
Constructing Optimistic Multi-party Contract Signing Protocols

Barbara Kordy

SnT

University of Luxembourg

barbara.kordy@uni.lu

Saša Radomirović

SnT

University of Luxembourg

sasa.radomirovic@splot.ch

Abstract—We give an explicit, general construction for opti-
mistic multi-party contract signing protocols. Our construction
converts a sequence over any finite set of signers into a protocol
specification for the signers. The inevitable trusted third party’s
role specification and computations are independent of the
signer’s role specification. This permits a wide variety of
protocols to be handled equally by the trusted third party.

We give tight conditions under which the resulting protocols
satisfy fairness and timeliness. We provide examples of several
classes of protocols and we discuss lower bounds for the
complexity of fair protocols, both in terms of bandwidth and
minimum number of messages.

Our results highlight the connection between optimistic fair
contract signing protocols and the combinatorial problem of
constructing sequences which contain all permutations of a
set as subsequences. This connection is stronger than was
previously realized.

I. INTRODUCTION

Alice would like to take a trip around the world, but

she only has a limited budget. She needs to book hotels,

transportation, and event tickets with a long list of indepen-

dent companies. The cheapest offers are non-refundable and

are available for a limited time only. Thus, once Alice has

collected all offers, she would like to either book all of them

at once or none of them at all.

A solution for Alice is to sign one single contract with

all companies she would like to buy a service from. She

could do this by carrying out a multi-party contract signing

(MPCS) protocol. The MPCS protocol would need to be fair

to ensure that either all signing parties eventually obtain

a signed contract or none of the parties do. This would

guarantee that either all or none of Alice’s bookings are

made. The protocol would also have to satisfy a timeliness

property to prevent the case where Alice or any other signing

partner is left in limbo waiting endlessly for the other parties

to sign the contract. Finally, the signing partners might be

interested in an abuse-freeness property which would ensure

that Alice cannot bargain with competing companies by

proving that she has the choice of canceling the offers or

obtaining them by signing the contract.

A practical solution to a scenario such as the one depicted

above is provided by the class of deterministic, asynchronous

MPCS protocols. As opposed to randomized protocols,

this class avoids the requirement of approximately equal

computational powers of signers. This class also assumes

a more realistic network model than protocols relying on

some degree of synchrony in the communication. Determin-

istic, asynchronous MPCS protocols do, however, require

a trusted third party (TTP). We therefore find the subclass

of optimistic MPCS protocols to be the most useful one,

because protocols in this class only involve the TTP when

a failure occurs during the course of the signing protocol.

Since it is very likely that Alice and the companies would

need to have digital credentials registered with an authority

in order to execute MPCS protocols, we may assume that

such an authority could also play the role of the TTP.

Thus, we consider in this paper the class of deterministic,

asynchronous, and optimistic MPCS protocols. Such proto-

cols consist in general of two sub-protocols — the main

sub-protocol executed by the signers and not involving the

TTP, and a resolve sub-protocol to be called only in case of a

failure in the main sub-protocol and to be executed between

a signer and the TTP.

Existing fair MPCS protocols of all flavors have a rigid

protocol structure. They consist of a number of rounds in

which the signers exchange promises to sign a pre-agreed

contract, followed by a round in which the actual signatures

on the contract are exchanged. These protocols are nearly

symmetric in the computation and communication complex-

ity of signer roles, regardless of the signers’ computational

resources and communication bandwidth.

In this paper, we show how to construct fair MPCS

protocols which can be adapted to specific conditions regard-

ing bandwidth and computational resources of individual

signers. A salient feature of our construction is that the

TTP’s protocol role and decision procedure remains the

same, regardless of the number of signers or shape of the

constructed protocol.

In particular, we show how to construct fair MPCS proto-

cols with an arbitrary number of signers in which a particular

signer needs to be active only twice in the protocol: once

to send a promise to every signer and the other time to

send a signature to every signer. This flexibility of protocol

structure and ease of protocol generation is interesting when

MPCS protocols are executed by signers with vastly different

resources, such as dedicated, commercial signing servers and

smart phones.

2012 IEEE 25th Computer Security Foundations Symposium

© 2012, Barbara Kordy. Under license to IEEE.
DOI 10.1109/CSF.2012.23

215

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

The input to our construction algorithm is a signing se-

quence [1], that is, a sequence indicating the order in which

the signers become active in the protocol execution. By

feeding the construction algorithm with signing sequences

which satisfy a simple combinatorial property, we obtain

fair MPCS protocols.

Contribution: We present a protocol compiler (Algo-

rithm 1) to convert a signing sequence into an MPCS

protocol. We prove that fair signing sequences produce

fair MPCS protocols (Theorem 3) and we give a simple

decision procedure to verify fairness of signing sequences

(Theorem 1). Our achievements are generalizations and

converses of the results of [1] as discussed in related work

below.

We explain how fair signing sequences and consequently

fair MPCS protocols can be constructed and give explicit

examples. We discuss the complexity of the resulting proto-

cols and pose the problem of finding fair MPCS protocols

requiring minimum overall communication bandwidth.

We believe that our construction produces abuse-free

protocols, but we do not analyze our protocols with respect

to that property in this paper.

Finally, we consider our proofs of fairness to be an

interesting starting point for employing a theorem proving

tool to automatically prove fairness of similar protocol

constructions with an arbitrary, finite number of protocol

roles.

Related Work: Multi-party contract signing protocols are

a particular instance of a fair and secure computation.

A detailed review of existing work on fairness in secure

computation protocols in general, but excluding optimistic

protocols, can be found in Gordon’s thesis [2]. Optimistic

fair exchange protocols, which include optimistic MPCS

protocols, are discussed in Asokan’s thesis [3].

The present paper deals with optimistic MPCS protocols

in an asynchronous communication model. It builds on a

line of work which includes Garay et al. [4] introducing

the abuse-freeness property and private contract signatures,

Mukhamedov and Ryan [5] developing the notion of abort

chaining attacks, and Mauw et al. [1] relating fairness of

MPCS protocols to a combinatorial property of signing

sequences.

Garay and MacKenzie [6] have designed MPCS protocols

which were later shown by Chadha et al. [7], using the model

checker Mocha, to not satisfy fairness in case of four or

more signers. Chadha et al. revised the resolve subprotocol

of Garay and MacKenzie. Mukhamedov and Ryan [5] have

shown that the revised version does not satisfy fairness in

case of more than five signers and introduce a new optimistic

MPCS protocol. They proved fairness for their protocol by

hand and used the NuSMV model checker to verify the case

of five signers. Zhang et al. [8] have used the model checker

Mocha in order to analyze the protocol of Mukhamedov and

Ryan for up to five signers. The analysis did not reveal any

flaws.

Mauw et al. [1] used the notion of abort chaining to derive

a lower bound on the number of messages necessary to

achieve fairness in MPCS protocols. It was shown that abort

chaining attacks are possible whenever the signing sequence

of the protocol satisfies the following combinatorial property.

The sequence does not contain all permutations of the set

of signers as subsequences when one regards only those

subsequences that start at or after the position of the last

signer to appear for the first time in the sequence. Signing

sequences satisfying this combinatorial property are said to

be unfair. Thus, it was shown that protocols giving rise

to signing sequences which are unfair suffer from abort-

chaining attacks.

It was neither shown nor claimed, however, that fair

signing sequences give rise to fair MPCS protocols. In fact,

it is not clear a priori whether abort-chaining attacks are the

only possible attacks on fairness. The present work proves

that this is indeed the case. Thus the present work provides

a converse result to [1].

An attempt to construct a fair MPCS protocol from one

particular fair signing sequence was already made in [1].

This protocol was verified by Zhang et al. [8] with the

model checker Mocha, which revealed that one protocol

message was missing a private contract signature and thus

the protocol was not fair in spite of giving rise to a fair

signing sequence. Zhang et al. have constructed fair three

and four-party MPCS protocols from a variety of signing

sequences. In [9], Zhang et al. extend their previous work

by model checking abuse-freeness properties and giving a

procedure for constructing MPCS protocols from signing

sequences. Their construction of the main protocol is related

to the one presented in this paper, but less general, and their

construction of the resolve protocol is different from ours.

An independent family of asynchronous MPCS protocols

was developed by Baum-Waidner and Waidner [10] and

verified using the model checker Mocha by Chadha et al. [7]

for two up to five signers. Baum-Waidner [11] improved the

complexity of the protocol for the case when fewer than half

of the participating signers are dishonest.

Paper structure: We introduce the notation used in this

paper, our assumptions and background information on

MPCS protocols, private contract signatures, and signing

sequences in Section II. We describe how to generate an

MPCS protocol from a signing sequence in Section III and

prove that fair signing sequences produce fair MPCS proto-

cols in Section IV. We illustrate our results by applying the

approach described in this paper to known and novel MPCS

protocols in Section V. The complexity of the protocols

obtained using our approach is analyzed in Section VI.

We briefly discuss in Section VII how to generalize our

construction to the case where fewer dishonest signers are

tolerated in exchange for shorter protocols.

216

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

A. Notation and Assumptions

Let N = {1, 2, 3, . . .} be the set of positive integers. We

write [n] for the set {i ∈ N | i ≤ n}.

Let A be a finite set. A finite sequence σ over A of length

n ∈ N is a function σ : [n] → A. We will write |σ| for the

length of σ and we will denote the elements in the image of

σ by σi instead of σ(i). To list all elements of σ, we will

write σ = (σ1, . . . , σn), where n = |σ|. Furthermore, we

will write ǫ for the empty sequence, that is the sequence with

no elements, and define the length of the empty sequence

to be 0. If σ1, σ2, . . . , σj are sequences over A, we will

write (σ1, . . . , σj) for the concatenation of the sequences.

We denote by A∗ the set of all finite sequences over A.

A sequence ρ is called a subsequence of σ, if there is a

strictly increasing function f : [|ρ|] → [|σ|], such that ρi =
σf(i). Thus, ρ is a subsequence of σ = (σ1, . . . , σn) if ρ
can be obtained by erasing zero or more symbols from σ.

If X is a finite subset of N, we write maxX and minX ,

respectively, for the largest and smallest element of X . We

define max ∅ = 0 and min ∅ = ∞.

We assume that the communication between signers is

asynchronous and messages can get lost or be delayed ar-

bitrary long. For ease of exposition, we assume confidential

and authentic channels between all protocol participants.

The communication channels between signers and the TTP

are furthermore assumed to be resilient, which means that

the messages sent over these channels are guaranteed to be

delivered eventually and without modifications.

B. Optimistic Contract Signing Protocols

The goal of a contract-signing protocol is for all signers

to issue a universally verifiable signature on a pre-agreed

contract and for every signer to obtain a fully signed con-

tract. A fully signed contract is a set consisting of every

signer’s universally verifiable signature.

An optimistic contract signing protocol has the property

that in case of a failure or dispute in the course of the

protocol execution, a TTP can be contacted to recover from

the failure or resolve the dispute. Optimistic contract signing

protocols therefore typically consist of two subprotocols.

The main protocol is to be executed by the signers only,

while the resolve protocol is used to contact the TTP.

In this paper, a signer is said to be honest if he follows the

protocol specification faithfully and quits the main protocol

when executing the resolve protocol.

A common structure for the main contract signing proto-

col is for the signers to exchange promises to sign the con-

tract. Once sufficiently many promises have been exchanged,

the signers proceed to send universally verifiable signatures

to each other. In case of dispute, the promises received by

signers serve as evidence for the TTP to decide on how to

resolve the dispute.

Contract-signing protocols are expected to satisfy fairness

and timeliness. We define fairness and timeliness of opti-

mistic MPCS protocols as follows. The definitions are based

on [5].

Definition 1. An optimistic MPCS protocol for contract m
and finite set of signers A is said to be fair for an honest

signer P ∈ A, if whenever some signer Q ∈ A, Q 6= P ,

obtains a universally verifiable signature on m from P , then

P can obtain a universally verifiable signature on m from

R, for all R ∈ A.

It follows from Definition 1 that if an MPCS protocol over

a set of signers A is fair for all signers from A, then either

all honest signers obtain (with the TTP’s help if necessary) a

fully signed contract, or no signer obtains any honest signer’s

universally verifiable signature on the contract.

Definition 2. An optimistic MPCS protocol is said to satisfy

timeliness, if each signer has a recourse to stop endless

waiting for expected messages.

In optimistic protocols and with the assumption stated in

Section II-A, timeliness can be achieved by being able to

contact the TTP at any time using the resolve protocol and

by requiring the TTP to immediately respond to requests

from signers.

A further desirable property for MPCS protocols is abuse-

freeness which was introduced in [4]. We give the formal

definition of [6].

Definition 3. An optimistic MPCS protocol is said to be

abuse-free, if it is impossible for any set of signers at any

point in the protocol to be able to prove to an outside

party that they have the power to terminate or successfully

complete the contract signing.

In order to guarantee abuse freeness in an MPCS protocol,

a cryptographic primitive called private contract signature

was developed [4]. A private contract signature is a type

of digital signature which can be verified by a desig-

nated verifier and a designated TTP and converted into a

universally verifiable signature by the signer or the TTP.

Although private contract signatures are not necessary for

our construction of fair MPCS protocols, we use them in

order to be able to analyze our solution with respect to the

abuse-freeness property in future work.

Let P,Q be signers and T be the trusted third party.

The following definition recalls the main features of private

contract signatures. It uses notation from [5]. For a formal

definition of private contract signatures, we refer to [4].

Definition 4. A private contract signature by P for Q on

text t with respect to T , denoted by PCSP (t, Q, T), is a

cryptographic object with the following properties:

1) PCSP (t, Q, T) can only be created by P . Signer Q
can simulate the creation of PCSP (t, Q, T).

217

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

2) T , P and Q, but no one else, can tell the difference

between the versions created by P or Q.

3) T and P , and no one else, can convert PCSP (t, Q, T)
into a universally verifiable signature, denoted by

SP (t).

The private contract signature PCSP (t, Q, T) is used

by P to promise to Q to sign the text t. Upon receiv-

ing PCSP (t, Q, T), Q can convince himself that P has

promised to sign t. Q cannot, however, use this promise

to convince anybody else about this fact. Moreover, P and

Q know in advance that T (as well as P) is able to convert

PCSP (t, Q, T) into a universally verifiable signature SP (t).

C. Signing sequences

Signing sequences were introduced in [1] as a simplified

representation of MPCS protocols. A signing sequence in-

dicates the order in which the signers become active in the

MPCS protocol execution.

Definition 5. A finite sequence over a finite set A is said to

be complete over A, if it contains every permutation of the

elements of A as a subsequence.

For instance, the sequence (a, b, c, a, b, c) is not complete

over A = {a, b, c}, because it lacks the subsequence (c, b, a),
while the sequence (a, b, c, a, b, c, a) is complete over A.

Given a sequence σ, a subset SigSet ⊂ [|σ|] will be

called a signing set for σ. It will be used to indicate the

positions in σ in which signers will issue signatures on a

contract rather than promises.

The following definitions and theorem are based on [1],

but are more general than their counterparts in that the

signing set allows for a greater set of sequences to be called

signing sequences.

Definition 6. Let σ be a sequence over a finite set A. Then

σ is called a signing sequence if there exists a signing set

SigSet such that the following conditions are satisfied.

1) The prefix of length |A| of σ is a permutation of A:
{

σ1, . . . , σ|A|

}

= A.

2) The signing set refers to all elements in A:

{σi | i ∈ SigSet} = A.

3) The signing set satisfies the monotonicity condition

(i ∈ SigSet ∧ j > i) ⇒ (j ∈ SigSet ∨ σj 6= σi).

A signing set SigSet satisfying the conditions above is

said to be proper.

Example 1. The sequence (a, b, c, b, a, c) over {a, b, c}
is a signing sequence. The initial permutation is (a, b, c)
and proper signing sets for this sequence are supersets of

{4, 5, 6}.

Definition 7. Let σ be a signing sequence over a finite

set A of length n with proper signing set SigSet. Let

l ≤ |A| and let f : [l] → [n] be a function. A subse-

quence (σf(1), . . . σf(l)) of σ is called an abort-chaining

subsequence (AC subsequence for short) if the following

holds:

1) ∀p6=q σf(p) 6= σf(q);

2) f(1) < |A|;
3) f(l) ∈ SigSet;
4) ∀p σf(p) 6∈

⋃

f(p)<j<f(p+1) {σj}.

AC subsequences are a translation of abort-chaining at-

tacks [5] to signing sequences.

Definition 8. A signing sequence σ with proper signing set

SigSet which has an AC subsequence is called unfair. A

signing sequence which is not unfair is called fair.

Example 2. The signing sequence (a, b, a, b) with signing

set {3, 4} is fair, since neither of the two possible sub-

sequences (a, b) and (b, a) can satisfy all four conditions

of Definition 7.

The sequence (a, b, a) with signing set {2, 3}, however, is

unfair, as the AC subsequence (a, b) shows.

The three preceding definitions can be specialized to the

definitions in [1] by requiring that a signing sequence has

length at least 2 |A| and that the signing set is equal to

SigSet = {|σ| − |A|+ 1, . . . , |σ|}. In this restricted setting,

it was shown in [1] that optimistic contract signing protocols

which give rise to an unfair signing sequence do not satisfy

fairness. Our generalized setting together with the following

theorem allows to easily extend those results to a wider class

of protocols.

Our main goal in this work, however, is to show the

converse to the result stated above: Every fair signing

sequence gives rise to a fair optimistic contract signing

protocol with our explicit construction. We will use the

following theorem to construct fair signing sequences. A

less general version of this theorem was proved in [1].

Theorem 1. Let σ be a signing sequence over a finite set

A with proper signing set SigSet. For each c ∈ A, let

l(c) = min {j ∈ SigSet | σj = c}.

The sequence σ with signing set SigSet is fair if and

only if for every c ∈ A the sequence σc = (σ|A|, . . . , σl(c))
is complete over A \ {c}.

Proof: Assume σ is fair. Suppose towards a contra-

diction that ρ is a permutation of A \ {c} which is not

a subsequence of σc. Then by Lemma 1 below, ρ can be

transformed into an AC subsequence of σ contradicting

fairness of σ.

Conversely, assume that for all c ∈ A, σc is complete

over A \ {c} and suppose towards a contradiction that s =
(σf(1), . . . , σf(η)) is an AC subsequence of σ. It follows that

f(η) ≥ l(c). Let c = σf(η). We may assume without loss

of generality that f(2) ≥ |A| and f(η − 1) < l(c) (else

we would consider a shorter AC subsequence). Since σc

contains all permutations of A\{c} as a subsequence and c
is the last element of σc, it must contain s as a subsequence.

218

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

Thus, σ must contain (σg(1), . . . , σg(η)) as a subsequence,

where g is an increasing function such that g(1) ≥ |A| and

g(η) ≤ l(c).
By condition 4 of Definition 7, it follows that g(i) ≤ f(i)

or g(i) > f(i + 1) for i = 1, . . . , η − 1. However, since

(σg(1), . . . , σg(η)) is a subsequence of σc, it follows that

g(1) ≥ |A| > f(1), thus g(1) > f(2). Since g(i + 1) >
g(i), it follows inductively that g(i) > f(i + 1) for i =
1, . . . , η−1. This implies that g(η) > g(η−1) > f(η) which

is a contradiction, since it implies g(η) > f(η) ≥ l(c), but

g(η) ≤ l(c).
The following lemma is used in the proof of Theorem 1.

Lemma 1. A signing sequence σ has an AC subsequence if

there is a permutation ρ = (ρ1, . . . , ρ|A|) of A such that ρ
is not a subsequence of σc for c = ρ|A| and σc as defined

in Theorem 1.

Proof: We construct an AC subsequence

(σf(j−1), . . . , σf(|A|)) of σ by computing its indices

f(j − 1), . . . , f(|A|) backwards, starting from f(|A|).
Let f(|A|) = l(c), thus ρ|A| = σf(|A|) = c.
Consider the longest suffix (ρj , ρj+1, . . . , ρ|A|) of ρ which

is a subsequence of σc. (Since ρ itself is not a subsequence

of σc, it follows that j > 1.)

Let f(j), . . . , f(|A|) be an increasing sequence such that

for all i with j ≤ i < |A|

f(i) = max {ι | ι < f(i+ 1), σι = ρi} . (1)

Such a sequence exists, because (ρj , ρj+1, . . . , ρ|A|) is a

subsequence of σc.

Since (ρj , ρj+1, . . . , ρ|A|) is the longest possible subse-

quence and σ is a signing sequence, it follows that there

exists f(j − 1) < |A| with σf(j−1) = ρj−1. (Recall that the

first |A| elements of σ are a permutation of A.)

We show that (σf(j−1), . . . , σf(|A|)) is an AC sequence

of σ by verifying all conditions of the Definition 7:

• Condition 1 is satisfied since ρ is a permutation.

• Condition 2 is satisfied since f(j − 1) < |A|.
• Condition 3 is satisfied since f(|A|) = l(c).
• Condition 4 is satisfied by equation (1).

III. PROTOCOL COMPILER

In this section we present a protocol compiler, which for

every signing sequence over a set of signers A produces an

MPCS protocol consisting of a main protocol to be executed

by signers from A and a resolve protocol for the trusted third

party. The construction of the main protocol is presented

is Section III-A and the resolve protocol is explained in

Section III-B.

Let σ = (σ1, σ2, . . . , σn) be a sequence over a set A. We

define the leftmost permutation indexes of σ, denoted by

lmpi(σ), to be the set of positions where distinct elements

appear for the first time in σ. Formally, lmpi : A∗ → P(N)
is defined recursively as follows. Set lmpi(ǫ) = ∅. Then

lmpi(σ1, . . . , σl)

=

{

lmpi(σ1, . . . , σl−1) if σl ∈ {σ1, . . . , σl−1}

lmpi(σ1, . . . , σl−1) ∪ {l} else.

Furthermore, we denote by σ̄ the reverse sequence of σ,

i.e. σ̄ = (σn, σn−1, . . . , σ1). Note that (σ̄)i = σn−i+1. We

define the rightmost permutation indexes of σ by rmpi(σ) =
{i ∈ N | |σ| − i+ 1 ∈ lmpi(σ̄)}. The rightmost permutation

indexes indicate the position of last appearance of every

element in σ.

Example 3. Let σ = (a, b, a, c, a) be a sequence over

A = {a, b, c}. We have lmpi(a, b, a, c, a) = {1, 2, 4}, as

a, b and c appear in σ for the first time in positions 1, 2 and

4. Furthermore, σ̄ = (a, c, a, b, a) and rmpi(a, b, a, c, a) =
{2, 4, 5}.

We use prevσ(i) and nextσ(i) to refer, respectively, to

the previous and subsequent position of an element σi in σ.

Let i ∈ [|σ|]. We define

Bσ(i) = {j ∈ [|σ|] | j < i, σj = σi}

prevσ(i) =

{

maxBσ(i) if Bσ(i) 6= ∅,

0 else.

Analogously,

Aσ(i) = {j ∈ [|σ|] | j > i, σj = σi}

nextσ(i) =

{

minAσ(i) if Aσ(i) 6= ∅,

|σ|+ 1 else.

For ease of reading, we will leave out the subscript σ in

prevσ and nextσ whenever there is no confusion over which

sequence the functions apply to.

In this paper we use m to denote a contract and we assume

that m contains the contract text, the set A of involved

signers, the corresponding signing sequence σ, and signing

set SigSet.

A. Main protocol

Let σ = (σ1, σ2, . . . , σn) be a signing sequence over a

finite set A of signers. We present an algorithm which pro-

duces an MPCS protocol specification from such a sequence.

The protocol specification will consist of n steps, where the

i-th step of the protocol corresponds to the actions specified

for the signer σi in the signing sequence.

The simplest manner, in which a sequence could be turned

into a signing protocol, is to require that in the i-th step, a

signer σi waits until he receives a message from every signer

which has been active prior to the i-th step in the protocol.

Then σi sends a message to every other signer participating

in the protocol. This would lead to redundancies, since

between two appearances of a particular signer, there could

219

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

be multiple appearances of other signers. Thus, to reduce the

communication complexity, we will only require that each

signer receives a message from the last appearance of all

other signers. This is illustrated in Figure 1. The figure shows

the messages expected to be received and the messages to

be sent by a signer in a particular sequence.

a b c b d a d b c

Figure 1. Messages to be received (incoming arrows) and sent (outgoing
arrows) for signer d in two subsequent appearances of d.

Formally, we construct a main MPCS protocol specifica-

tion for a signing sequence which is assumed to be given as

part of a contract m as shown in Algorithm 1. The algorithm

loops through every element in the signing sequence. Within

a loop, a particular signer σi’s receive and send actions are

specified. First the receiving of promises and signatures by

the signer is specified and then the sending of promises and

signatures. If this is the last appearance of the signer in the

protocol, it is ensured that the signer sends out signatures

to all other signers to which it has not sent such a signature

yet. Then it is ensured that it waits for all signatures that it

has not received up to that point.

The sending of messages is denoted by the instruction

sendP (Q, t), where P is the sender, Q the recipient and t
the message to be sent. The waiting to receive a message is

denoted by the instruction receiveP (Q, t), where P is the

recipient, Q the sender and t the message to be received.

The instructions for sending and receiving messages do

not commute. Since the algorithm first prints out receive

instructions and then send instructions, it follows that in

each step i, no promise is sent by an honest signer σi to

another signer σj until all promises that are awaited by σi in

that step are received. To prevent endless waiting, a signer σi

has an alternative Res(m, prev(i)) to the receive instruction.

The Res(m, prev(i)) protocol allows signer σi to contact the

trusted third party in case he has not received all required

messages. The Res(m, i) protocol is formally specified in

Section III-B. In Algorithm 1, we use the symbol ‘+’ to

denote alternative branching.

Every promise sent is annotated with the protocol step

in which it was sent. This annotation is denoted by (m, i),
where m is the contract and i is the protocol step number.

This annotation is analogous to the promise level of previous

works [5], [6].

The set SigSet is the set of positions in σ in which

signers will send their universally verifiable signatures to

other signers. This set needs to be proper (Definition 6)

which ensures that all signers send a signature and that

once a signer has issued a signature, it will continue to

issue signatures, rather than promises. We will typically set

SigSet = rmpi(σ), that is, each signer sends signatures

in its last appearance in the signing sequence. We refer

to Remark 3 in Section V for a class of protocols which

requires a larger SigSet.
The construction of the formal specification of the pro-

tocol is given in Algorithm 1. The input to this algorithm

consists of contract m from which it is possible to extract

the set of signers A, the signing sequence σ and the signing

set SigSet. The algorithm outputs a formal specification of

our MPCS protocol.

Algorithm 1: Main protocol compiler

input : m
output: Main(m)

1 for i ∈ [|σ|] do

2 for j′ ∈ rmpi(σprev(i)+1, . . . , σi−1) do

3 j := prev(i) + j′;
4 if j /∈ SigSet then

5 print

“(receiveσi
(σj , PCSσj

((m, j), σi, T))+
Res(m, prev(i)))”;

6 else

7 print “(receiveσi
(σj , Sσj

(m))+
Res(m, prev(i)))”;

8 for j′ ∈ lmpi(σi+1, . . . , σnext(i)−1) do

9 j := i+ j′;
10 if i /∈ SigSet then

11 print “sendσi
(σj , PCSσi

((m, i), σj , T))”;

12 else

13 print “sendσi
(σj , Sσi

(m))”;

14 if next(i) = |σ|+ 1 then

15 i0 := min {j ∈ SigSet | σi = σj};

16 for P ∈ A \
{

σi0 , . . . , σ|σ|

}

do

17 print “sendσi
(P, Sσi

(m))”;

18 for Q ∈ A \ {σj | j ∈ SigSet ∧ j ≤ i} do

19 print “(receiveσi
(Q,SQ(m))+Res(m, i))”;

Remark 1. Note that the specification for an individual

signer P ’s protocol role can be obtained from Algorithm 1

by changing the set [|σ|] in line 1 to the set of positions in

which signer P appears in the signing sequence, i.e., the set

{l ∈ [|σ|] | σl = P}.

Example 4. The signing sequence σ = (a, b, c, b, a, b, c, b,
a, b, c) with SigSet = rmpi(σ) generates a three-signer

MPCS protocol of Mukhamedov and Ryan [5] and leads

to the protocol shown in Figure 2. The arrows’ tails and

heads correspond, respectively, to the send and receive

instructions generated by Algorithm 1. The top arrow con-

necting the vertical lines under a and b corresponds, for

220

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

instance, to the instructions senda(b, PCSa((m, 1), b, T))
and receiveb(a, PCSa((m, 1), b, T)). If we change line 1 in

the algorithm according to the preceding remark, we obtain

the receive and send instructions which can be read along

the vertical lines in Figure 2.

a b c

PCSa((m, 1), b, T) PCSa((m, 1), c, T)

PCSb((m, 2), c, T)

PCSc((m, 3), b, T)PCSc((m, 3), a, T)

PCSb((m, 4), a, T)

PCSa((m, 5), b, T) PCSa((m, 5), c, T)

PCSb((m, 6), c, T)

PCSc((m, 7), b, T)PCSc((m, 7), a, T)

PCSb((m, 8), a, T)

Sa(m) Sa(m)

Sb(m)Sb(m)

Sc(m)Sc(m)

Figure 2. Protocol generated by Algorithm 1 from signing sequence
(a, b, c, b, a, b, c, b, a, b, c)

1) Correctness: We show that the compiled main pro-

tocol is well-defined and that when all signers are honest,

every signer will receive a fully signed contract. This prop-

erty is independent of whether the signing sequence is fair

or not.

The case where one or more signers deviate from or abort

the protocol is correct in the sense that every honest signer

has the option to run the resolve protocol as an alternative

to the receive instruction after a specific timeout.

Lemma 2. The Main(m) protocol is well-defined. That is,

there is a one-to-one correspondence between sendQ(P, t)
and receiveP (Q, t) instructions and every such send in-

struction precedes the corresponding receive instruction.

Proof: We consider the protocol specification generated

by the two inner for loops of Algorithm 1 separately from

the specification produced by the remainder of the algorithm.

1) The protocol specification generated in lines 2

through 13 is well defined.

We first show inductively that the send instructions

precede the receive instructions. Signer σ1 starts the

protocol by sending promises to other signers. In par-

ticular, σ1 does not wait to receive any messages, since

the condition in line 2 of the protocol specification in

Algorithm 1 specifies an empty sequence and thus the

resulting set is empty.

Signer σi, for 1 < i < |σ|+1, only waits for messages

from signers σj where j < i.
It therefore remains to be shown that there is a

one-to-one correspondence between send and receive

instructions. To show that for every receive instruction

for σi in line 5 (line 7, respectively), there is a corre-

sponding send instruction for σj in line 11 (line 13,

respectively), amounts to showing that for every

j ∈
{

prev(i) + j′ | j′ ∈ rmpi(σprev(i)+1, . . . , σi−1)
}

(2)

there exists

i′ ∈ lmpi(σj+1, . . . , σnext(j)−1)

such that i = j + i′.
This is true, since by (2) and definition of rmpi
we have prev(i) < j < i < next(j). Thus i ∈
{

j + i′ | i′ ∈ lmpi(σj+1, . . . , σnext(j)−1)
}

.

The one-to-one correspondence now follows from the

fact that no two send or receive instructions are iden-

tical and that the number of send instructions printed

equals the number of receive instructions printed. The

latter follows from the facts that rmpi and lmpi always

have the same number of elements when applied to the

same sequence and that the two inner for loops range

over the same non-empty sequences.

2) To show that the protocol specification generated in

lines 14–19 is also well defined, we need to prove

that for every receive instruction in line 19 there exists

a corresponding send instruction and for every send

instruction in line 17 there is a corresponding receive

instruction.

Let i be an index such that next(i) = |σ| + 1 and

let Q ∈ A \ {σj | j ∈ SigSet∧ j ≤ i}. According

to specification in line 19, signer σi waits for a

signature from Q. We will show that a corresponding

send by Q is specified in line 17. Since Q ∈ A \
{σj | j ∈ SigSet∧ j ≤ i}, either

a) every position l, such that l ∈ SigSet and σl =
Q, is grater than i, or

b) {l | σl = Q} ∩ SigSet = ∅, i.e., none of the

indexes in SigSet corresponds to signer Q.

Let l0 = min {j ∈ SigSet | Q = σj}. If case 2a

holds, then i < l0. Together with the fact

that next(i) = |σ| + 1 this means that σi ∈
A \

{

σl0 , . . . , σ|σ|

}

. If case 2b holds, then A \
{

σl0 , . . . , σ|σ|

}

= A. In both cases, according to

lines 16 and 17, there exists a send instruction

sendQ(σi, SQ(m)).
We now show that for every send instruction in line 17

there exists a corresponding receive instruction in

line 19. Recall that i0 := min {j ∈ SigSet | σi = σj}

221

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

in line 15. We still consider i, such that next(i) =
|σ|+1 and we fix P ∈ A\

{

σi0 , . . . , σ|σ|

}

. According

to line 17, signer σi sends his signature to signer P . To

find a corresponding receive instruction for P , we con-

sider the last appearance of P in σ and denote the cor-

responding position by l so that σl = P and next(l) =
|σ|+1. According to lines 18 and 19, it is sufficient to

show that σi ∈ A \ {σj | j ∈ SigSet ∧ j ≤ l}. Since,

P ∈ A \
{

σi0 , . . . , σ|σ|

}

, we know that l < i0 ≤ i.
Therefore, σi 6∈ {σj | j ∈ SigSet ∧ j ≤ l} which is

equivalent to σi ∈ A \ {σj | j ∈ SigSet ∧ j ≤ l}.

Theorem 2. Let σ be a signing sequence over a finite set

A with proper signing set SigSet. If all signers are honest

then every signer P ∈ A receives from every signer Q ∈ A,

Q 6= P , a signature SQ(m).

Proof: Since the protocol is well-defined by Lemma 2,

it remains to be shown that every signer receives a fully

signed contract. Since SigSet is proper, every signer sends

a signature. By lines 16 and 17, every signer who has not

received a signature from σi by the last appearance of σi,

is sent a signature.

B. Resolve Protocol

Our resolve protocol is a two-message protocol in which a

signer who has sent a message in the i-th protocol step sub-

mits evidence supporting the fact that the protocol execution

has reached the i-th step. The TTP stores evidence submitted

by every requesting signer and considers it together with

existing evidence and immediately sends back an abort token

or a signed contract. We denote the TTP by T in the

protocol.

Recall our assumptions that the communication channels

for this protocol are resilient, confidential, and authentic.

Recall further that the contract m is assumed to contain the

contract text, the set A of signers, the signing sequence σ
over A and corresponding signing set SigSet.

For the signers, the resolve protocol depends on the last

protocol step, i, in which the signer to execute the resolve

protocol has sent a message. We will denote the resolve

protocol for this step i by Res(m, i). If a signer has not

sent any messages, we set i = 0. For the TTP, the resolve

protocol is independent of the signing sequence or protocol

step a signer is in. It is the TTP’s decision procedure which

processes the evidence submitted and returns an abort token

or a fully signed contract.

Res(m, i) is the protocol whose two role specifications

are shown in Figures 3 and 4, where the variables are as

follows. Let piσi
denote the set of each signer’s most recent

promise or universally verifiable signature received by signer

σi until the i-th step of the protocol. Thus

piσi
= {PCSσj

((m, j), σi, T) |

j ∈ rmpi(σ1, . . . , σi) \ SigSet, σj 6= σi}

∪ {Sσj
(m) |

j ∈ rmpi(σ1, . . . , σi) ∩ SigSet, σj 6= σi}

If i = 0, then the set piσi
is defined to be empty. History

denotes the following set of signatures:

History = piσi
∪ {PCSσi

((m, i), σi, T)} . (3)

The private contract signature PCSσi
((m, i), σi, T) is ex-

plicitly added to the History set, because the set piσi
does not

contain any promise of signer σi. This additional promise

serves several purposes. It allows the TTP to extract the

contract m even when piσi
is empty. It allows the TTP

to extract the position i at which the signer σi claims to

have received promises or signatures for the last time in

the protocol execution. It also allows the TTP to create a

universally verifiable signature on behalf of signer σi in

cases where σi is the first signer to contact the TTP.

The term decision is either a fully signed contract, i.e. the

set {SP (m) | P ∈ A}, or an abort token which we will

simply denote by “abort” and which we do not assume to

have any further meaning.

sendσi
(T, piσi

∪ {PCSσi
((m, i), σi, T)})

receiveσi
(T, decision)

Figure 3. Signer σi’s role in resolve protocol Res(m, i).

receiveT (P,History)

sendT (P, decisionm)

Figure 4. TTP role in resolve protocol Res(m, i).

For each contract m, the TTP maintains a data structure

consisting of a set of private contract signatures Evidencem,

an index set Im, a set Dishonestm of signers considered to

be dishonest, and a variable decisionm. The sequence σ
and the set of signers A corresponding to the main protocol

are extracted from m. The set Evidencem is the union of

History sets which the TTP receives in the first message

of the resolve protocol. The set of indexes Im is the set

of positions i in σ at which signers executed Res(m, i)
to contact the TTP. Thus, for i ∈ Im, the signer σi has

contacted the TTP claiming to have received the elements

of piσi
and sent his promises or signatures, but not received

all expected messages necessary for his subsequent protocol

step, next(i). The variable decisionm is equal to the abort

token or a set of universally verifiable signatures on m,

one by each signer, according to the TTP’s last decision

on whether to issue an abort token or a signed contract.

222

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

We will write decisionm = ⊥ if the TTP has not been

contacted by any signer regarding contract m.

The TTP’s decision procedure, shown in Algorithm 2,

works as follows. When the TTP receives a message from

P , the TTP first verifies that the message received is valid

and stores the evidence submitted (lines 1 through 8). The

remainder of the algorithm concerns the detection of sign-

ers who have continued the main protocol execution after

executing the resolve protocol. This part of the algorithm is

similar to the TTP decision procedure of [5] and works as

follows.

• If P has not received a promise from every other signer

in the protocol, that is, if the last position in which P
has sent a message in the protocol is smaller than the

number of signers participating in the protocol (line 9)

then the TTP sends back the last decision made. This

decision is an “abort” token unless the TTP has been

contacted before and decided to send back a signed

contract.

• If P has received a promise from every other signer in

the protocol (lines 12 and up) the TTP is able to create

a signed contract from P ’s evidence. In this case, the

TTP’s decision procedure works as follows.

– If there is a previous decision to send back a signed

contract, then the TTP sends back a signed contract

to P (line 13).

– Else the TTP computes the set of dishonest signers

by adding to it every signer which has carried

out the resolve protocol, but can be seen to have

continued the protocol execution (line 17) based

on the evidence the TTP has collected.

∗ If P is in the set of dishonest signers, an “abort”

token is sent to P .

∗ If at least one signer other than P is honest

(line 21), an “abort” token is sent to P , because

the other signer must have received an abort

token already.

∗ Else P must be the only honest signer that has

contacted the TTP until this point in time and

therefore it is safe to return a signed contract.

1) Correctness: We show that the resolve protocol is

correct in the sense that:

• The protocol Res(m, i) is well-specified. This means

that a signer executing Res(m, i) can generate the

correct evidence and that the TTP has the ability to

verify the correctness of the submitted evidence.

• The TTP can issue signatures whenever his decision is

to resolve rather than to abort the signing protocol.

• No honest signer will be placed in the set Dishonestm.

These properties are independent of whether the signing

sequence is fair or not.

Lemma 3. The protocol Res(m, i) satisfies the following

properties.

Algorithm 2: TTP decision procedure

input : P,History ,m, σ,A, i
output: decisionm

1 if decisionm = ⊥ then

2 Evidencem := ∅; Im = ∅;

3 Dishonestm := ∅; decisionm := “abort”;

4 if P ∈ Dishonestm ∨ ∃j ∈ Im : P = σj ∨ History 6=
piσi

∪ {PCSσi
((m, i), P, T)} then

5 Dishonestm := Dishonestm ∪ {P};

6 return “abort”;

7 Im := Im ∪ {i};

8 Evidencem := Evidencem ∪History ;

9 if i < |A| then

10 return decisionm;

11 else

12 if decisionm 6= “abort” then

13 return decisionm;

14 else

15 l := max Im;

16 for j ∈ Im, j < l do

17 if σj ∈ {σj+1, . . . , σl} then

18 Dishonestm := Dishonestm ∪ {σj};

19 if P ∈ Dishonestm then

20 return decisionm;

21 if ∃j ∈ Im : σj /∈ Dishonestm ∧ σj 6= P then

22 return decisionm;

23 else

24 decisionm := {SQ(m) | Q ∈ A};

25 return decisionm;

1) An honest signer executing Res(m, i) has the ability

to generate the set History as defined in equation (3).

2) The TTP can verify the correctness of the set History .

3) The TTP has the ability to generate a fully signed

contract whenever the decision procedure requires him

to do so.

Proof:

1) Clearly a signer P can generate PCSP ((m, i), P, T).
It remains to show that an honest signer can

generate the set piσi
after protocol step i. Note

first that every index j ∈ rmpi(σ1, . . . , σi) such

that σj 6= P = σi is present in one of the sets
{

prev(i′) + j′ | j′ ∈ rmpi(σprev(i′)+1, . . . , σi′−1)
}

where 1 ≤ i′ ≤ i and σi′ = σi. Thus, the elements

of piσi
are a subset of the messages specified to be

obtained by σi through the receive instructions in the

first inner for loop of Algorithm 1.

By the well-specification of the Main(m) protocol

223

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

(Lemma 2), each of these messages must have been

sent prior to the i-th protocol step. Since an honest

signer executes Res(m, i) only after having sent the

messages in the i-th protocol step, it follows that P
must have received all the necessary messages.

2) The TTP can verify whether the set History submitted

satisfies equation (3), as follows. Since the set History

always contains PCSP ((m, i), P, T), the TTP can

extract the contract m and the claimed protocol step i
from History . The signing sequence can be extracted

from m. Thus the TTP can verify that P = σi, that

is, the signer contacting the TTP is the same as the

signer which is supposed to be in step i. Finally, the

contents of the set piσi
can be verified by property 2

of Definition 4.

3) The TTP changes his decision from “abort” to a

fully signed contract only in line 24 of the decision

procedure (Algorithm 2). This line is only reached

when i > |A|, that is when every signer has appeared

in the protocol. Thus, the set History will contain

a promise or signature by every signer participating

in the protocol and the TTP will be able to convert

promises to universally verifiable signatures by prop-

erty 3 of Definition 4.

The following lemma states that no signer can convince

the TTP that the protocol has progressed beyond an honest

signer’s next protocol step. It will be used to show that

honest signers will not be considered to be dishonest by

the TTP.

Lemma 4. Let σ be a signing sequence and Main(m) the

corresponding main contract signing protocol. If an honest

signer σi has not sent any message in the i-th protocol step

of Main(m), then any signer claiming to have reached a

protocol step j > i will have an incorrect History set.

Proof: Since j > i, there exists i′ ∈ rmpi(σ1, . . . , σj)
such that i′ ≥ i and σi′ = σi. Thus the set History needs to

contain a signature by σi at step i′. The existence of such

a signature contradicts the fact that σi is honest and did not

send any message in the i-th step.

Lemma 5. If signer P is honest in Main(m), then for all

behaviors of signers Q ∈ A, Q 6= P and every run of the

TTP decision procedure, P 6∈ Dishonestm.

Proof: A signer is placed in to the set Dishonestm
as a consequence of lines 4 and 17 in the TTP decision

procedure.

An honest signer will not be placed in Dishonestm as a

consequence of any of the three conditions in line 4, since

Dishonestm is initially empty, an honest signer by definition

quits the protocol execution after contacting the TTP and

sends messages as specified in the protocol. Regarding the

last of the three conditions, by the protocol specification in

Figure 3 and by equation 3, the honest signer sends precisely

the set of messages the TTP expects.

An honest signer will not be placed in Dishonestm as a

consequence of the condition in line 17: If an honest signer

appears in Im, then the signer must have executed the resolve

protocol Res(m, i) for some i ∈ Im. This is because the

only line modifying the set Im is line 7, which is executed as

a consequence of a signer σi contacting the TTP through an

authentic channel and presenting a correct History set. By

definition, an honest signer quits after executing the resolve

protocol and by Lemma 4, no other signer can produce a

correct History set after protocol step i.

IV. PROVING FAIRNESS AND TIMELINESS

We prove fairness of the protocol constructed using the

protocol compiler described in Section III with TTP pro-

cedure shown in Algorithm 2 in three steps, split over

three lemmas. The following lemma expresses that the TTP

decision procedure enforces all but one of the abort chaining

conditions of Definition 7. The subsequent lemma shows that

if an honest signer sends a signature, then the remaining

condition is satisfied, too. This allows us to directly link

fairness of the contract signing protocol in this case to the

fairness property of the signing sequence. The third lemma

deals with the case in which an honest signer has received

an abort token and states that no other signer will receive a

fully signed contract.

The lemmas are combined to prove fairness of the con-

structed MPCS protocol in the subsequent theorem which

also addresses the timeliness property.

Lemma 6. Let m be a contract and σ the contract’s signing

sequence of length n. We have the following invariant in the

TTP’s decision procedure for σ, Im, decisionm:

If decisionm = “abort” and Im 6= ∅ then there exist l
with 0 < l ≤ |Im|, I ⊂ [n], and a bijective, increasing

function f : [l] → I with f(l) = max Im such that condi-

tions 1, 2, 4 of Definition 7 are satisfied for the subsequence

(σf(1), . . . , σf(l)) of σ.

Proof: To distinguish the data structures before and

after a TTP run for contract m, we will write Im, f ,

decisionm for the values before the TTP’s run and I ′m, f ′,

decision ′
m for the values after the run.

Note that decisionm is set to “abort” upon the first run

for contract m. Suppose decisionm = “abort”. If |Im| = 1,

then the TTP decision procedure obviously enforces that

the unique element i ∈ Im satisfies i < |A|. Thus condi-

tions 1, 2, 4 are satisfied for f(1) = i.

Suppose that the conditions are satisfied for Im, f before

a TTP run and suppose that decision ′
m = “abort” after the

TTP run. We need to show that there exists f ′ such that the

conditions remain satisfied. If Im = I ′m, then we set f ′ = f
and there is nothing to be shown. Else, there is a unique

224

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

element i ∈ I ′m \ Im that has been added. If i 6= max I ′m,

then the conditions remain satisfied for the function f ′ = f .

Thus suppose i = max I ′m. By line 4 of the decision

procedure of the TTP, condition 1 remains satisfied, regard-

less of choice of function f ′. Since decision ′
m = “abort”,

by line 21, there exists j ∈ I ′m, j 6= i, such that σj 6∈
{σj+1, . . . , σi}. Thus we define f ′(x) = f(x) for all x ∈ [l]
such that f(x) < j. Let x be the maximal element in [l] such

that f(x) < j, then define f ′(x+1) = j and f ′(x+ 2) = i
to obtain a bijective, increasing function f ′ : [x+ 2] → I ′m.

Since all elements in Im, which are smaller than or equal

to j, are still in the preimage of f ′, condition 2 remains

satisfied.

Condition 4 is satisfied for all elements smaller than j
in the preimage of f ′, because it was satisfied for f . It is

satisfied for j by lines 16, 17 and line 21 and vacuously

satisfied for i.

Lemma 7. Let m be a contract with a fair signing sequence

σ and a proper signing set SigSet. If an honest signer P
sends SP (m) in the main protocol, then P will receive all

signatures.

Proof: Let i be the earliest step in which P has sent a

signature. Since σ is fair, it follows that i > |A|.
Suppose that P does not receive all signatures. Then P

will eventually execute the resolve protocol Res(m, j) for

j ≥ i. Since P is honest, by Lemma 5, P 6∈ Dishonestm
in Algorithm 2. Since j ≥ i > |A| and P 6∈ Dishonestm,

the if conditions in lines 9, 12, 19, 21 of the TTP decision

procedure either lead to a fully signed contract or to an

“abort” token in line 22.

Suppose towards a contradiction that P receives an

“abort” token. By line 21 of the TTP decision procedure,

there must be another signer Q 6∈ Dishonest to whom an

abort token is issued. Thus, by Lemma 6, there exist l ∈ N

and an increasing function f : [l] → I such that f(l) =
max I . Since signer P has sent a signature, condition 3

of Definition 7 is satisfied. By Lemma 6, the subsequence

(σf(1), . . . , σf(l)) of σ satisfies conditions 1, 2, 4, too. This

is a contradiction, since σ is a fair sequence.

The following lemma expresses that if an honest signer

receives an abort token before he reaches a step in the

signing set, then no signer will reach the signing set. More

precisely, any signer contacting the TTP with Res(m, i),
i ∈ SigSet will be considered dishonest. Together with the

fact that no honest signer will be considered dishonest by

the TTP, it follows that only dishonest signers can pretend

to have issued a signature.

Lemma 8. Suppose σ is a fair sequence over A with proper

signing set SigSet. Suppose further that an honest signer P
receives an abort token in Res(m, i) without having sent a

signature SP (m) to any signer. Then no signer will receive

the signature SP (m).

Proof: Let i be the protocol step in which P has

contacted the TTP. Since P has not sent SP (m) and P is

honest, only the TTP could have generated SP (m).

Suppose a signer Q 6= P has contacted the TTP in step

j. By the TTP decision procedure, if j < i, then Q must

receive an abort token, since P has received an abort token.

If j > i, since P is honest, P did not participate in the main

protocol after receiving the abort token. Thus, by Lemma 5,

P 6∈ Dishonestm, therefore Q must receive an abort token.

We are now ready to state and prove our main theorem,

namely that our construction provides fairness for protocols

constructed from fair signing sequences and timeliness for

all signing sequences.

Theorem 3. Let m be a contract with fair signing sequence

σ and proper signing set SigSet. Then Main(m) as created

by Algorithm 1 and Res(m, i) with the decision procedure

stated in Algorithm 2 constitute an optimistic contract sign-

ing protocol satisfying fairness and timeliness.

Proof:

• Fairness

Suppose the contract signing protocol for m is not

fair for an honest signer P . By Definition 1, there

is a signer Q 6= P who has obtained P ’s universally

verifiable signature SP (m), but P does not have a fully

signed contract. Thus, either P has sent his signature

but has not received all signatures or P has contacted

the TTP and has received an “abort” token. The former

case is impossible by Lemma 7 and the latter case is

impossible by Lemma 8.

• Timeliness

No signer will wait endlessly for another signer, since

it has an option to execute the resolve protocol at

every step in which it waits for a message by another

signer. No signer will wait endlessly for the TTP,

since the communication channel between the TTP

and the signer is assumed to be resilient and the TTP

immediately responds to resolve requests by signers.

V. CONSTRUCTING FAIR PROTOCOLS

By Theorems 1 and 3, to obtain a fair MPCS protocol one

needs to construct a complete sequence and a proper signing

set. We now show how this can be done explicitly and

provide examples of known and novel, fair MPCS protocols.

We first reduce the problem to the construction of com-

plete sequences.

Theorem 4. Let A be a set of signers and τ a complete

sequence over A. Let ρ be a permutation of A \ {τ1}. Then

σ = (ρ, τ) is a fair signing sequence for the signing set

SigSet = rmpi(σ).

225

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

Proof: It is easy to see that σ is a signing sequence

with the proper signing set SigSet.
Let l(c), σc be as defined in Theorem 1. Let i ∈ SigSet,

j ∈ rmpi(τ) such that σi = τj . Let c = σi. Since i ∈
SigSet = rmpi(σ), l(c) = i. Thus, σc = (τ1, . . . , τj).

Since τ is a complete sequence over A and j ∈ rmpi(τ),
the sequence σc = (τ1, . . . , τj) is complete over A \ {τj}.

By Theorem 1, σ is a fair sequence.

Thus, to construct a fair protocol, we start with a complete

sequence. We then prepend a permutation of elements in A
to the complete sequence to obtain a signing sequence σ.

We chose the signing set to be rmpi(σ), i.e. the indexes of

the last appearance of every element in A. Then we apply

the protocol compiler.

Constructions for complete sequences over arbitrary finite

sets have been given by Adleman [12], Newey [13], and

Mohanty [14]. They give rise to signing sequences of length

k2 − k + 3.

MR protocols: Let A = {P1, . . . , Pk} be a set of signers.

Then the sequences (P1, . . . , Pk−1, Pk, Pk−1, . . . , P2) con-

catenated ⌈k/2⌉ times and extended by (P1, . . . , Pk) lead to

the protocols proposed by Mukhamedov and Ryan [5]. The

SigSet consists of the last k indexes. Fairness of signing

sequences obtained by this construction can be shown easily.

A sketch of the proof goes as follows. By construction, there

are k− 1 concatenated permutations over A after the initial

permutation and before the elements indexed by SigSet.
Thus, these k − 1 permutations form a complete sequence

over A \ {c}, for every c ∈ A. The number of messages to

be sent in MR protocols, which is related to the bandwidth

complexity discussed in the next section, was computed by

Mukhamedov and Ryan to be k(k − 1)(⌈k/2⌉+ 1).
MRT protocols: The protocols generated in this paper

can be easily modified in such a way that the signers send

only one message in each step of the protocol. Instead of

sending separate promises (or signatures) to several signers,

a signer P = σi sends all promises (or signatures) to the

next signer Q = σi+1 in the signing sequence. Signer Q
then forwards all of P ’s promises (or signatures) to the

subsequent signer, exchanging the promises (or signatures)

intended for Q by promises (or signatures) generated by Q.

This leads to a class of protocols which were investigated

by Mauw et al. [1]. The authors computed a lower bound in

terms of the total number of messages that must be sent in

such protocols for the protocols to be fair. We will refer to

this type of complexity measure as the message complexity

of the generated protocol in the next section. The authors

constructed one shortest possible protocol for three signers.

Zhang et al. [8], [9] give descriptions of more protocols

based on shortest signing sequences to which they refer as

MRT protocols. We thus define an MRT protocol to be the

shortest possible fair MPCS protocol in terms of message

complexity.

The constructions of Adleman [12] and Newey [13]

produce complete sequences of length k2 − 2k + 4. These

are known to be the shortest lengths for complete sequences

when 2 < k < 8, thus they lead via Theorem 4 and our

protocol compiler to MRT protocols for more than 2 and

up to 7 signers. The shortest length for complete sequences

when k ≥ 8 is still open and will be discussed further in

Section VI.

Remark 2. It is interesting to note that with our generaliza-

tion of signing sequences we are able to produce shorter

protocols for certain sequences than is possible with the

original notion of Mauw et al. used by Zhang et al. The

sequences in question are those which neither start nor end

with a permutation of the set of signers. An example can be

constructed from a sequence first described by Newey [13]:

(1, 2, 3, 4, 5, 1, 6, 4, 3, 2, 1, 5, 4, 3,

6, 1, 2, 4, 5, 3, 1, 6, 4, 2, 3, 5, 1, 4)

The sequence shown is a shortest possible sequence over

a set of six elements containing permutations of all six

elements as subsequences. The more restricted definition of a

signing sequence in previous work required, however, that a

signing sequence ends with a permutation. This necessitates

an additional appearance of signer 6 at the end of the

sequence shown above.

Remark 3. Since MRT protocols require promises and sig-

natures to be forwarded rather than sent directly to their

destination, it is necessary to specify in which order the last

signer’s signature is to be forwarded to the other signers.

This can be achieved by appending these |A| − 2 signers

in desired order to a fair signing sequence and adding their

positions in the resulting signing sequence to the SigSet.
Thus, the SigSet contains 2 |A| − 2 elements for contract

signing protocols with message forwarding.

Minimizing the involvement of certain parties: The in-

volvement of one signer in the protocol can be reduced

by increasing the involvement of other parties. This can

be useful if certain signers have a significantly reduced

bandwidth compared with the other signers. In an extreme

case, a fair protocol can be produced in which a signer

sends promises in one step and signatures in a further step,

independent of the number of other signers. This comes,

however, at the cost of almost doubling the number of all

other signers’ steps.

The construction is as follows.

Theorem 5. Let σ = (ρ, τ) be a fair sequence, where ρ is

a permutation of A \ {τ1}. Let s 6∈ A be a signer which is

not in the set A. Then the sequence σ′ = (s, ρ, τ, s, τ) is a

fair sequence over A ∪ {s} for the signing set SigSet =
rmpi(σ′).

The proof of the theorem is standard and therefore omit-

ted.

226

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

Example 5. Consider the signing sequence

(a, b, c, a, b, c, a, b, c). The sequence is easily seen to

be a fair signing sequence. By Theorem 5, the sequence

(d, a, b, c, a, b, c, a, b, c, d, c, a, b, c, a, b, c) is a fair

signing sequence.

VI. COMPLEXITY

There are several common complexity measures for asyn-

chronous, optimistic MPCS protocols, but no common ter-

minology for these measures. One measure is in terms of

the total number of messages sent in the optimistic case,

when assuming that at each protocol step only one message

containing several promises is forwarded to the next signer

such as described for the MRT protocols in the previous

section. We call this measure message complexity.

The other measure concerns the bandwidth necessary

to execute the protocol in the optimistic case. Since our

protocol compiler produces a specification in which every

message sent contains exactly one private contract signa-

ture or one universally verifiable signature, the bandwidth

complexity can be defined in terms of the total number of

send instructions produced by our protocol compiler. We

will denote the bandwidth of the compiled protocol for σ by

B(σ, SigSet) and define it to be equal to the number of send

instructions appearing in the main protocol specification.

It is known [6] that the minimum message complexity

for k signers is O(k2) and that the minimum bandwidth

complexity is O(k3). The connection between fair MPCS

protocols and fair sequences allows us, however, to give

more precise bounds.

A further measure commonly used is the round com-

plexity [5], [11]. This measure does not have a natural

definition for the protocols constructed in this paper, because

it assumes the existence of a repeating structure in the

protocols.

A. Message complexity

Let λ(k) be the length of the shortest complete sequence

over a set A with |A| = k. It follows from Theorems 1

and 4 that the minimum message complexity of our MPCS

protocols is equal to λ(k) + 2k − 3 and that this bound is

tight. The term 2k−3 stems from the k−1 signers added to

a minimal-length complete sequence for the initial promises

in the beginning of the protocol and k − 2 signers for the

forwarded delivery of the last signer’s signature in the end.

It is easy to see that λ(2) = 3. Newey has shown that for

k > 2, λ(k) ≤ k2 − 2k + 4 with equality for 2 < k < 8.

Zălinescu [15] has shown λ(k) ≤ k2−2k+3 for k ≥ 10. The

presently best known bound to us is λ(k) ≤ ⌈k2− 7
3k+

19
3 ⌉

for k ≥ 7 shown by Radomirović [16]. This bound matches

the preceding ones for 7 ≤ k < 13, but is smaller for k ≥ 13.

The following is an example sequence for a set of 13

elements, A = 0, . . . , 9, a, x, y, matching the currently best

known bound. For ease of reading, we do not separate the

elements of this sequence by a comma.

x 0123456789a yx 0123456789a xy 0123456789 x

a01234567y8 x 9a01234567 x 8y9a0123456 x

789a01234y5 x 6789a01234 x 5y6789a0123 x

456789a012 yx 3456789a012 xy 3456789a012 x

B. Bandwidth complexity

While we do not know the precise minimum message

complexity of fair MPCS protocols involving k ≥ 8 signers,

we know that it is equal to λ(k)+2k−3, where λ(k) is the

subject of a well-known open combinatorial problem. The

situation for the precise bandwidth complexity is worse.

A simple upper bound for the minimal bandwidth com-

plexity of fair signing sequences is (λ(k) + 2k− 3)(k− 1).
This bound is obtained by taking the minimal message

complexity of fair MPCS protocols and assuming that in

every step of the protocol every signer sends a signature to

every other signer. The MR protocols of Section V provide

a better bound: k(k− 1)(⌈k/2⌉+1). This is due to the fact

that in MR protocols an average of k/2 send instructions are

specified in a protocol step, whereas the upper bound above

assumes k − 1 instructions.

By computing the bandwidth for all possible fair

signing sequences over 3 and 4 signers, one learns

that the signing sequences (3, 2, 1, 2, 1, 3, 1, 2, 1) and

(4, 3, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1) have minimal

bandwidth with 14 and 34 signatures, respectively. One rec-

ognizes in these sequences the longest fair signing sequences

with the property that removing any element yields an unfair

signing sequence. Such sequences are obtained as follows.

The complete part of the sequence is constructed recursively:

σ1 = (1), σk+1 = (σk, k + 1, σk). Completeness is proven

as follows. σ1 is complete over {1}. If σk is complete, then

σk+1 is complete, because it contains all permutations over

[k] before as well as after the unique appearance of k + 1.

Thus it contains all permutations over [k + 1]. To finally

obtain the fair signing sequence, we prepend (k, . . . , 2) to

σk. The SigSetk is rmpi(σk).
The bandwidth complexity of these protocols can be

bounded below by B(σk, SigSetk) ≥ 3 · 2k−1 − 2k. It

follows that for sufficiently many signers (say k > 10) the

bandwidth complexity of this type of sequences is vastly

larger than the bandwidth complexity of MR protocols.

To derive the bound, note that the number s(k) of send

instructions in the recursively constructed complete part of

the signing sequences satisfies s(2) > 2 and s(k + 1) ≥
2s(k) + 2k− 2. Thus, let b(x) be a function which satisfies

b(2) = 2 and b(x+ 1) = 2 · b(x) + 2x− 2. Then it is easy

to see that b(x) = 3 · 2x−1 − 2x.

227

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

The construction of minimal bandwidth fair MPCS pro-

tocols in general is an open problem.

A general result we can prove is that in order to find

a minimal bandwidth fair MPCS protocol, it suffices to

consider only fair signing sequences σ with the property

that removing any element from σ yields an unfair signing

sequence.

Theorem 6. Let ρ, τ be sequences over A such that their

concatenation σ = (ρ, τ) is a signing sequence over A. Then

B(σ, SigSet) ≤ B((ρ, c, τ), SigSet′) for any c ∈ A, where

SigSet′ is obtained from SigSet by shifting positions and

adding the position of c to SigSet′, if necessary.

Proof: It suffices to consider send instructions in the

protocol specification for (ρ, τ) which connect a position in

ρ to a position in τ and involve c as sender or recipient.

Every such instruction will be replaced by an instruction

originating or ending at the newly introduced c in the

specification for (ρ, c, τ). Thus, there will be at least as many

send instructions in the protocol specification for (ρ, c, τ) as

in the protocol specification for (ρ, τ).
While the proof above establishes that the bandwidth

complexity will be no smaller by introducing a new element

into the signing sequence, it is easy to see that it can

be strictly larger. Consider, for instance, the sequences

(c, a, b, a, c) and (c, a, b, c, a, c). The former sequence has

four send instructions involving c while the latter has six.

VII. GENERALIZATIONS

Our theory extends to the case where fewer dishonest

signers can be tolerated in exchange for shorter protocols.

We merely give a brief account of this fact.

The controlled reduction in the number of dishonest

signers is achieved by requiring that all permutations of t-
element subsets of A are present in the sequences, rather

than all permutations of A. The protocol compiler then

produces sequences which can tolerate up to t−1 dishonest

signers.

We say that a sequence is t-complete over A, if it contains

all t-element permutations of elements in A as subsequences.

For instance, the sequence (1, 2, 3, 4, 3, 2, 1) is 2-complete

over {1, 2, 3, 4}, since it contains (i, j) as a subsequence

for all i, j ∈ A. Therefore, the protocol compiler applied

to σ = (4, 3, 2, 1, 2, 3, 4, 3, 2, 1) with signing set rmpi(σ)
produces a fair MPCS protocol, as long as there are fewer

than 2 dishonest signers.

Similarly, the sequence (1, 2, 3, 4, 3, 2, 1, 2, 3, 4) is 3-

complete over A, thus σ′ = (4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4)
with signing set rmpi(σ′) produces a fair MPCS protocol,

as long as there are fewer than 3 dishonest signers. A

construction for short t-complete sequences has been given

by Savage [17].

A closer inspection of our theory reveals that we can give

an even more precise characterization of the set of dishonest

signers that can be tolerated. Consider the signing sequence

σ = (4, 3, 2, 1, 2, 3, 4, 3, 2, 1) again. The sequence is fair

for signers 2, 3, 4 as long as there is at most one dishonest

signer. This is because, using notation of Theorem 1, σ2, σ3,

and σ4 are 1-complete over A \ {2}, A \ {3}, and A \ {4},

respectively. But for signer 1 the sequence is fair as long

as there are at most two dishonest signers, because σ1 is

2-complete over A \ {1}.

VIII. CONCLUSION

We have demonstrated a procedure which allows for a

flexible construction of fair optimistic MPCS protocols and

we have given several examples and starting points for such

constructions. We have proven our construction to be correct

and we have investigated the minimum complexity of the

generated protocols for two types of complexity measures.

At the heart of our construction lies the generation of

sequences which contains all permutations of a finite set as

subsequences. This connection has first been noticed in [1]

where it has been used to prove a lower bound for the

message complexity of fair MPCS protocols. Our results

not only confirm the existence of fair protocols with the

minimum message complexities established in that prior

work, but also show a tighter correspondence between fair

optimistic MPCS protocols and sequences which contain

all permutations of the signers’ set as subsequences. This

improvement is due to our generalized notion of fair signing

sequences.

ACKNOWLEDGMENTS

Barbara Kordy was supported by the National Research

Fund, Luxembourg (C08/IS/26).

We thank Jun Pang and the anonymous reviewers for

comments that helped us to improve the manuscript.

REFERENCES

[1] S. Mauw, S. Radomirović, and M. T. Dashti, “Minimal
message complexity of asynchronous multi-party contract
signing,” in Proceedings of the 22nd IEEE Computer Security
Foundations Symposium (CSF’09). IEEE Computer Society,
2009, pp. 13–25.

[2] S. D. Gordon, “On fairness in secure computation,” PhD
Thesis, University of Maryland, 2010.

[3] N. Asokan, “Fairness in electronic commerce,” PhD Thesis,
University of Waterloo, 1998.

[4] J. Garay, M. Jakobsson, and P. MacKenzie, “Abuse-free
optimistic contract signing,” in Advances in Cryptology –
CRYPTO’99, ser. LNCS, M. J. Wiener, Ed., vol. 1666. Santa
Barbara, California, USA: Springer-Verlag, Aug. 1999, pp.
449–466.

[5] A. Mukhamedov and M. D. Ryan, “Fair multi-party contract
signing using private contract signatures,” Inf. Comput., vol.
206, no. 2-4, pp. 272–290, 2008.

228

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

[6] J. A. Garay and P. D. MacKenzie, “Abuse-free multi-party
contract signing,” in Distributed Computing, 13th Interna-
tional Symposium, Bratislava, Slavak Republic, September
27-29, 1999, Proceedings, ser. Lecture Notes in Computer
Science, vol. 1693. Springer, 1999, pp. 151–165.

[7] R. Chadha, S. Kremer, and A. Scedrov, “Formal analysis of
multi-party contract signing,” in CSFW ’04. Washington,
DC, USA: IEEE Computer Society, 2004, p. 266.

[8] Y. Zhang, C. Zhang, J. Pang, and S. Mauw, “Game-based
verification of multi-party contract signing protocols,” in
Formal Aspects in Security and Trust, ser. Lecture Notes in
Computer Science, P. Degano and J. D. Guttman, Eds., vol.
5983. Springer, 2009, pp. 186–200.

[9] ——, “Game-based verification of multi-party contract sign-
ing protocols with minimal messages,” Innovations in Systems
and Software Engineering, in press.

[10] B. Baum-Waidner and M. Waidner, “Round-optimal and
abuse free optimistic multi-party contract signing,” in Au-
tomata, Languages and Programming — ICALP 2000, ser.
LNCS, U. Montanari, J. D. P. Rolim, and E. Welzl, Eds., vol.
1853. Geneva, Switzerland: Springer-Verlag, Jul. 2000, pp.
524–535.

[11] B. Baum-Waidner, “Optimistic asynchronous multi-party con-
tract signing with reduced number of rounds,” in Automata,
Languages and Programming — ICALP 2001, ser. LNCS,
F. Orejas, P. G. Spirakis, and J. van Leeuwen, Eds., vol. 2076.
Crete, Greece: Springer-Verlag, Jul. 2001, pp. 898–911.

[12] L. Adleman, “Short permutation strings,” Discrete Math.,
vol. 10, pp. 197–200, 1974.

[13] M. C. Newey, “Notes on a problem involving permutations as
subsequences,” Stanford University, Department of Computer
Science, Stanford, CA, USA, Tech. Rep. STAN-CS-73-340,
March 1973, http://infolab.stanford.edu/pub/cstr/reports/cs/tr/
73/340/CS-TR-73-340.pdf.

[14] S. P. Mohanty, “Shortest string containing all permutations,”
Discrete Math., vol. 31, pp. 91–95, 1980.

[15] E. Zalinescu, “Shorter strings containing all k-element per-
mutations,” Inf. Process. Lett., vol. 111, no. 12, pp. 605–608,
2011.

[16] S. Radomirović, “A construction of short sequences contain-
ing all permutations of a set as subsequences,” unpublished.

[17] C. Savage, “Short strings containing all k-element permuta-
tions,” Discrete Math., vol. 42, pp. 281–285, 1982.

229

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 22:16:23 UTC from IEEE Xplore. Restrictions apply.

