worse than (Ex3)

under gtiger.

Having shown some examples of the usefulness of gain

functions, we turn in the next section to a study of the

mathematical properties of g-leakage.

IV. MATHEMATICAL PROPERTIES OF g-VULNERABILITY

AND g-LEAKAGE

We now establish some mathematical properties of g-

leakage. First, because gain functions return values in [0, 1],
it is easy to see that g-vulnerabilities are also in [0, 1]. Also,

prior vulnerability cannot exceed posterior vulnerability:

Theorem 4.1: For any π and C, Vg(π,C) ≥ Vg(π), which

implies that Lg(π,C) ≥ 0.

Proof:

Vg(π,C) =
∑

y maxw
∑

x p(x, y)g(w, x)

≥ max
w

∑
y

∑
x p(x, y)g(w, x)

= max
w

∑
x

∑
y p(x, y)g(w, x)

= max
w

∑
x p(x)g(w, x)

= Vg(π)

Hence Lg(π,C) = log
Vg(π,C)
Vg(π)

≥ log 1 ≥ 0.

A mathematical issue, however, is that we could have

Vg(π) = 0, since we could have g(w, x) = 0 for every w
and every x with π[x] > 0. But in such a case it is easy to

see that we must also have Vg(π,C) = 0, for any C, so we

could simply define the g-leakage to be 0 in that case. In this

paper, however, we will instead rule out such “pathological”

gain functions, by insisting that for every secret x there exist

some guess w such that g(w, x) > 0.

A. Comparing g-leakage and min-entropy leakage

How can the g-leakage and min-entropy leakage of a

channel compare? We can first observe that g-leakage can be

arbitrarily smaller than min-entropy leakage. A trivial way

that this can happen is to use the “happy” gain function

g�̈ from Section III-C2. With this gain function, the prior

vulnerability is always 1, so the g�̈-leakage is always 0, no

matter the channel.

More interestingly, consider the channel

y1 y2
x1

1
2

1
2

x2 1 0
x3 0 1

(Ex4)

If we assume a uniform prior π = ( 13 ,
1
3 ,

1
3 ), then the min-

entropy leakage is log 2 = 1. Now suppose we use the

following metric-induced gain function gd:

x1

x2

x3

1

1

0.02

gd x1 x2 x3

x1 1 0 0
x2 0 1 0.98
x3 0 0.98 1

We find that

Vgd(π) =
1

3
max{1 + 0 + 0, 0 + 1 + 0.98, 0 + 0.98 + 1}

= 0.66

reflecting the fact that x2 and x3 behave almost like a single

secret value. Turning now to Vgd(π,Ex4), we calculate that

the posterior distribution pX|y1
= ( 13 ,

2
3 , 0). Hence

Vgd(pX|y1
) = max

⎧⎨
⎩

1
3 · 1 + 2

3 · 0 + 0 · 0,
1
3 · 0 + 2

3 · 1 + 0 · 0.98,
1
3 · 0 + 2

3 · 0.98 + 0 · 1

⎫⎬
⎭ =

2

3
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Similarly, we can calculate that Vgd(pX|y2
) = 2

3 . So, since

pY = ( 12 ,
1
2 ), we get Vgd(π,Ex4) = 2

3 , giving

Lgd(π,Ex4) = log
2
3

0.66
≈ log 1.0101 ≈ 0.01450

Here the min-entropy leakage is about 70 times the gd-

leakage. Intuitively, (Ex4) lets us distinguish between x2

and x3, but since these are so close together under d, this

hardly increases the gd-vulnerability.

We may wonder if g-leakage can ever exceed min-entropy

leakage. Indeed it can, as the following example shows:

y1 y2
x1 0.6 0.4
x2 0 1
x3 0 1

(Ex5)

Under prior π = (0.6, 0.2, 0.2), the min-entropy leakage

is 0, because A’s best guess is unaffected by Y ; indeed

pX|y1
= (1, 0, 0) and pX|y2

= (0.375, 0.3125, 0.3125), so

the best guess is always x1.

In contrast, we find that the gd-leakage is positive, where

gd is the same as in (Ex4) above. First, Vgd(π) = 0.6 because

the combined probabilities of x2 and x3 are only 0.4. Next

we find that Vgd(pX|y1
) = 1, Vgd(pX|y2

) = 0.61875, and

pY = (0.36, 0.64), so

Vgd(π,Ex5) = 0.36 · 1 + 0.64 · 0.61875 = 0.756,

giving gd-leakage of log 0.756
0.6 = log 1.26 ≈ 0.3334.

B. On g-leakage of 0

We can characterize precisely when g-leakage is 0. As in

the case of min-entropy leakage, we find that a channel’s g-

leakage is 0 iff the adversary’s best guess about the secret is

not affected by channel’s output. Before stating this property

formally, we first introduce some notion, given prior π and

channel C:

Eg(w) =
∑

x π[x]g(w, x)

Eg(w, y) =
∑

x π[x]C[x, y]g(w, x)

Eg(w) is the expected gain of guess w a priori, while

Eg(w, y) is the expected gain for w given output y. These

satisfy the following properties:

Vg(π) = max
w

Eg(w)

Vg(π,C) =
∑

y maxw Eg(w, y)

Eg(w) =
∑

y Eg(w, y)

and, in the case of min-entropy, they reduce to

Egid(x) = π[x]

Egid(x, y) = π[x]C[x, y].

Theorem 4.2: Given channel C, gain function g, and prior

π, the g-leakage is 0 iff there exists a guess w� that gives

the best expected gain for all outputs:

∀w, y : Eg(w
�, y) ≥ Eg(w, y).

If such a guess exists then it also gives the best prior gain:

∀w : Eg(w
�) ≥ Eg(w).

Proof: Assuming that such a guess w� exists, we first

show that it gives the best prior gain. We have

Vg(π,C) =
∑

ymaxwEg(w, y) =
∑

yEg(w
�, y) = Eg(w

�).

Since Eg(w
�) = maxw Eg(w) = Vg(π), the g-leakage is 0.

Now assume that such a guess does not exist, and let w�

be a guess giving the best prior gain. Then there exist w′, y
such that Eg(w

′, y) > Eg(w
�, y). Now we have

Vg(π,C) =
∑

y maxw Eg(w, y) >
∑

y Eg(w
�, y) = Vg(π)

which implies that the g-leakage is greater than 0.

C. On g-vulnerability as a linear optimization problem

It is sometimes useful to think of g-vulnerability as the

solution to an optimization problem, where the adversary

assigns guesses to channel outputs, with the goal of max-

imizing his gain. Let C be a channel from X to Y and

let g : W × X → [0, 1] be a gain function. A function

s : Y → W is called a strategy. Intuitively, s(y) is the

attacker’s guess when he sees the output y. It is also possible

to write s as a deterministic channel S from Y to W (i.e.

S[y, w] = 1 iff s(y) = w).

Now consider the definition of posterior g-vulnerability

(Def. 3.3) and let s be an optimal strategy, i.e. such that s(y)
is a w giving the maxw for each y in the definition. Viewing

s, g as matrices S,G, we have g(s(y), x) = SG[y, x], so we

can write Vg(π,C) as:

Vg(π,C) =
∑

y∈Y maxw∈W
∑

x∈X π[x]C[x, y]g(w, x)

=
∑

x∈X
∑

y∈Y π[x]C[x, y]SG[y, x]

= tr(DπCSG)

where Dπ is the matrix having π in the diagonal and 0
elsewhere (note that DπC[x, y] = π[x]C[x, y]), and tr(A)
denotes the trace of A, i.e. the sum of its diagonal elements.

So, seeing now the elements of S as variables, Vg(π,C)
is the solution to the linear optimization problem (for fixed

π,C,G):

maximize tr(DπCSG)
subject to S being a channel:

S[y, w] ≥ 0 ∀y ∈ Y, w ∈ W∑
w S[y, w] = 1 ∀y ∈ Y

Note that in the optimization problem S is not necessarily

deterministic, meaning that the choice of guess can be made

probabilistically. However, from linear programming theory
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we know that there is always an optimal solution on a vertex,

which here corresponds to S being deterministic.

We should clarify that this linear programming formu-

lation is not particularly useful if we just wish to com-

pute Vg(π,C), since we can directly evaluate the formula

in Definition 3.3. The value of these linear programming

insights will be demonstrated later, especially in the proof

of Theorem 6.2 and in the challenging algorithmic problems

considered in Section VI-F.

V. RESULTS ON CHANNEL CAPACITY

In this section, we compare min-capacity with g-capacity

and Shannon capacity, proving some important relationships.

A. Min-capacity and g-capacity

When we compare the g-leakage and min-entropy leakage

of a channel under some particular prior π, we saw in

Section IV that each may exceed the other greatly.

Remarkably, when we turn our attention to capacity, we

find that a definite order must hold: min-capacity is an upper

bound on g-capacity, for every gain function g.

Theorem 5.1 (“Miracle”): For any channel C and gain

function g, MLg(C) ≤ML(C).
Proof: For any C, g, and π, we have

Vg(π,C) =
∑

y maxw
∑

x C[x, y]π[x]g(w, x)

≤∑
y maxw

∑
x

(
maxx C[x, y]

)
π[x]g(w, x)

=
(∑

y maxx C[x, y]
)(

maxw
∑

x π[x]g(w, x)
)

= 2ML(C) Vg(π),

using Theorem 2.1 in the last step. Hence

Lg(π,C) = log
Vg(π,C)

Vg(π)
≤ log 2ML(C) =ML(C),

which implies that MLg(C) ≤ML(C).
This gives a nice corollary about k-tries leakage:

Corollary 5.2: The capacity of a channel C under the k-

tries scenario is no greater than its capacity under the 1-try

scenario (i.e. its min-capacity).

Proof: Follows from Theorem 5.1 and the fact that the

k-tries scenario is given by the gWk
-leakage, where gWk

is

the gain function from Section III-C3.

So, while allowing more than one guess obviously increases

both the prior and posterior vulnerabilities, it cannot increase

the capacity.

B. Min-capacity and Shannon capacity

The significance of min-capacity as an upper bound on

leakage is further attested by another result that we have

achieved—we have been able to show that min-capacity is

also an upper bound on Shannon capacity (i.e. the maxi-

mum mutual information I(X;Y ) over all priors π [18]),

confirming the conjecture made in [14]:

Theorem 5.3: For any channel C, C’s min-capacity is at

least as great as its Shannon capacity.

Proof: Our argument makes crucial use of Jensen’s
inequality, which says that if f is a concave (�) function,

λ1, λ2, . . . , λn are convex coefficients, and x1, x2, . . . , xn

are arbitrary, then∑
i λif(xi) ≤ f(

∑
i λixi).

Let prior π on X be arbitrary. We reason as follows:

I(X;Y )

= H(Y )−H(Y |X)

= −∑y p(y) log p(y) +
∑

x p(x)
∑

y p(y|x) log p(y|x)
=

∑
x,y p(x, y) log

p(y|x)
p(y)

≤ [by Jensen’s inequality and the concavity of log]

log
∑

x,y p(x, y)
p(y|x)
p(y)

= log
∑

y

∑
x p(x|y)p(y|x)

≤ log
∑

y

∑
x p(x|y)(maxx p(y|x))

= log
∑

y (maxx p(y|x))
∑

x p(x|y)
= log

∑
y maxx C[x, y]

=ML(C)

Because this inequality holds for every π, it follows that

Shannon capacity of C = sup
π

I(X;Y ) ≤ML(C).

C. Practical implications of capacity bounds

When we consider the risk to confidentiality caused by a

system C, different leakage measures may be appropriate in

different scenarios, depending on factors like the structure

of the set of secrets, the design of the system, and the

adversary’s strategy or power. For this reason, Theorems 5.1

and 5.3 can be very useful in simplifying our security

analysis. For they tell us that if we can show that the min-

capacity of C is small, then we are guaranteed that the

leakage under any gain function g and under any prior π
is also small, as is the Shannon leakage. In such a case, the

multitude of possible gain functions g need not burden us.

This is not to say that we can simply forget about the

gain function g, since a particular g can make the prior

vulnerability much larger (as in (Ex1), for example). Indeed,

we could say that leakage bounds address the conservation
of confidentiality, while prior vulnerability addresses its

creation, involving parameters like the sizes of passwords

and their prior distribution.

Moreover, when we compare two channels, we may find

that one has worse min-capacity than the other, even though

the opposite ordering holds under the gain function and prior

relevant for the scenario of interest.
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To illustrate, recall (Ex1) from Section I, which leaks a

randomly-chosen user’s 10-bit password, giving it a min-

capacity of 10 bits. Compare that channel with

n
?← {0..9};

if n = 0 then
Y = (762, X[762])

else
Y := (0, 0)

(Ex6)

Since (Ex6) has only a 1
10 probability of leaking anything,

it is easy to see that its min-capacity is less than 10 bits.9

So, with respect to min-capacity, (Ex1) is worse than (Ex6).

But suppose that it turns out that user 762 is Bill Gates,

whose password is vastly more valuable than all the other

passwords. In this scenario, it would make sense to replace

g from Section III-D with a gain function like

g′((u, x), X) =

⎧⎨
⎩

1, if u = 762 and x = X[762]
0.01, if u �= 762 and x = X[u]
0 otherwise

Under g′, the min-capacity ordering is reversed: now we find

that (Ex6) is worse, since it has a 1
10 probability of revealing

Bill Gates’s password, which under g′ is worth 100 times

as much as every other password.10

D. The prior that realizes g-capacity

A property of min-capacity that makes it easy to calculate

is that it is always realized on a uniform prior. We have

found, however, that this does not hold for g-capacity.

Consider channel (Ex5) above and its gain function gd.

Under a uniform prior π, we calculate that Vgd(π) = 0.66,

pY = (0.2, 0.8), Vgd(pX|y1
) = 1, Vgd(pX|y2

) = 0.825, and

Vgd(π,Ex5) = 0.86, giving Lgd(π,Ex5) = 0.3819.

Now if we consider the prior π′ = (0.5, 0.5, 0), we find

that Vgd(π
′) = 0.5, pY = (0.3, 0.7), Vgd(pX|y1

) = 1,

Vgd(pX|y2
) = 5

7 , and Vgd(π
′,Ex5) = 0.8, which gives

Lgd(π
′,Ex5) = log 1.6 ≈ 0.6781. Hence the gd-capacity

of (Ex5) is not realized on a uniform distribution.

Notice here that log 1.6 is also (Ex5)’s min-capacity.

Hence, by Theorem 5.1, we know that log 1.6 must in fact

be its gd-capacity, realized on π′.11 But, so far, we have not

found a general technique for calculating g-capacity; this

remains an area for future study.

VI. COMPARING CHANNELS

Given any leakage measure m (for example, Shannon

leakage, min-entropy leakage, or g-leakage for some g), an

interesting question that can be asked about two channels C1

and C2 is whether the leakage of C1 is less than or equal to

9In fact, its min-capacity turns out to be about 6.6907 bits.
10Under g′, the prior vulnerability is 2−10. Under (Ex1), the posterior

vulnerability is 0.01099, giving g′-leakage of 3.492 bits. Under (Ex6), the
posterior vulnerability is 0.10088, giving g′-leakage of 6.6907 bits.

11Curiously, π′ also realizes (Ex5)’s min-capacity.

that of C2, on every prior. For this question to make sense,

both channels need to have the same input space X , but they

need not have the same output space.

Definition 6.1: Given channels C1 from X to Z and C2

from X to Y , and a leakage measure m, write C1 ≤m C2 if

the m-leakage of C1 never exceeds that of C2, on any prior.

Notice that C1 ≤m C2 implies that the m-capacity of C1

is less than or equal to that of C2, but not conversely.

One would expect that ≤m will depend on the particular

choice of leakage measure m. Interestingly, Yasuoka and

Terauchi [15] and Malacaria [16] show that on deterministic
channels, we get the same ordering ≤m when m is either

Shannon, min-entropy, or guessing entropy leakage. They

show moreover a connection to the Lattice of Information.

Recall (e.g. [17], [7]) that a deterministic channel C from

X to Y gives rise to an equivalence relation (or partition)

on X , given by x1 ∼C x2 iff C(x1) = C(x2). (By C(x)
we denote the unique y such that C[x, y] = 1.) In the

Lattice of Information, we order these equivalence relations

by partition refinement:
Definition 6.2: Given deterministic channels C1 and C2,

write C1 � C2 if the partition of C1 is refined by the

partition of C2, in that each equivalence class of ∼C2
is

contained within some equivalence class of ∼C1
:

x1 ∼C2
x2 implies x1 ∼C1

x2.

Yasuoka and Terauchi [15] and Malacaria [16] show that

on deterministic channels, ≤m (for m being Shannon, min-

entropy, or guessing entropy leakage) all coincide with �.

The Lattice of Information applies only to deterministic

channels, since probabilistic channels do not give partitions

of X . On the other hand, ≤m does make sense for prob-

abilistic channels, so a natural question is: how can we

generalize � to probabilistic channels, and what leakage

ordering would characterize it? This is what we explore in

this section.

Our first result (already observed in [17]) is that partition

refinement on deterministic channels coincides with the

existence of a channel factorization:

Theorem 6.1: Let C1 from X to Z and C2 from X to Y
be deterministic channels. Then C1 � C2 iff there exists

deterministic C3 from Y to Z such that C1 = C2C3.

(C2C3 denotes the cascade of C2 and C3, corresponding

to multiplication of the channel matrices.)

Proof: If C1 = C2C3, for some deterministic C3, then

C2(x1) = C2(x2) implies that C1(x1) = C3(C2(x1)) =
C3(C2(x2)) = C1(x2). Hence C1 � C2.

Conversely, if C1 � C2, then for every y ∈ Y , C1 maps

all x ∈ C−1
2 (y) to the same value, say zy . If we define

deterministic C3 that maps each y ∈ Y to zy , then it is easy

to see that C1 = C2C3.

Given this theorem, it seems promising to generalize

partition refinement to probabilistic channels by introducing

what we call composition refinement:
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Definition 6.3: Given channel C1 from X to Z and C2

from X to Y , we say that C1 is composition refined by C2,

denoted C1 �◦ C2, if there exists a channel C3 from Y to

Z such that C1 = C2C3.
In terms of notation, we use ≤g to denote ≤m when m is

g-leakage for a specific gain function g; that is, C1 ≤g C2

iff ∀π : Lg(π,C1) ≤ Lg(π,C2). Note that this is equivalent

to ∀π : Vg(π,C1) ≤ Vg(π,C2). We also use ≤S , where S
is a set of gain functions, to denote the ordering under all

gain functions in S (i.e. ≤S= ∩g∈S ≤g). In particular, we

use ≤G ,≤G2 ,≤G∼ to denote the ordering under all, 2-block,

and partition gain functions, respectively.
The key question, then, is whether the previous equiva-

lence between � and ≤m carries over somehow to �◦ and

≤g or ≤G .
In fact, a recent result in Espinoza and Smith [19] shows

that C1 �◦ C2 implies C1 ≤min-entropy C2.12 We now

show that we can generalize this implication to g-leakage

under any gain function:
Theorem 6.2: If C1 �◦ C2, then C1 ≤G C2.

Proof: A direct proof is given in the Appendix. We here

discuss a more intuitive proof in terms of viewing Vg(π,C1)
as the solution to a linear optimization problem. Recall from

Section IV-C that Vg(π,C1) is the solution to the problem

of maximizing tr(DπC1SG) subject to S being a channel

matrix. Let S1 be any feasible solution to this problem (i.e.

any channel matrix) and assume C1 = C2C3. Then S2 =
C3S1 is a feasible solution to the optimization problem for

C2, giving gain

tr(DπC2S2G) = tr(DπC2C3S1G) = tr(DπC1S1G)

That is, for any feasible solution of C1’s problem, there is

a feasible solution for C2’s problem, giving the same gain.

Thus, the optimal solution for C2 (i.e. Vg(π,C2)) can be no

smaller than the optimal solution for C1 (i.e. Vg(π,C1)).
Now it is natural to wonder about converses to Theo-

rem 6.2. We might first wonder whether (as in the determin-

istic case) C1 ≤g C2 for a particular g is sufficient to imply

that C1 �◦ C2. This turns out not to be true for gid (i.e.

min-entropy leakage) and the following channel matrices:

C1 =

⎛
⎝ 1/4 3/4

1/4 3/4
3/5 2/5

⎞
⎠ C2 =

⎛
⎝ 1/2 0 1/2

0 1/2 1/2
1/2 1/2 0

⎞
⎠

It can be verified (using the decision procedure of Sec-

tion VI-F) that C1 ≤gid C2 but C1 ��◦ C2, so ≤gid by

itself does not imply composition refinement.13

But what if the g-leakage ordering holds for all gain

functions? We conjecture that this is sufficient to imply

composition refinement:

12Also, the classic data-processing inequality [18] shows (essentially)
the same implication for Shannon leakage.

13We also mention that we have experimental evidence (but no proof) that
C1 ≤Shannon C2, so the Shannon leakage order also appears insufficient
to imply composition refinement.

Conjecture 6.3 (“Coriaceous”): If C1 ≤G C2, then

C1 �◦ C2.

If the conjecture holds, then ≤G and �◦ coincide, pro-

viding an extension of Yasuoka, Terauchi, and Malacaria’s

equivalence to the probabilistic case (the only difference

being that we need to consider the ordering under all

gain functions). The conjecture, however, turns out to be

remarkably subtle, and we have not yet been able to prove

it in full generality. But we have been able to prove it

in substantial special cases, using techniques that we now

describe.

A. The case of invertible C2

We begin with a useful tool for showing that a leakage

ordering does not hold.

Definition 6.4: Vector v is a cat-vector for C1 and C2

if the inner product of v with each column of C2 is non-

negative, and the inner product of v with some column of

C1 is negative.

Lemma 6.4: If there exists a cat-vector v for C1 and C2,

then there is a 2-block gain function g such that C1 �≤g C2.

Proof: Assume that C1 goes from X to Z and C2 from

X to Y . Given cat-vector v indexed by X , let z� be (the

index of) a column of C1 whose inner product with v is

negative: ∑
x∈X v[x]C1[x, z

�] < 0. (1)

In contrast, for every column y of C2, we have∑
x∈X v[x]C2[x, y] ≥ 0. (2)

It follows from these two facts that v must contain both

positive and negative entries. This lets us split set X into

two nonempty parts:

X+ = {x ∈ X | v[x] ≥ 0}
and

X− = {x ∈ X | v[x] < 0}.
Now let us define prior π using the absolute values of the

entries in v:

π[x] =
1

γ
|v[x]|

where normalizing factor γ is defined as γ =
∑

x∈X |v[x]|.
The intuition behind this choice of π is that because of

(2), we know that under C2, the a posteriori probability of

X− never exceeds that of X+, for any output y. In contrast,

because of (1), we know that under C1, the a posteriori
probability of X− does exceed that of X+ on output z�.

We can define a 2-block gain function to exploit this

difference. Define W = {X+,X−} and

g(W,x) =

{
1, if x ∈W
0, if x �∈W

In other words, g cares only about whether we correctly

guess whether x belongs to X+ or to X−.
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Now we will argue that under g and π, C1 has greater

leakage than C2; in fact we show that C1’s g-leakage is

positive, while C2’s is zero.

Looking at C2’s leakage, we have

Vg(π,C2)

=
∑
y∈Y

max
W∈W

∑
x∈X

π[x]C2[x, y]g(W,x)

=
1

γ

∑
y∈Y

max
W∈W

∑
x∈X
|v[x]|C2[x, y]g(W,x)

=
1

γ

∑
y∈Y

max
W∈W

( ∑
x∈X+ v[x]C2[x, y]g(W,x)
−∑

x∈X− v[x]C2[x, y]g(W,x)

)

=
1

γ

∑
y∈Y

max

{ ∑
x∈X+

v[x]C2[x, y],−
∑

x∈X−
v[x]C2[x, y]

}

Now, in light of equation (2) we can see that in the final

“max”, the left sum is greater than or equal to the right

sum, for every y. Hence X+ is the best guess under every

y, which implies by Theorem 4.2 that X+ is also the best

guess a priori, and that Lg(π,C2) = 0.

When we consider C1’s leakage, in contrast, we can show

by a similar calculation that equation (1) implies that the best

guess under output z� is X−. But, since X+ is the best guess

a priori, we conclude by Theorem 4.2 that Lg(π,C2) > 0.

Lemma 6.4 allows us to prove some significant special

cases of Conjecture 6.3, as we now show.

Theorem 6.5: If C2 is invertible and C1 ≤G2 C2, then

C1 �◦ C2.

Proof: We argue the contrapositive. Suppose that C2 is

invertible and C1 ��◦ C2. Then there does not exist a channel

matrix C3 such that C1 = C2C3. But, assuming that C2 is

invertible, we do have C1 = C2(C
−1
2 C1), so it must be that

C−1
2 C1 is not a channel matrix.

Now, a basic property of matrix multiplication is that

multiplication on the right by a channel matrix preserves row

sums. Since I = C−1
2 C2, it follows that each row of C−1

2

sums to 1. And this implies that each row of C−1
2 C1 also

sums to 1. Hence for C−1
2 C1 to not be a channel matrix,

it must contain a negative entry, say at position [y�, z�].
This is equivalent to saying that the inner product of row y�

of C−1
2 and column z� of C1 is negative. Moreover, since

C−1
2 C2 = I we know that the inner product of row y� of

C−1
2 and any column y of C2 is non-negative (in fact the

inner product is always either 0 or 1). Hence we see that

row y� of C−1
2 is a cat-vector for C1 and C2, and the result

follows from Lemma 6.4.

Note that ≤G ⊆ ≤G2 ; the above theorem shows that in the

case when C2 is invertible, the conjecture holds even if we

restrict to 2-block gain functions.

B. The case of “skinny”, full-rank C2

We now strengthen Theorem 6.5 to the case when C2’s

columns are linearly independent, dropping the assumption

that its rows are linearly independent; this is the case of a

full-rank C2 that is “skinny”, with at least as many rows as

columns.

Theorem 6.6: If C2’s columns are linearly independent

and C1 ≤G2
C2, then C1 �◦ C2.

Proof: The key idea is that if C1 ≤G2
C2 and the rows

of C2 are linearly dependent, then the rows of C1 must be

linearly dependent with the same coefficients. For if there

is a vector v whose inner product with each column of C2

is 0 but whose inner product with some column of C1 is

nonzero, then either v or −v is a cat-vector for C1 and C2.

Hence a factorization exists iff there is a factorization for the

linearly independent rows of C2 and the corresponding rows

of C1. On the assumption that C2’s columns are linearly

independent, the linearly independent rows of C2 form an

invertible matrix, and so we are done by Theorem 6.5.

C. The case of “fat” C2

As we discussed in the previous sections, in the case when

C2 is invertible or “skinny” the conjecture can be shown to

hold (i.e. leakage ordering implies factorability), even if we

consider only 2-block gain functions. But when we consider

the case of a full-rank C2 that is “fat”, with more columns

than rows, the situation becomes far more difficult. It turns

out then that neither 2-block gain functions nor even general
binary gain functions (see Section III-C4) are sufficient.

Consider the following channels (note that C2 is “fat”):

C1 =

⎛
⎝ .2 .22 .58

.2 .4 .4

.35 .4 .25

⎞
⎠ C2 =

⎛
⎝ .1 .4 .1 .4

.2 .2 .3 .3

.5 .1 .1 .3

⎞
⎠

It can be verified (using the decision procedure of Sec-

tion VI-F) that C1 ≤g C2 for all general binary gain func-

tions g, but C1 ��◦ C2. Nevertheless, these channels are not
a counterexample to Conjecture 6.3, because the following

gain function g (again computed using the techniques of

Section VI-F) makes C1 leak more than C2:

g x1 x2 x3

w1
153/296 0 1/2

w2 0 289/296 63/296
w3

21/148 1 0

For this gain function we have

Vg(πu, C1) = 0.412117 Vg(πu, C2) = 0.409797

which implies that C1 �≤g C2.

D. The case of deterministic channels

Another special case in which we are able to settle our

conjecture is the one when C1 is deterministic (without any
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restriction on C2, which could be “fat”). In fact, the conjec-

ture holds even if we restrict to partition gain functions.

Theorem 6.7: If C1 is deterministic and C1 ≤G∼ C2, then

C1 �◦ C2.

The main idea of the proof is to construct a partition gain

function using the partition ∼C1 induced by C1. In terms of

representing gain functions by matrices, this corresponds to

taking G = CT
1 (the transpose of C1).

We next focus on the purely deterministic case, i.e. when

both C1 and C2 are deterministic. In this case we can prove a

stronger result, namely that the ordering induced by a single
gain function is enough to imply factorability. This is in fact

expected, since we already know by the result of Yasuoka,

Terauchi, and Malacaria, together with Theorem 6.1, that

≤gid implies factorability. We generalize this to the class of

single-optimal guess functions:

Definition 6.5: A gain function g : W × X → [0, 1] is

called single-optimal iff

∀x ∈ X∃w ∈ W : g(w, x) = 1

∀x, x′ ∈ X , w ∈ W : g(w, x) = 1 ∧ x �= x′ ⇒ g(w, x′) < 1

Intuitively, a gain function is single-optimal if for every

secret there is an optimal guess (giving gain 1) and each

guess can be optimal for at most one secret. Note that gid
and all gain functions induced by metrics are single optimal.

However partition gain functions are not (except for gid).

Theorem 6.8: If C1, C2 are deterministic, g is a single-

optimal gain function, and C1 ≤g C2, then C1 �◦ C2.

Note that the above result does not always hold for

non-single-optimal gain functions. A trivial example is the

“happy” gain function since Lg�̈(π,C) = 0 for all π,C.

Moreover, even for non-trivial gain functions, such as the

2-try gain function gW2
, the result might not hold. Let C1

be the identity channel and C2 be the deterministic channel

C2(1) = C2(2) = 1 and C2(x) = x, x ∈ {3, . . . , n}. Thus

C1 ��◦ C2. In the case of C1 the gain is always 1 since

the input can be completely inferred from the output. In

the case of C2, seeing the output 1 the attacker is confused

between 1 and 2, but having 2 tries, he can guess {1, 2} and

still get gain 1. So ∀π : LgW2
(π,C1) = LgW2

(π,C2), thus

C1 ≤gW2
C2.

E. Other results on leakage ordering

We present two other general results about ≤G . First,

note that C1 ≤G C2 contains a double quantification: it

requires that the g-leakage of C1 does not exceed that of

C2 for all priors and all gain functions. It turns out that

quantifying over gain functions is powerful enough that we

can limit ourselves to uniform priors πu without weakening

the ordering.

Theorem 6.9: If Lg(πu, C1) ≤ Lg(πu, C2) for all gain

functions g, then C1 ≤G C2.

Also, ≤G is preserved under left multiplication.

Theorem 6.10: For all channels C, C1, C2, if C1 ≤G C2

then CC1 ≤G CC2.

F. Decision procedures for comparing channels

In this section, we discuss algorithms for two decision

problems related to the leakage orderings. Note that our goal

is not to develop efficient algorithms that can be used in

practice, but rather to be able to obtain the examples and

counter-examples presented in the previous sections. Still,

the problems we tackle are of interest on their own.

Problem 6.1: Given C1, C2, g, decide whether C1 ≤g C2.

The challenge is clearly the quantification over all

priors. Recall from Section IV-C that Vg(π,C1) =
maxS tr(DπC1SG) subject to S being a channel matrix. To

decide ≤g we can solve the following optimization problem,

with π, S1, S2 being variables.

max
π

(
max
S1

tr(DπC1S1G)−max
S2

tr(DπC2S2G)
)

subject to π being a probability distribution and S1, S2 being

channel matrices. Note that C1 ≤g C2 holds iff the solution

is non-positive.

There are however two issues with this problem: first, it

is quadratic and second, it contains nested optimizations.

To cope with these issues, we notice that there is a finite

number of deterministic strategies S1 (in particular, there

are |W||Z| such strategies) and we know that Vg can always

be given by a deterministic strategy. Moreover, for a fixed

S1, the property “π is a prior such that S1 is optimal” can be

expressed by a set of linear constraints (the variables being

π):

Eg(S1(z), z) ≥ Eg(w, z) ∀z ∈ Z, w ∈ W
(using the notation of Sec IV-B; note that Eg depends on

π and C1). Intuitively, the constraints require that the guess

chosen by S1 for each output z is no worse than any other

guess. We refer to these constraints as opt(S1).
Then, the solution to the above (non-linear) optimization

problem will be the maximum of the solutions to the

following linear problems:

max
π

(
tr(DπC1S1G)− tr(DπC2S2G)

)
(3)

subject to π being a distribution and opt(S1), opt(S2)

for each S1, S2, i.e. |W||Z|+|Y| systems in total. In case

C1 �≤g C2 the solution also provides a counter-example π.

Problem 6.2: Given C1, C2, n, decide whether C1 ≤Gn

C2, where Gn denotes the set of all gain functions with n
possible guesses (i.e. where |W| = n).

Note that the exact setW of guesses is not important, as any

gain function with n possible guesses can be represented by

a n×|X | matrix G. First, from Theorem 6.9 (adapted to ≤Gn

instead of ≤G), we know that C1 ≤Gn
C2 iff Lg(πu, C1) ≤

Lg(πu, C2) for all g ∈ Gn. We can then decide this problem

by solving the same finite number of linear optimization
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problems as in Problem 6.1, the only difference being that

π is now fixed to a uniform one, while the variables are the

elements of G (with the constraints G[w, x] ∈ [0, 1]).

VII. RELATED WORK

The converse of gain functions, usually called loss func-
tions, have been used for a long time in fields such as

decision theory [20], [21], economics [22], [23], [24], and

machine learning [25], [26], to cite a few. In the domain

of information flow, Ghosh et al. [27] explore the util-

ity of randomization mechanisms for queries to statistical

databases subject to differential privacy guarantees. Their

work, which inspired our linear programming formulation

of vulnerability, assumes that the utility of the mechanism

for a particular user depends on his prior on secrets, and on

a loss function corresponding to how much this particular

user loses by guessing an answer j when the actual answer

is i. Their approach is close to ours in spirit, but they

impose restrictions on the loss functions (symmetry and

monotonicity) that we do not, which provides our approach

with much more flexibility.

As discussed in Section VI, Yasuoka and Terauchi [15]

and Malacaria [16] explore the relation between leakage or-

dering and partition refinement in the Lattice of Information.

Their works, however, consider deterministic channels only,

while in this paper we address the more general case of

probabilistic channels.

Boreale et al. [28] extend the information flow scenario

with the notion of views, which are essentially partitions of

the space of secrets (possibly probabilistic partitions). They

derive bounds on the probability that the adversary correctly

guesses which block the secret belongs to, as the number of

observations tends to infinity. Their bounds, however, only

consider the a posteriori probability of success, whereas our

approach considers the leakage, i.e. the relation between the

probability of success a posteriori and a priori.
McIver et al. [29], [30] consider a refinement order that

is preserved under composition and that is a partial order

on programs. This order is sound and complete for Bayes

risk, and they show that Bayes risk is maximally discerning,

if contexts are taken into account, when compared to the

alternative elementary tests of marginal guesswork, guessing

entropy and Shannon entropy. Again, McIver et al. consider

only the a posteriori probability of success, whereas we

consider leakage.

VIII. CONCLUSION

In this paper we introduced g-leakage, a generalization

of min-entropy leakage that makes use of gain functions to

allow for the accurate quantification of leakage in a rich

variety of operational scenarios. We also proved important

mathematical properties of g-leakage that further attest to

the significance of our framework.

As future work we intend to identify algorithms to cal-

culate g-capacity, possibly using linear programming. Also,

it would be interesting to extend g-leakage to the scenario

where the adversary does not know the prior π, but instead

has (possibly incorrect) beliefs about it, as in the works of

Clarkson, Myers, and Scheider [31] and Hamadou, Sassone,

and Palamidessi [32]. Finally, we also want to investigate

the applicability of g-leakage to the problem of privacy and

utility in differential privacy.
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APPENDIX

We provide here the proofs omitted from Section VI.

Theorem 6.2: If C1 �◦ C2, then C1 ≤G C2.

Proof: Assuming that C1 goes from X to Z and C2

goes from X to Y , by hypothesis we have C3 from Y to Z
such that C1 = C2C3. Given any prior π and gain function

g :W ×X → [0, 1], we have

Vg(π,C1)

=
∑
z∈Z

max
w∈W

∑
x∈X

(C2C3)[x, z]π[x]g(w, x)

=
∑
z∈Z

max
w∈W

∑
x∈X

∑
y∈Y

C2[x, y]C3[y, z]π[x]g(w, x)

≤ [moving max inside a non-negative sum]∑
z∈Z

∑
y∈Y

max
w∈W

∑
x∈X

C2[x, y]C3[y, z]π[x]g(w, x)

=
∑
y∈Y

∑
z∈Z

C3[y, z] max
w∈W

∑
x∈X

C2[x, y]π[x]g(w, x)

= [the max does not depend on z]∑
y∈Y

( ∑
z∈Z

C3[y, z]
)(

max
w∈W

∑
x∈X

C2[x, y]π[x]g(w, x)
)

= [summing over a row of C3]∑
y∈Y

max
w∈W

∑
x∈X

C2[x, y]π[x]g(w, x)

= Vg(π,C2)

It follows that C1 ≤g C2.

Theorem 6.7: If C1 is deterministic and C1 ≤G∼ C2, then

C1 �◦ C2.

Proof: The key idea is that in the case when C1 is a

deterministic channel from X to Z , then there is always a

partition gain function g that makes C1 a perfect channel.
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We simply use the columns of C1 to determine the partition,

interpreting each column as a subset of X—note that there

can be no overlap among the columns of a deterministic

channel. Seeing g as a matrix G, this means that G is just

the transpose of C1, and that the set W of guesses is Z .

Clearly, Vg(π,C1) = 1 for any π, since given output z,

the adversary can guess z and be guaranteed of getting gain

1. That is, the optimal strategy for C1 is just the identity

function (a “direct” strategy, to use the terminology of [27]).

Now suppose that C1’s leakage with respect to g does

not exceed C2’s, on some prior π, which we can assume

to have full support (meaning that π[x] > 0 for every x).

Using the linear programming formulation of vulnerability

from Section IV-C, this means that C2 must have a strategy

S2 such that tr(DπC2S2G) = 1. Since
∑

x π[x] = 1, this

means that the diagonal elements of C2S2G must all be 1.

Hence for every x we have

1 = (C2S2G)[x, x] =
∑
z

(C2S2)[x, z]G[z, x].

Now notice that column x of G is all zero, except for a

single 1 at the unique z� such that C1[x, z
�] = 1. Hence

1 = (C2S2)[x, z
�] = C1[x, z

�]

But we also know that C2S2 is a channel matrix, which

means that all its other entries in row x have to be 0. Hence

C2S2 = C1, in other words, C2’s optimal strategy S2 is

exactly the C3 that we are seeking!

The following lemma is used in Theorem 6.8; its proof is

straightforward and is omitted due to space constraints.

Lemma A.1: Let C be a deterministic channel, g : W ×
X → [0, 1] a gain function and π a prior. Then

Vg(π,C) =
∑

A∈X/∼C

max
w∈W

∑
x∈A

π[x]g(w, x)

Theorem 6.8: If C1, C2 are deterministic, g is a single-

optimal gain function and C1 ≤g C2, then C1 �◦ C2.

Proof: Assume that f ��◦ h, thus there exist x1, x2 ∈
X such that C1(x1) �= C1(x2) and h(x1) = h(x2). Note

that x1, x2 belong to different equivalent classes of ∼C1 (let

A1, A
′
1 be those classes) but to the same equivalent class A2

of ∼C2
. We define a prior π as π[x1] = π[x2] =

1
2 and 0

elsewhere. We have:

Vg(π,C1)

=
∑

A∈X/∼C1

max
w∈W

∑
x∈A

π[x]g(w, x) [Lemma A.1]

= max
w∈W

∑
x∈A1

π[x]g(w, x) + max
w∈W

∑
x∈A′1

π[x]g(w, x)

= max
w∈W

π[x1]g(w, x1) + max
w∈W

π[x2]g(w, x2)

= 1 [g(w, xi) = 1 for some w]

Vg(π,C2)

=
∑

A∈X/∼C2

max
w∈W

∑
x∈A

π[x]g(w, x) [Lemma A.1]

= max
w∈W

∑
x∈A2

π[x]g(w, x)

= max
w∈W

(
π[x1]g(w, x1) + π[x2]g(w, x2)

)
=

1

2
max
w∈W

(
g(w, x1) + g(w, x2)

)
< 1 [g(w, x1) < 1 or g(w, x2) < 1]

Thus Vg(π,C1) > Vg(π,C2) and Lg(π,C1) > Lg(π,C2)
which is a contradiction.

Theorem 6.9 If Lg(πu, C1) ≤ Lg(πu, C2) for all gain

functions g, then C1 ≤G C2.
Proof: Let C1 and C2 be channels from X to Z and Y

respectively, let π be a prior, and let g :W×X → [0, 1] be

a gain function. We show that Lg(π,C1) ≤ Lg(π,C2).
We define a gain function g′ : W × X → [0, 1] as

g′(w, x) = π[x]g(w, x). The idea is that π is “hard-

coded” inside g′. By hypothesis we have Lg′(πu, C1) ≤
Lg′(πu, C2) which implies∑

z∈Z maxw∈W
∑

x∈X C1[x, z]
1
|X |g

′(w, x)

≤∑
y∈Y maxw∈W

∑
x∈X C2[x, y]

1
|X |g

′(w, x)

which implies Lg(π,C1) ≤ Lg(π,C2).
Theorem 6.10: For all channels C, C1, C2, if C1 ≤G C2

then CC1 ≤G CC2.
Proof: Let C be a channel from X to Y , C1, C2 be

channels from Y to Z,Z ′ respectively and let G be a gain

function (in matrix form). We first show that

VG(πu, CCi) =
|Y|
|X |VGC(πu, Ci) i ∈ 1, 2

i.e. we “hard-code” C inside the gain function. Note that

GC is a valid gain function since C is stochastic. We have:

VG(πu, CC1)

=
∑
z∈Z

max
w∈W

∑
x∈X

(CC1)[x, z]
1

|X |G[w, x]

=
∑
z∈Z

max
w∈W

∑
x∈X

∑
y∈Y

C[x, y]C1[y, z]
1

|X |G[w, x]

=
∑
z∈Z

max
w∈W

∑
y∈Y

C1[y, z]
1

|X |
∑
x∈X

G[w, x]C[x, y]

=
|Y|
|X |

∑
z∈Z

max
w∈W

∑
y∈Y

C1[y, z]
1

|Y|GC[w, y]

=
|Y|
|X |VGC(πu, C1)

and similarly for VG(πu, CC2). By hypothesis we

have that VGC(πu, C1) ≤ VGC(πu, C2) which implies

VG(πu, CC1) ≤ VG(πu, CC2), thus, by Theorem 6.9, we

get CC1 ≤G CC2.
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