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Abstract—We consider the problem of establishing cryp-
tographic guarantees—in particular, computational indis-
tinguishability—for Java or Java-like programs that use cryp-
tography. For this purpose, we propose a general framework
that enables existing program analysis tools that can check
(standard) non-interference properties of Java programs to
establish cryptographic security guarantees, even if the tools a
priori cannot deal with cryptography. The approach that we
take is new and combines techniques from program analysis
and simulation-based security. Our framework is stated and
proved for a Java-like language that comprises a rich fragment
of Java. The general idea of our approach should, however, be
applicable also to other practical programming languages.

As a proof of concept, we use an automatic program analysis
tool for checking non-interference properties of Java programs,
namely the tool Joana, in order to establish computational
indistinguishability for a Java program that involves clients
sending encrypted messages over a network, controlled by an
active adversary, to a server.

I. INTRODUCTION

In this paper, we consider the problem of establishing

security guarantees for Java or Java-like programs that use

cryptography, such as encryption. More specifically, the

security guarantees we are interested in are computational

indistinguishability properties: Two systems S1 and S2 coded

in Java, i.e., two collections of Java classes, are compu-

tationally indistinguishable if no probabilistic polynomially

bounded environment (which is also coded as a Java pro-

gram) is able to distinguish, with more than negligible

probability, whether it interacts with S1 or S2. As a special

case, S1 and S2 might only differ in certain values for certain

variables. In this case, the computational indistinguishability

of S1 and S2 means that the values of these variables are

kept private, a property referred to as privacy, anonymity, or

strong secrecy. Indistinguishability is a fundamental security

property relevant in many security critical applications, such

as secure message transmission, key exchange, anonymous

communication, e-voting, etc.

Our goal. The main goal of this paper is to develop a

general framework that allows us to establish cryptographic

indistinguishability properties for Java programs using ex-

isting program analysis tools for analyzing (standard) non-

interference properties [17] of Java programs, such as the

tools Joana [19], KeY [1], a tool based on Maude [3], and

Jif [27], [28]. As such, our work also contributes to the

problem of implementation-level analysis of crypto-based

software (such as cryptographic protocols) that has recently

gained much attention (see Sections X and XI).

A fundamental problem that we face is that existing

program analysis tools for non-interference properties cannot

deal with cryptography directly. In particular, they typically

do not deal with probabilities and the non-interference

properties that they prove are w.r.t. unbounded adversaries,

rather than probabilistic polynomially bounded adversaries.

For example, if a message is encrypted and the ciphertext is

given to the adversary, the tools consider this to be an illegal

information flow (or a declassification), because a compu-

tationally unbounded adversary could decrypt the message.

This problem has long been observed in the literature (see,

e.g., [32] and references therein).

Our approach. Our approach to enabling these tools to

nevertheless deal with cryptography and in the end provide

cryptographic security guarantees is to use techniques from

simulation-based security (see, e.g., [10], [31], [23]). The

idea is to first analyze a (deterministic) Java program where

cryptographic operations (such as encryption) are performed

within ideal functionalities. Such functionalities typically

provide guarantees even in the face of unbounded adver-

saries and can often be formulated without probabilistic

operations. As we show as part of our framework, we can

then replace the ideal functionalities by their realizations,

obtaining the actual Java program (without idealized com-

ponents) with cryptographic guarantees.

Our contribution in more detail. More precisely, our

approach and the contribution of this paper are as follows.

Our framework is formulated for a language we call

Jinja+ and is proven w.r.t. the formal semantics of this

language. Jinja+ is a Java-like language that extends the

language Jinja [22] and comprises a rich fragment of Java,

including classes, inheritance, (static and non-static) fields

and methods, the primitive types int, boolean, and byte

(with the usual operators for these types), arrays, exceptions,

and field/method access modifiers, such as public, private,

and protected.

Along the lines of simulation-based security, we formu-

late, in Jinja+, rather than in a Turing machine model, what

it means for two systems to be computationally indistin-

guishable, and for one system to realize another system.
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We then prove a composition theorem that allows us to

replace ideal functionalities (formulated as Jinja+ systems)

by their realizations (also formulated as Jinja+ systems) in

a more complex system. The definitions and proofs need

care because interfaces between different Jinja+ systems

are classes with their fields and methods, and hence, these

interfaces are very different and much richer than in the case

of interactive Turing machines, where machines are simply

connected by tapes on which bit strings are exchanged.

As mentioned before, we are mainly interested in es-

tablishing computational indistinguishability properties for

crypto-based Java or Java-like programs (i.e., programs that

use cryptography) using existing analysis tools for language-

based information flow analysis. At the core of our ap-

proach, sketched above, is a theorem that says that if two

systems that both use an ideal functionality are perfectly

indistinguishable, then these systems are computationally

indistinguishable if the ideal functionality is replaced by

its realization, where perfect indistinguishability is defined

(for deterministic Java programs) just as computational in-

distinguishability but w.r.t. unbounded adversaries. Together

with another theorem that we obtain, and which states that

(termination-insensitive) non-interference [32] is equivalent

to perfect indistinguishability, we obtain that by proving

non-interference using existing program analysis tools, we

can establish computational indistinguishability properties.

Many program analysis tools can deal only with closed

Java programs. The systems we want to analyze are, how-

ever, open, because they interact with a network or use

some libraries that we do not (have to) trust, and hence,

do not have to analyze. In our setting, the network and such

libraries are simply considered to be part of the environment

(the adversary). As part of our framework, we therefore also

propose proof techniques that help program analysis tools to

deal with these kinds of open systems, and in particular, to

prove non-interference properties about these systems. These

techniques are used in our case study (see below), but they

are rather general, and hence, relevant beyond our case study.

Since we use public-key encryption in our case study, we

also propose an ideal functionality for public-key encryption

coded in Jinja+, in the spirit of similar functionalities in the

simulation-based approach (see, e.g., [10], [25]), and prove

that it can be realized with any IND-CCA2-secure public-

key encryption scheme. This result is needed whenever a

Java system is analyzed that uses public-key encryption, and

hence, is relevant beyond our case study. We note that the

formulation of our ideal functionality is more restricted than

the one in the cryptographic literature in that corruption is

not handled within the functionality.

As a case study and as a proof of concept of our frame-

work and approach, we consider a simple Java program,

which in fact falls into the Jinja+-fragment of Java and in

which clients (whose number is determined by an active

adversary) encrypt secrets under the public key of a server

and send them, over an untrusted network controlled by the

active adversary, to a server who decrypts these messages.

Using the program analysis tool Joana [19], which is a

fully automated tool for proving non-interference properties

of Java programs, we show that our system enjoys the

non-interference property (with the secrets stored in high

variables) when the ideal functionality is used instead of

real encryption. The theorems proved in our framework

thus imply that this system enjoys the computational in-

distinguishability property (in this case strong secrecy of

the secrets) when the ideal functionality is replaced by

its realization, i.e., the actual IND-CCA2-secure public-key

encryption scheme.

Structure of the paper. The language Jinja+ is introduced

in Section II. Perfect and computational indistinguishability

for Jinja+ systems are formulated in Section III. In Sec-

tion IV, we define simulation-based security for Jinja+ and

present the mentioned composition theorem. The relation-

ship between computational and perfect indistinguishability

as well as non-interference is shown in Sections V and VI.

The proof technique for non-interference in open systems is

discussed Section VII. The ideal functionality for public-key

encryption and its realization can be found in Section VIII,

with the case study presented in Section IX. In Section X,

we discuss related work. We conclude in Section XI. More

details and full proofs are provided in the extended version

of this paper [24].

II. JINJA+: A JAVA-LIKE LANGUAGE

As mentioned in the introduction, our framework is stated

for a Java-like language which we call Jinja+. Jinja+ is

based on Jinja [22] and extends this language with some

additional features that are useful or needed in the context

of our framework.

Jinja+ covers a rich subset of Java, including classes,

inheritance, (static and non-static) fields and methods, the

primitive types int, boolean, and byte (with the usual op-

erators for these types), arrays, exceptions, and field/method

access modifiers, such as public, private, and protected.

Among the features of Java that are not covered by Jinja+

are: abstract classes, interfaces, strings, and concurrency.

We believe that extending our framework to work for these

features of Java, except for concurrency, is quite straightfor-

ward. We leave such extensions for future work.

We now first recall the Jinja language and then present

the extended language Jinja+.

A. Jinja

Syntax. Expressions in Jinja are constructed recursively and

include: (a) creation of a new object, (b) casting, (c) lit-

eral values (constants) of types boolean and int, (d) null,

(e) binary operations, (f) variable access and variable as-

signment, (g) field access and field assignment, (h) method
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call, (i) blocks with locally declared variables, (j) sequential

composition, (k) conditional expressions, (l) while loop,

(m) exception throwing and catching.

A program or a system is a set of class declarations.

A class declaration consists of the name of the class and

the class itself. A class consists of the name of its direct

superclass (optionally), a list of field declarations, and a

list of method declarations, where we require that different

fields and methods have different names. A field declaration
consists of a type and a field name. A method declaration
consists of the method name, the formal parameter names

and types, the result type, and an expression (the method

body). Note that there is no return statement, as a method

body is an expression; the value of such an expression is

returned by the method.

In what follows, by a program we will mean a com-

plete program (one that is syntactically correct and can be

executed). We assume that a program contains a unique

static method main (declared in exactly one class); this

method is the first to be called in a run. By a system we

will mean a set of classes which is syntactically correct

(can be compiled), but possibly incomplete (can use not

defined classes). In particular, a system can be extended to

a (complete) program.

Some constructs of Jinja (and the richer language Jinja+,

specified below) are illustrated by the program in Figure 1,

where we use Java-like syntax (we will use this syntax as

long as it translates in a straightforward way to a Jinja/Jinja+

syntax).

Jinja comes equipped with a type system and a notion of

well-typed programs. In this paper we consider only well-

typed programs.

Semantics. Following [22], we briefly sketch the small-step

semantics of Jinja. The full set of rules, including those for

Jinja+ (see the next subsection) can be found in [24].

A state is a pair of heap and a store. A store is a map from

variable names to values. A heap is a map from references

(addresses) to object instances. An object instance is a pair

consisting of a class name and a field table, and a field table

is a map from field names (which include the class where a

field is defined) to values.

The small-step semantics of Jinja is given as a set of rules

of the form P� 〈e,s〉→ 〈e′,s′〉, describing a single step of the

program execution (reduction of an expression). We will call

〈e,s〉 (〈e′,s′〉) a configuration. In this rule, P is a program

in the context of which the evaluation is carried out, e and

e′ are expressions and s and s′ are states. Such a rule says

that, given a program P and a state s, an expression e can

be reduced in one step to e′, changing the state to s′.

B. Jinja+

As a basis of our formal results we take a language

that extends Jinja with: (a) the primitive type byte with

1 class A extends Exception {
2 protected int a; // field with an access modifier
3 static public int[] t = null; // static field
4 static public void main() { // static method
5 t = new int[10]; // array creation
6 for (int i=0; i<10; i++) // loops
7 t[i] = 0; // array assignment
8 B b = new B(); // object creation
9 b.bar(); // method invocation

10 }
11 }
12 class B extends A { // inheritance
13 private int b;
14 public B() // constructor
15 { a=1; b=2; } // field assignment
16 int foo(int x) throws A { // throws clause
17 if (a<x) return x+b; // field access (a, b)
18 else throw (new B()); // exception throwing
19 }
20 void bar() {
21 try { b = foo(A.t[2]); } // static field access
22 catch (A a) { b = a.a; } // exception catching
23 }
24 }

Figure 1. An example Jinja+ program (in Java-like notation).

natural conversions from and to int, (b) arrays, (c) abort

primitive, (d) static fields (with the restriction that they can

be initialized by literals only), (e) static methods, (f) access

modifier for classes, fields, and methods (such as private,

protected, and public), (g) final classes (classes that cannot

be extended), (h) the throws clause of a method declaration.
Exceptions, which are already part of Jinja, are particu-

larly critical for the security properties we are interested in

because they provide an additional way information can be

transfered from one part of the program to another.
We assume that Jinja+ programs have unbounded mem-

ory. The reason for this modeling choice is that the formal

foundation for the security notions adopted in this paper

are based on asymptotic security. This kind of security

definitions only makes sense if the memory is not bounded,

since the security parameter grows indefinitely.

Randomized programs. So far, we have considered deter-

ministic programs. We will also need to consider random-

ized programs in our framework. For this purpose, Jinja+

programs may use the primitive randomBit() that returns

a random bit each time it is used. Jinja+ programs that do

not make use of randomBit() are (called) deterministic, and
otherwise, they are called randomized.

An example of a Jinja+ program is, as mentioned, presented

in Figure 1.

Runs of Jinja+ programs. As already mentioned, the full

set of rules of the small-step semantics of Jinja+ can be

found in [24]. Based on this small-step semantics, we now

define runs of Jinja+ programs.
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Definition 1. A run of a deterministic program P is a

sequence of configurations obtained using the (small-step)

Jinja+ semantics from the initial configuration of the form

〈e0,(h0, l0)〉, where e0 =C.main(), for C being the (unique)

class where main is defined, h0 = /0 is the empty heap, l0 is

the store mapping the static (global) variables to their initial

values (if the initial value for a static variable is not specified

in the program, the default initial value for its type is used).

A randomized program induces a distribution of runs in

the obvious way. Formally, such a program is a random

variable from the set {0,1}ω of infinite bit strings into

the set of runs (of deterministic programs), with the usual

probability space over {0,1}ω , where one infinite bit string

determines the outcome of randomBit(), and hence, induces

exactly one run.

The small-step semantics of Jinja+ provides a natural

measure for the length of a run of a program, and hence, the

runtime of a program. The length of a run of a deterministic
program is the number of steps taken using the rules of the

small-step semantics. Given this definition, for a randomized

program the length of a run is a random variable defined in

the obvious way.

For a run r of a program P containing some subprogram

S (a subset of classes of P), we define the number of steps
performed by S or the number of steps performed in the
code of S in the expected way. To define this notion, we

keep track of the origin of (sub)expressions, i.e., the class

they come from. If a rule is applied on a (sub)expression

that originates from the class C, we label this step with C
and count this as a step performed in C.

III. INDISTINGUISHABILITY

We now define what it means for two systems to be indis-

tinguishable by environments interacting with those systems.

Indistinguishability is a fundamental relationship between

systems which is interesting in its own right, for example,

to define privacy properties, and to define simulation-based

security, as we will see in the subsequent sections.

For this purpose, we first define interfaces that systems

use/provide, how systems are composed, and environments.

We then define the two forms of indistinguishability already

mentioned in the introduction, namely perfect and compu-

tational indistinguishability. Since we consider asymptotic

security, this involves to define programs that take a security

parameter as input and that run in polynomial time in the

security parameter.

Our definitions of indistinguishability follow the spirit

of definitions of (computational) indistinguishability in the

cryptographic literature (see, e.g., [10], [23], [20]), but, of

course, instead of interactive Turing machines, we consider

Jinja+ systems/programs. In particular, the simple commu-

nication model based on tapes is replaced by rich object-

oriented interfaces between subsystems.

A. Interfaces and Composition

Before we define the notion of an interface, we emphasize

that it should not be confused with the concept of interfaces

in Java; we use this term with a different meaning.

Definition 2. An interface I is defined like a (Jinja+) system

but where all method bodies as well as static field initializers

are dropped.

If I and I′ are interfaces, then I′ is a subinterface of I,
written I′ � I, if I′ can be obtained from I by dropping whole

classes (with their method and field declarations), dropping

methods and fields, dropping extends clauses, and/or adding

the final modifier to class declarations.

Two interfaces are called disjoint if the set of class names

declared in these interfaces are disjoint.

If S is a system, then the public interface of S is obtained

from S by (1) dropping all private fields and methods from S
and (2) dropping all method bodies and initializers of static

fields.

Definition 3. A system S implements an interface I, written

S : I, if I is a subinterface of the public interface of S.

Clearly, for every system S we have that S : /0.

Definition 4. We say that a system S uses an interface I,
written I � S, if, besides its own classes, S uses at most

classes/methods/fields declared in I. We always assume that

the public interface of S and I are disjoint.

We note that if I � I′ and I � S, then I′ � S. We write

I0 � S : I1 for I0 � S and S : I1. If I = /0, i.e., I is the empty

interface, we often write � S instead of /0 � S. Note that � S
means that S is a complete program.

Definition 5. Interfaces I1 and I2 are compatible if there

exists an interface I such that I1 � I and I2 � I.

Intuitively, if two compatible interfaces contain the same

class, the declarations of methods and fields of this class in

those interfaces must be consistent (for instance, a field with

the same name, if declared in both interfaces, must have the

same type). Note that if I1 and I2 are disjoint, then they

are compatible. Systems that use compatible interfaces and

implement disjoint interfaces can be composed:

Definition 6 (Composition). Let IS, IT , I′S and I′T be inter-

faces such that IS and IT are disjoint and I′S and I′T are

compatible. Let S and T be systems such that not both S
and T contain the method main, I′S � S : IS, and I′T � T : IT .

Then, we say that S and T are composable and denote by

S · T the composition of S and T which, formally, is the

union of (declarations in) S and T . If the same classes are

defined both in S and T (which may happen for classes not

specified in IS and IT ), then we always implicitly assume

that these classes are renamed consistently in order to avoid

name clashes.
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We emphasize that the interfaces between subsystems as

considered here are quite different and much richer than the

interfaces between interactive Turing machines considered in

cryptography. Instead of plain bit strings that are sent over

tapes between different machines, objects can be created,

classes of another subsystem can be extended by inheritance,

and data of different types, including references pointing to

possibly complex objects, can be passed between different

objects. Also, the flow of control is different. While in the

Turing machine model, sending a message gives control

to the receiver of the message and this control might not

come back to the sender, in the object-oriented setting

communication goes through method calls and fields. After

a method call, control comes back to the caller, provided

that potential exceptions are caught and the execution is not

aborted.

We also emphasize that while a setting of the form

� S : I and I � T , i.e., in S · T the system T uses the

interface I implemented by S, suggests that the initiative

of accessing fields and calling methods always comes from

T , it might also come from S by using callback objects:
T could extend classes of S by inheritance, create objects

of these classes and pass references to these objects to S
(by calling methods of S). Then, via these references, S can

call methods specified in T . (This, in fact, is a common

programming technique.)

B. Environments

An environment will interact with one of two systems

and it has to decide with which system it interacted (see

Section III). Its decision is written to a distinct static boolean

variable result.

Definition 7. A system E is called an environment if it

declares a distinct private static variable result of type

boolean with initial value false.

In the rest of the paper, we (often implicitly) assume that

the variable result is unique in every Java program, i.e., it

is declared in at most one class of a program, namely, one

that belongs to the environment.

Definition 8. Let S be a system with S : I for some interface

I. Then an environment E is called an I-environment for S
if there exists an interface IE disjoint from I such that (i)

IE � S : I and I � E : IE and (ii) either S or E contains main().

Note that E and S, as in the above definition, are com-

posable and E ·S is a (complete) program.

For a finite run of E ·S, i.e., a run that terminates, we call

the value of result at the end of the run the output of E or

the output of the program E ·S. For infinite runs, we define

the output to be false. If E ·S is a deterministic program,

then we write E ·S� true if the output of E ·S is true. If

E ·S is a randomized program, we write Prob{E ·S� true}
to denote the probability that the output of E ·S is true.

Definition 9 (same interface). The systems S1 and S2 use
the same interface if (i) for every IE , we have that IE � S1 iff

IE � S2, and (ii) S1 contains the method main iff S2 contains

main.

Observe that if S1 and S2 use the same interface and we

have that S1 : I and S2 : I for some interface I, then every

I-environment for S1 is also an I-environment for S2.

C. Programs with security parameter
As mentioned at the beginning of this section, we need

to consider programs that take a security parameter as input

and run in polynomial time in this security parameter.
To ensure that all parts of a system have access to the

security parameter, we fix a distinct interface ISP consist-

ing of (one class containing) one public static variable

securityParameter. We assume that, in all the considered

systems/programs, this variable (after being initialized) is

only read but never written to. Therefore, all parts of the

considered system can, at any time, access the same, initial

value of this variable.
For a natural number η , we define a system SPη that

implements the interface ISP by setting the initial value of

securityParameter to η . We do not fix here how this value

is represented because the representation is not essential for

our results; it could be represented as a linked list of objects

or an array (see also the discussion below).
We call a system P such that ISP � P a program with a

security parameter or simply a program if the presence of

a security parameter is clear from the context. Note that by

this, SPη ·P is a complete program, which we abbreviate by

P(η).
Although as far as asymptotic security is concerned,

our framework works fine with the definitions we have

introduced so far, they are not perfectly aligned with the

common practice of programming in Java. More specifically,

messages, such as keys, ciphertexts, digital signatures, etc.,

are typically represented as arrays of bytes. However, this

representation is bounded by the maximal length of an

array, which is the maximal value of an integer (int).

Therefore, following common programming practice, there

would be a strict bound on, for example, the maximal size

of keys (if represented as arrays of bytes). Since we consider

asymptotic security, the size of keys should, however, grow

with the security parameter.
One solution could be to use another representation of

messages, such as lists of bytes. This, however, would

result in unnatural programs and we, of course, want to

be able to analyze programs as given in practice. Another

solution could be to use concrete instead of asymptotic

security definitions. However, most results in simulation-

based security are formulated w.r.t. asymptotic security, and

hence, we would not be able to reuse these results and avoid,

for example, reproving from scratch realizations of ideal

functionalities.
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Therefore, we prefer the following solution. We param-

eterize the semantics of Jinja+ with the maximal (abso-

lute) value integers can take. So if P is a deterministic

program, the run of P with integer size s ≥ 1 is a run

of P where the maximal (absolute) value of integers is s;
analogously for randomized programs. We write P�s true

if the output of such a run is true; analogously, we de-

fine Prob{P�s true}. In our asymptotic formulations of

indistinguishability, the size of integers may depend on the

security parameter.

D. Perfect Indistinguishability

We now formulate perfect indistinguishability, which, as

we will prove in Section V, implies computational in-

distinguishability. We say that a deterministic program P
terminates for integer size s, if the run of P with integer

size s is finite.

Definition 10 (Perfect indistinguishability). Let S1 and S2

be deterministic systems with a security parameter and such

that S1 : I and S2 : I for some interface I. Then, S1 and S2

are perfectly indistinguishable w.r.t. I, written S1 ≈I
perf S2,

if (i) S1 and S2 use the same interface and (ii) for every

deterministic I-environment E for S1 (and hence, S2) with

security parameter, for every security parameter η and every

integer size s ≥ 1, it holds that if E · S1(η) and E · S2(η)
terminate for integer size s, then E · S1(η)�s true iff E ·
S2(η)�s true.

We note that the notion of perfect indistinguishability

introduced above is termination-insensitive, i.e. it puts no

restrictions on non-terminating runs. This (weak) form of

perfect indistinguishability, nevertheless implies computa-

tional indistinguishability (see Theorem 3).

E. Polynomially Bounded Systems

As already mentioned at the beginning of this section, in

order to define the notion of computational indistinguisha-

bility we need to define programs and environments whose

runtime is polynomially bounded in the security parameter.

For this purpose, we fix now and for the rest of this

section a polynomially computable function intsize that takes

a security parameter η as input and outputs a natural number

≥ 1. We require that the numbers returned by this function

are bounded by a fixed polynomial in the security parameter.

All notions defined in what follows are parameterized by

that function. However, due to ease of notion this will not

be made explicit.

Our runtime definitions follow the spirit of definitions

in cryptographic definitions of simulation-based security, in

particular, [23], [20].

We start with the definition of almost bounded programs.

These are programs that, with overwhelming probability,

terminate after a polynomial number of steps.

Definition 11 (Almost bounded). A program P with secu-

rity parameter is almost bounded if there exists a polynomial

p such that the probability that the length of a run of P(η)
(with integer size intsize(η)) exceeds p(η) is a negligible

function in η .1

It is easy to see that an almost bounded program P
can be simulated by a probabilistic polynomial time Turing

machine that simulates at most p(η) steps of a run of P(η)
(with integer size intsize(η)) and produces output that is

distributed the same up to a negligible difference.

We also need the notion of a bounded environment. The

number of steps such an environment performs in a run is

bounded by a fixed polynomial independently of the system

the environment interacts with.

Definition 12 (Bounded environment). An environment E
is called bounded if there exists a polynomial p such that,

for every system S such that E is an I-environment for S
(for some interface I) and for every run of E · S(η) (with

integer size intsize(η)), the number of steps performed in

the code of E does not exceed p(η).

This definition makes sense since E can abort a run by

calling abort(), and hence, E can prevent to be called by

S, which would always require to execute some code in

E. (Without abort(), E can, in general, not prevent that

code fragments of E are executed, e.g., S could keep calling

methods of classes of E.)

If an environment E is both bounded and an I-environment

for some system S, we call E a bounded I-environment for
S.

For the cryptographic analysis of systems to be mean-

ingful, we study systems that run in polynomial time (with

overwhelming probability) with any bounded environment.

Definition 13 (Environmentally I-bounded). A system S
is environmentally I-bounded, if S : I and for each bounded

I-environment E for S, the program E ·S is almost bounded.

It is typically easy to see that a system is environmentally

I-bounded (for all functions intsize).
We note that environmentally I-bounded systems, as de-

fined above, are reactive systems that are free to process

an unbounded number of requests of the environment E. In

particular, a reactive system S does not need to terminate

after some fixed and bounded number of requests. Clearly,

every bounded I-environment, being bounded, will only

invoke S a bounded number of times, more precisely, the

number of invocations the environment makes is bounded

by some polynomial in the security parameter.

1As usual, a function f from the natural numbers to the real numbers is
negligible, if for every c > 0 there exists η0 such that f (η) ≤ 1

ηc for all
η > η0. A function f is overwhelming if 1-f is negligible.
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F. Computational Indistinguishability

Having defined polynomially bounded systems and pro-

grams, we are now ready to define computational indistin-

guishability of systems, where, again, we fix the function

intsize. (However, computational guarantees for Java pro-

grams will be independent of a specific function intsize.) We

start with the notion of computationally equivalent programs.

Definition 14 (Computational Equivalence). Let P1 and P2

be (complete, possibly probabilistic) programs with security

parameter. Then P1 and P2 are computationally equivalent,
written P1 ≡comp P2, if |Prob{P1(η) �intsize(η) true} −
Prob{P2(η)�intsize(η) true}| is a negligible function in the

security parameter η .

Definition 15 (Computational indistinguishability). Let

S1 and S2 be environmentally I-bounded systems. Then S1

and S2 are computationally indistinguishable w.r.t. I, written

S1 ≈I
comp S2, if S1 and S2 use the same interface and for

every bounded I-environment E for S1 (and hence, S2) we

have that E ·S1 ≡comp E ·S2.

Typically, this definition is applied to systems S1 and S2

that do not use the statement abort(). However, our results

also work in this case.

We also note that this definition of indistinguishability is

w.r.t. uniform environments. A definition w.r.t. non-uniform

environments can be obtained in a straightforward way by

giving the environment additional auxiliary input (besides

the security parameter).

Furthermore, we point out that in the above definition two

cases can occur: (1) main() is defined in E or (2) main() is

defined in both S1 and S2. In the first case, E can freely

create objects of classes in the interface I (which is a subset

of classes of S1/S2) and initiate calls. Eventually, even in case

of exceptions, E can get back control (method calls return a

value to E and E can catch exceptions if necessary), unless

S1/S2 uses abort. The kind of control E has in the case (2),

heavily depends on the specification of S1/S2. This can go

from having as much control as in case (1) to being basically

a passive observer. For example, main() (as specified in

S1/S2) could call a method of E and from then on E can

use the possibly very rich interface I as in case (1). The

other extreme is that I is empty, say, so E cannot create

objects of (classes of) S1/S2 by itself, only S1/S2 can create

objects of (classes of) E and of S1/S2. Hence, S1/S2 has more

control and can decide, for instance, how many and which

objects are created and when E is contacted. Still even in

this case, if so specified, S1/S2 could give E basically full

control by callback objects (see Section III-A). (As a side

note, illustrating the richness of the interfaces, compared to

Turing machine models, E could also extend classes of S1/S2

and by this, if not properly protected, might get access to

information kept in these classes.)

IV. SIMULATABILITY

We now formulate what it means for a system to re-

alize another system, in the spirit of the simulation-based

approach.

As before, we fix a function intsize (see Section III-E) for

the rest of this section. Typically, one would prove that one

system realizes the other for all such functions.

Our formulation of the realization of one system by

another follows the spirit of strong simulatability in the

simulation-based approach (see, e.g., [23]). In a nutshell,

the definition says that the (real) system R realizes an (ideal)

system F if there exists a simulator S such that R and S ·F
behave almost the same in every bounded environment.

Definition 16 (Strong Simulatability). Let Iin, Iout , IE , IS
be disjoint interfaces. Let F and R be systems. Then R
realizes F w.r.t. the interfaces Iout , Iin, IE , and IS, written

R ≤(Iout ,Iin,IE ,IS) F or simply R ≤ F , if i) IE ∪ Iin � R : Iout
and IE ∪ Iin∪ IS � F : Iout , ii) either both F and R or neither

of these systems contain the method main(), iii) R is an

environmentally Iout -bounded system (F does not need to

be), and iv) there exists a system S (the simulator) such that

S does not contain main(), IE � S : IS, S ·F is environmentally

Iout -bounded, and R ≈Iout
comp S ·F .

The intuition behind the way the interfaces between the

different components (environment, ideal and real function-

alities, simulator) are defined is as follows: Both R and F
provide the same kind of functionality/service, specified by

the interface Iout . They may require some (trusted) services

Iin from another system component and some services IE
from an (untrusted) environment, for example, networking

and certain other libraries. In addition, the ideal functionality

F may require services IS from the simulator S, which in turn

may require services IE from the environment. Recall from

the discussion in Section III-A that the interfaces can be

very rich—they allow for communication and method calls

in both directions.

In the applications we envision, with our case study being

the first example, F will typically be an ideal functionality

for one or more cryptographic primitives and its realization

R will basically be the actual cryptographic schemes.

The notion of strong simulatability, as introduced above,

enjoys important basic properties, namely, reflexivity and

transitivity, and allows to prove a fundamental composition

theorem.

Lemma 1 (Reflexivity of strong simulatability). Let Iout ,
Iin, and IE be disjoint interfaces and let R be a system such
that IE ∪ Iin � R : Iout and R is environmentally Iout -bounded.
Then, R≤ R, i.e., R realizes itself.

Lemma 2 (Transitivity of strong simulatability). Let Iout ,
Iin, IE , I0S , and I1S be disjoint interfaces and let R0, R1, and R2

be environmentally I-bounded systems. If R1 ≤(Iout ,Iin,IE∪I1S ,I0S )
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R0 and R2 ≤(Iout ,Iin,IE ,I1S ) R1, then R2 ≤(Iout ,Iin,IE ,I0S∪I1S ) R0.

In short, the following composition theorem says that if

R0 realizes F0 and R1 realizes F1, then the composed real

system R0 ·R1 realizes the composed ideal system F0 ·F1. In

other words, it suffices to prove the realizations separately

in order to obtain security of the composed systems.

Theorem 1 (Composition Theorem). Let I0, I1, IE , I0S , and
I1S be disjoint interfaces and let R0, F0, R1, and F1 be systems
such that R0 ≤(I0,I1,IE ,I0S ) F0, R1 ≤(I1,I0,IE ,I1S ) F1, not both R0

and R1 contain main(), and R0 ·R1 are environmentally (I0∪
I1)-bounded. Then, R0 ·R1 ≤(I0∪I1, /0,IE ,I0S∪I1S ) F0 ·F1.

For simplicity, Theorem 1 is stated in such a way that

the trusted service that Ri may use is completely provided

by Ri−1, namely through Ii−1. It is straightforward (only

heavy in notation) to state and prove the theorem for the

more general case that the trusted service is only partially

provided by the other system.

V. FROM PERFECT TO COMPUTATIONAL

INDISTINGUISHABILITY

We now prove that if two systems that use an ideal func-

tionality are perfectly indistinguishable, then these systems

are computationally indistinguishable if the ideal function-

ality is replaced by its realization. As already explained

in the introduction, this is a central step in enabling pro-

gram analysis tools that cannot deal with cryptography and

probabilistic polynomially bounded adversaries to establish

computational indistinguishability properties. As before, we

fix a function intsize (see Section III-E) for the rest of this

section.

The proof is done via two theorems. The first says that

if two systems that use an ideal functionality are computa-

tionally indistinguishable, then they are also computationally

indistinguishable if the ideal functionality is replaced by its

realization. To prove this theorem, we need the following

lemma.

Lemma 3. Let IE and I be disjoint interfaces and let S1 and
S2 be environmentally I-bounded systems such that S1 ≈I

comp

S2 (in particular, S1 and S2 use the same interface) and
IE � S1 : I, and hence, IE � S2 : I. Let E be a (not necessarily
bounded) I-environment for S1 (and hence, S2) with I �E : IE
such that E · S1 is almost bounded. Then E · S2 is almost
bounded and E ·S1 ≡comp E ·S2.

Theorem 2. Let I, J, IE , IS, and IP be disjoint interfaces
with J � IP ∪ I. Let F, R, P1, and P2 be systems such that
(i) IE ∪ I � P1 : IP and IE ∪ I � P2 : IP, (ii) R ≤(I,IP,IE ,IS) F,
in particular, IE ∪ IP � R : I and IE ∪ IP ∪ IS � F : I, (iii) P1

contains main() iff P2 contains main(), (iv) not both P1 and
F (and hence, R) contain main(), (v) F ·Pi and R ·Pi, for i ∈
{1,2}, are environmentally J-bounded. Then, F ·P1 ≈J

comp

F ·P2 implies R ·P1 ≈J
comp R ·P2.

Proof: Assume that F ·P1 ≈J
comp F ·P2. In particular,

F ·P1 and F ·P2 use the same interface and, therefore R ·P1

and R ·P2 use the same interface as well.

Let E be a bounded J-environment for R ·P1. We need to

show that E ·R ·P1 ≡comp E ·R ·P2.

Because R ≤(I,IP,IE ,IS) F , there exists a simulator S such

that IE � S : IS, S ·F is environmentally I-bounded and

R ≈I
comp S ·F (1)

Now, because R ·Pi, i∈{1,2}, is environmentally J-bounded,
the system E ·R ·Pi is almost bounded. By (1) and Lemma 3

we can conclude that E ·S ·F ·Pi is almost bounded and

E ·R ·Pi ≡comp E ·S ·F ·Pi . (2)

As we have assumed that F ·P1 ≈J
comp F ·P2, by Lemma 3

we obtain

E ·S ·F ·P1 ≡comp E ·S ·F ·P2. (3)

Combining (2) and (3), we obtain E ·R ·P1 ≡comp E ·R ·P2.

For simplicity of presentation, the theorem is formulated

in such a way that Pi, i ∈ {1,2}, uses only I as a (trusted)

service and F /R uses IP. It is straightforward to also allow

for other external services.

We show that perfect indistinguishability implies compu-

tational indistinguishability.

Theorem 3. Let I be an interface and let S1 and S2 be
deterministic, environmentally I-bounded programs such that
Si : I, for i ∈ {1,2}, and S1 and S2 use the same interface.
Then, S1 ≈I

perf S2 implies S1 ≈I
comp S2.

By combining Theorem 2 and Theorem 3, we obtain the

desired result explained at the beginning of this section.

Corollary 1. Under the assumption of Theorem 2 and more-
over assuming that P1 ·F and P2 ·F are deterministic systems,
it follows that P1 ·F ≈J

perf P2 ·F implies P1 ·R ≈J
comp P2 ·R.

Recall that P1 · R ≈J
comp P2 · R is (implicitly) defined

w.r.t. the integer size function intsize(η). However, since

the statement P1 ·F ≈J
perf P2 ·F does not depend on any

integer size function, we obtain that computational indistin-

guishability holds independently of a specific integer size

function.

VI. PERFECT INDISTINGUISHABILITY AND

NON-INTERFERENCE

In this section we prove that perfect indistinguishability

and non-interference are equivalent. Hence, in combination

with Corollary 1 it suffices for tools to analyze systems that

use an ideal functionality w.r.t. non-interference in order to

get computational indistinguishability for systems when the

ideal functionality is replaced by its realization. As already

mentioned in the introduction, many tools can analyze non-

interference for Java programs.
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The (standard) non-interference notion for confidentiality

[17] requires the absence of information flow from high to

low variables within a program. In this paper, we define

non-interference for a (Jinja+) program P with some static

variables �x of primitive types that are labeled as high. Also,

some other static variables of primitive types are labeled

as low. We say that P[�x] is a program with high and low
variables. By P[�a] we denote the program P where the

high variables �x are initialized with values �a and the low

variables are initialized as specified in P. We assume that

the length of �x and �a are the same and �a contains values of

appropriate types; in such a case we say that �a is valid. Now,

non-interference for a (deterministic) program is defined as

follows.

Definition 17 (Non-interference for Jinja+ programs).
Let P[�x] be a program with high and low variables. Then,

P[�x] has the non-interference property if the following holds:

for all valid �a1 and �a2 and all integer sizes s ≥ 1, if P[�a1]
and P[�a2] terminate for integer size s, then at the end of

these runs, the values of the low variables are the same.

Similarly to the definition of perfect indistinguishability

(Definition 10), the above definition captures termination-
insensitive non-interference.

We note that the non-interference property is quite pow-

erful: P could have just one high variable of type boolean.

Depending on the value of this variable P could run one of

two systems S1 and S2, illustrating that the non-interference

property can be as powerful as perfect indistinguishability.

The above notion of non-interference deals with complete

programs (closed systems). We now generalize this defini-

tion to open systems:

Definition 18 (Non-interference in an open system). Let

I be an interface and let S[�x] be a (not necessarily closed)

deterministic system with a security parameter, high and low

variables, and such that S : I. Then, S[�x] is I-noninterferent
if for every deterministic I-environment E for S[�x] and every

security parameter η non-interference holds for the system

E · S[�x](η), where the variable result declared in E is

considered to be a low variable.

Now, equivalence of this notion and perfect indistin-

guishability follows easily by the definitions of I-non-
interference and perfect indistinguishability:

Theorem 4. Let I and S[�x] be given as in Definition 18 with
no variable of S labeled as low (only the variable result

declared in the environment is labeled as low). Then the
following statements are equivalent:
(a) For all valid �a1 and �a2, we have that S[�a1] ≈I

perf S[�a2].
(b) I-non-interference holds for S[�x].

As already explained in the introduction and at the be-

ginning of this section, in combination with Corollary 1,

this theorem reduces the problem of checking computational

indistinguishability for systems that use real cryptographic

schemes to checking non-interference for systems that use

ideal functionalities.

VII. A PROOF TECHNIQUE FOR NON-INTERFERENCE IN

OPEN SYSTEMS

There are many tools that can deal with classical non-

interference for closed systems, i.e., complete programs.

In this section, we develop proof techniques that enable

such tools, at least some of them, to also deal with open

systems. Technically, we will show that in order to check

non-interference for open systems according to Definition 18

it is sufficient to consider only a very restricted class of

environments, rather than all environments. The input these

environments give to the system they interact with is fixed

for every environment and does not depend on the output the

environment got from the system. In fact, the environments

in this class are all almost identical, they only differ in

the input sequence that they use. Now, the analysis a tool

performs often ignores or can ignore specific values encoded

in the program, such as the input sequence. So, if such an

analysis establishes non-interference for a system and a fixed

environment in the considered class, then this implies that

non-interference holds for all environments in this class. By

our proof technique, it then follows that non-interference

holds for all environments, as required by Definition 18.

In our case study, we demonstrate that using our proof

techniques, the tool Joana, which is designed to check

non-interference for closed systems, can now deal with (a

relevant class of) open systems as well.

To illustrate the main idea, we start with a simple case

where communication between the environment and the sys-

tem is restricted to primitive types only. We then generalize

the result to the case where the environment and the system

can communicate using also exceptions, arrays of bytes, and

simple objects.

A. Communication through Primitive Types Only

In this section, we assume that a system S communicates

with an environment E only through static functions with

primitive types. More precisely, we consider programs S
such that (1) method main is defined in S and (2) IE � S, for
some interface IE , where all methods are static, use primitive

types only (for simplicity of presentation we will consider

only the type int), and have empty throws clause. We will

consider indistinguishability w.r.t. the empty interface (i.e.

environments we consider do not directly call S).
The above assumptions will allow us to show, in the proof

of Theorem 5, that E and S do not share any references: their

states are in this sense disjoint.

We now define the class of environments mentioned

at the beginning of this section. We then show that to

establish I-non-interference, it is enough to consider only

those environments (see Theorem 5).
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1 class Node {
2 int value;
3 Node next;
4 Node(int v, Node n) { value = v; next = n; }
5 }
6 private static Node list = null;
7 private static boolean listInitialized = false;
8 private static Node initialValue()
9 { return new Node(u1, new Node(u2, ...)); }

10 static public int untrustedInput() {
11 if (!listInitialized)
12 { list = initialValue(); listInitialized = true; }
13 if (list==null) return 0;
14 int tmp = list.value;
15 list = list.next;
16 return tmp;
17 }
18 static public void untrustedOutput(int x) {
19 if (untrustedInput()!=0) {
20 result = (x==untrustedInput());
21 abort();
22 }
23 }

Figure 2. Implementation of untrustedInput and untrustedOutput in
Ẽ�u. We assume that class Node is not used anywhere else.

For a finite sequence �u = u1, . . . ,un of values of type int,

we denote by ẼIE
�u the following system.

The environment ẼIE
�u contains two static methods:

untrustedOutput and untrustedInput, as specified in Fig-

ure 2. For the sake of the discussion, let S be the system the

environment ẼIE
�u interacts with. (Note that the definition of

ẼIE
�u is independent of a specific S. It only depends on IE .)

As we will see below, the method untrustedOutput gets

all data passed by S to ẼIE
�u . The method untrustedInput

determines what the environment passes on to S.
More specifically. the method untrustedInput() returns

consecutive values of �u and, after the last element of �u has

been returned, it returns 0. Note that the consecutive values

returned by this method are hardwired in line 9 (determined

by �u) and do not depend on any input to ẼIE
�u .

The method untrustedOutput, depending on the values

given by untrustedInput(), either ignores its argument or

compares its value to the next integer it obtains, again, from

untrustedInput() and stores the result of this comparison

in the (low) variable result. The intuition is the following:

untrustedOutput gets, as we will see below, all the data

the environment gets from S. If the two instances of S,
S[�a1] and S[�a2], which the environment tries to distinguish,

behave differently, then there must be some point where the

environment gets different data from the two systems in the

corresponding runs, i.e., untrustedOutput will be invoked

with different values for x, say the values x takes at this

point are b1 and b2, respectively. By choosing an appropriate

�u, this can be detected by untrustedOutput: �u should be

defined in such a way that the method untrustedInput()

returns 1 at this point and that the value untrustedInput()

24 static public int foo(int x) {
25 untrustedOutput(FOO_ID);
26 untrustedOutput(x);
27 return untrustedInput()
28 }

Figure 3. ẼIE
�u : the implementation of a method of IE with the signature

static public int foo(int x), where FOO_ID is an integer constant
serving as the identifier of this method (we assign a different identifier
to every method).

returns next equals b1, say (b2 would also work). Then, in the

run of the environment with S[�a1] the variable result will

be assigned 1 and in the run with S[�a2] it will be assigned

0. Hence, the environment successfully distinguished S[�a1]
and S[�a2].

Finally, for every method declaration m in IE , the system

ẼIE
�u contains the implementation of m as illustrated by the

example in Figure 3. As we can see, the defined method

forwards all its input data to untrustedOutput and lets

untrustedInput determine the returned value.

This completes the definition of ẼIE
�u . The next theorem

states that, to prove I-non-interference, it is enough to

consider only environments ẼIE
�u for all �u. In this way we

need to study only (almost) closed systems, namely systems

that differ in only one expression (line 9). As discussed at the

beginning of this section, this restriction is often sufficient

for tools are designed to deal with closed systems only.

Theorem 5. Let IE be an interfaces with only static methods
of primitive argument and return types as introduced above.
Let S be a system with high and low variables such that
main is defined in S and IE � S. Then, I-non-interference,
for I = /0, holds for S if and only if for all sequences �u as
above non-interference holds for ẼIE

u ·S.

B. Communication through Arrays, Simple Objects, and
Exceptions

The result stated in Theorem 5 can be extended to cover

some cases where, E and S exchange information not only

through values of primitive types, but also through arrays,

simple object (i.e. objects containing only fields of primitive

types and arrays), and through throwing exceptions. Some

restrictions, however, have to be imposed on IE and the

program S. These restrictions, formally specified in [24],

guarantee that, although references are exchanged between

E and S, the communication resembles exchange of pure

data.

VIII. PUBLIC-KEY ENCRYPTION

In our case study, we will analyze a system that

uses public-key encryption. We therefore now provide an

ideal functionality for public-key encryption, denoted by

IdealPKE. Our example program will be analyzed based

on this functionality (see Section IX). We prove that this
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functionality can be realized by a system, which we call

RealPKE, that implements, in the obvious way, an IND-

CCA2-secure public-key encryption scheme.

The interface implemented by IdealPKE and RealPKE,
denoted by IPKE, consists of two classes:

1 public final class Decryptor {
2 public Decryptor(); // class constructor
3 public Encryptor getEncryptor();
4 public byte[] decrypt(byte[] message);
5 }
6 public final class Encryptor {
7 public byte[] getPublicKey();
8 public byte[] encrypt(byte[] message);
9 }

An object of class Decryptor is supposed to encapsulate

a public/private key pair. These keys are created when the

object is constructed. It allows a party who owns such an

object to decrypt messages (for which, intuitively, the private

key is needed) by the method decrypt. This party can also

obtain an encryptor which encapsulates the related public

key and encrypts messages via the method encrypt. The

encapsulated public key can be obtained by the method

getPublicKey. Typically, the party who creates (owns) a

decryptor gives away only an associated encryptor.

Our ideal functionality IdealPKE is in the spirit of ideal

public-key functionalities in the cryptographic literature (see,

e.g., [10], [25]). However, it is more restricted in that we do

not (yet) model corruption in that functionality, and hence,

in its realization. So far, corruption, if considered, needs

to be modeled in the higher-level system using IdealPKE.
In particular, whenever an encryptor object is used, it is

guaranteed that the public key encapsulated in this object

was honestly generated and no party has direct access to the

corresponding private key.

While this might be too restricted and inconvenient in

some scenarios (and it is interesting future work to extend

this functionality), we took this design choice because our

functionality facilitates the automated verification process

and is nevertheless useful in interesting scenarios. We em-

phasize that the theorem for the realization of IdealPKE
(Theorem 6) would hold for more expressive functionali-

ties, in particular, those that model corruption and exactly

resemble the ones that can be found in the cryptographic

literature.

Our ideal functionality IdealPKE : IPKE is defined on

top of the interface IEnc (which, in a complete system,

is implemented by the environment or the simulator), i.e.

IEnc � IdealPKE, where IEnc is as follows:

10 class KeyPair {)
11 public byte[] publicKey;
12 public byte[] privateKey;
13 }
14 class Encryption {
15 static public KeyPair generateKeyPair();
16 static public byte[]
17 encrypt(byte[] publKey, byte[] message);
18 static public byte[]

19 decrypt(byte[] privKey, byte[] message);
20 }

In a nutshell, IdealPKE works as follows: On initializa-

tion, via Decryptor(), a public/private key pair is created by

calling generateKeyPair() in IEnc. IdealPKE also maintains

a list of message/ciphertext pairs; this list is shared with all

associated encryptors (objects returned by getEncryptor).

When method encrypt in IPKE is called for a message m,

the ideal functionality calls encrypt in IEnc to encrypt a se-

quence of zeros of the same length, obtaining the ciphertext

m′, and stores (m,m′) in the list. The method decrypt in

IPKE called for m′ looks for a pair (m,m′) in the list and,

if it finds it, returns m; otherwise, it decrypts m′ (calling

decrypt in IEnc) obtaining m′′ and returns this message. The

idea behind this functionality is that the ciphertext returned

by encryption is not related in any way (except for the length

of the message) to the plaintext.

As already mentioned, RealPKE is defined in a straight-

forward way using any IND-CCA2-secure encryption

scheme. The following theorem says that RealPKE in fact

realizes IdealPKE.

Theorem 6. If RealPKE uses an IND-CCA2-secure encryp-
tion scheme, then RealPKE≤(IPKE , /0, /0,IEnc) IdealPKE.

IX. CASE STUDY

In our case study and as a proof of concept of our

framework, we consider a simple system that uses public-key

encryption: clients send secrets encrypted over an untrusted

network, controlled by an active adversary, to a server who

decrypts the messages. This can be seen as a rudimentary

way encryption can be used. Based on our framework, we

use the Joana tool (see below), to verify strong secrecy of

the messages sent over the network, i.e., non-interference

is shown using Joana for the system when it runs with

IdealPKE and by our framework we then obtain compu-

tational indistinguishability guarantees when IdealPKE is

replaced by RealPKE.
We emphasize that, while the code of client and server

are quite small, the actual code that needs to be analyzed

is larger because it includes the ideal functionality and the

code that results from applying the techniques developed in

Section VII-B (we note that the verified program is in the

family of systems considered in this section); altogether the

code in our case study comprises 376 LoC in a rich fragment

of Java. Moreover, the adversary model we consider in the

case study is strong in that the (active) adversary dictates the

number of clients, sends a pair of messages to every client

of which one is encrypted (in the style of a left-right oracle),

and controls the network.

The main goal of our case study is to demonstrate that

it is, in principle, possible to establish strong cryptographic

security guarantees for Java(-like) programs using existing

tools for checking standard non-interference properties.
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The verification of the program considered in our case

study took just a few seconds (see below), and hence, our

approach, in conjunction with Joana, should also work for

bigger programs and more complex settings.

A. The Analyzed Program

We now describe the analyzed program in more detail (see

[24] for the code).

Besides the code for the client and server, the program

also contains a setup class which contains the methods

main() and creates instances of protocol participants and

organizes the communication. This setup first creates a

public/private key pair (encapsulated in a decryptor object)

for the server. In a while-loop it then expects, in every

round, i) two input messages from the network (adversary),

ii) depending on a static boolean variable secret (which will

be declared to be high), one of the two messages is picked,

iii) a client is created and it is given the public key of the

server and the chosen message (the client will encrypt that

message and send it over the network to the server), iv) a

message from the network is expected, and v) given to the

server, who will then decrypt this message and assign the

plaintext to some variable.

We denote the class setup by Setup[b], where b ∈
{false,true} is the value with which secret is initialized

in Setup. By Sreal [b], for b ∈ {false,true}, we denote the

system consisting of the class Setup[b], the class Client, the

class Server, and the system RealPKE. This system is open:

it uses unspecified network (and untrusted input from the

environment) which is controlled by the adversary. Anal-

ogously, Sideal [b] contains IdealPKE instead of RealPKE.
Note that Sideal [b] is even more open in that the ideal

functionality asks the environment to encrypt and decrypt

some messages (see the definition of IdealPKE).
We note that for the analysis with Joana we consider a

variant of the ideal functionality where the ideal encryption

is done always with the zero byte, and hence, the ideal

functionality does not reveal the length of the encrypted

message. (This is reasonable if only messages of fixed length

are supposed to be encrypted.)

B. The Property to be Proven

The property we want to show is

Sreal [false] ≈ /0
comp Sreal [true], (4)

that is, the two variants of the system are indistinguishable

from the point of view of an adversary who implements the

networking, but does not call (directly) methods of Sreal [b];
he, however, through the setup class, determines the number

of clients that are created and the message pair for every

client.

By our framework, to prove (4) it is enough to show I-
non-interference of the system Sideal [b]. Since the system

Sideal [b] is in the class of systems considered in Sec-

tion VII-B, we can use the results from that section which

says that we only need to show (classical) non-interference

of the system T�u[b], for all �u, which extends Sideal [b] by ẼIE
u ,

where IE is the interface IdealPKE extended with methods

for network input and output.

To show that, for all �u, non-interference holds for T�u[b],
we used the Joana tool, as described in the next section.

The verification carried out establishes (4), under the

(reasonable) assumption that Joana is sound with respect

to the subset of Java covered in Jinja+ (as explained in the

next section, Joana has been proved to be sound with respect

to the semantics of Jinja).

C. Analysis with Joana

Joana [19] is a static analysis tool. It uses a technique

called slicing for program dependence graphs (PDG)—a

graph-based representation of the program—to detect illegal

information flows. It can handle full Java bytecode including

exceptions. A machine-checked proof [33] provides a formal

specification of PDGs and shows that slicing can be used

to obtain a sound approximation of the information flows

inside a program. Additional work [34], [35] verified that a

variant of the slicing algorithm used by Joana can help to

guarantee classical Goguen/Meseguer non-interference [16]

(which is the kind of non-interference we are interested in)

for the semantics of the Jinja language. The technique used

by Joana does not depend on such details of the semantics

as the maximum value of integers. Therefore, the guarantees

Joana gives apply to all variants of the semantics that differ

on this maximum value.

Joana is a whole-program analysis tool that analyzes an

explicit version of a program and thus cannot reason about

the security of a family of programs in general. We show,

however, that this is possible for the specific families of

(closed) programs Ẽ�u ·S (parametrized by �u), considered in

Section VII-B. In particular, Joana can verify (absence of)

information flow for the family T�u defined in the previous

section. We want to emphasize that these results are not

specific to the protocol analyzed in this case study; they

enable Joana to reason about any system that complies with

the restrictions of Section VII-B, and hence, these results

are of general interest.

In the verification process we have carried out, we

have marked the initialization of the variable secret as

high input and modifications to the result variable of

unstrustedOutput as low output. Then Joana automatically

has built the PDG model of the program, marked the

corresponding nodes in the graph with high and low, and

checked if no information flow is possible from high input

to low output through a data flow analysis on the graph. (In

case an illegal flow is detected Joana issues a violation of

the security property and returns the set of all possible paths

(slice) of illegal flow in the program.)
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Because of various precision enhancements in Joana—

especially detection of impossible NullPointerExceptions

and object-sensitivity—we were able to analyze the given

family of programs (without any false positives that might

have stemmed from the involved overapproximations) and

thus to guarantee the absence of information flow.

Joana took about 11 seconds on a standard PC to finish

the analysis of the program (with a size of 376 LoC). PDG

computation took 10 seconds and only 1 second was needed

to detect the absence of illegal flow inside the PDG.

X. RELATED WORK

As already mentioned in the introduction, our work con-

tributes to the area of language-based analysis of software

that uses cryptography, such as cryptographic protocols, an

area that recently has gained much attention. We discuss

some of the more closely related work in this area in what

follows.

The work most closely related to our work is the work

by Fournet et al. [14]. Fournet et al. also aim at establish-

ing computational indistinguishability properties for systems

written in a practical programming language; this work, in

fact, seems to be the first to study such strong properties

in the area of language-based cryptographic analysis, other

work, including the work mentioned below, considers trace

properties, such as authentication and weak secrecy. How-

ever, there are many differences between the work by Four-

net et al. and our work, in terms of the results obtained, the

approach taken, and the programming language considered.

Fournet et al. consider a fragment of the functional language

F#, while we consider a fragment of Java. Their approach,

with theorems of the form “if a program type-checks, then it

has certain cryptographic properties”, is strongly based on

type checking (with refinement types), while the point of

our framework is to enable different techniques and tools

that a priori cannot deal with cryptography to establish

cryptographic guarantees. While the results of Fournet et

al. concern specific cryptographic primitives, we establish

general results for ideal functionalities and their realizations.

While simulation-based techniques are used in the proofs of

the theorems in the work of Fournet et al., in our approach,

ideal functionalities are part of the program to be analyzed

by the tools; by our framework, the ideal functionalities can

then be replaced by their realizations and for the resulting

systems we obtain computational indistinguishability.

In most of the work on language-based analysis of crypto-

based software the analysis is carried out based on a sym-

bolic (Dolev-Yao), rather than a cryptographic model (see,

e.g., [18], [6], [11], [8]). Some works obtain cryptographic

guarantees by applying computational soundness results [5],

[2], where the usual restrictions of computational soundness

results apply [13], or by compiling the source code to

a specification language that then can be analyzed by a

specialized tool, namely CryptoVerif [9], for cryptographic

analysis [7]. In contrast, our approach, just as the one

by Fournet et al. discussed above, does not take a detour

through symbolic models in combination with computational

soundness results. Also, our approach does not rely on

specialized tools for cryptographic analysis.

The existing works on the security analysis of crypto-

based software has mostly focussed on fragments of F#

and C, including the above mentioned works. Some works

consider (fragments of) Java [21], [30], but in a symbolic

model and without formal guarantees.

Our framework might also be applicable in the context of

computational non-interference (see, e.g., [15], [26]) since

computational non-interference can be seen as a specific

form of computational indistinguishability. It is interesting

future work to investigate the connection between these

works and our work further.

Our work also contributes to the mostly unexplored field

of non-interference for interactive/open systems [29], [12].

Our technique presented in Section VII enables program

analysis tools for checking non-interference of closed sys-

tems to deal with open/interactive systems in a practical pro-

gramming language, namely Java. Existing works on non-

interference for interactive systems [29], [12] are orthogonal

to our work in that on the one hand they consider abstract

system models (labeled transition systems with input and

output), rather than a practical programming language, and

on the other hand they study systems w.r.t. a more general

lattice of security labels for input/output channels.

Finally, we mention a line of work that considers methods

for generating secure Java programs from abstract models of

cryptographic protocols (see, e.g. [4]).

XI. CONCLUSION

In this paper, we have presented a general framework

for establishing computational indistinguishability properties

for Java(-like) programs using program analysis tools that

can check (standard) non-interference properties of Java

programs but a priori cannot deal with cryptography and

cryptographic adversaries, i.e., probabilistic polynomial-time

adversaries. The approach we have proposed is new and

combines techniques from program analysis and simulation-

based security. Our framework is stated and proved for the

Java-like language Jinja+, which comprises a rich fragment

of Java.

As a proof of concept of our framework, we have used an

automatic tool, namely Joana, to check the non-interference

of a Java program. By our framework, this analysis implies

computational indistinguishability for that program (w.r.t. an

active adversary). The analysis performed by Joana was very

fast and suggests that more complex systems can be analyzed

within our framework using this tool. Our case study has

thus demonstrated, for the first time, that general program

analysis tools that a priori are not designed to perform
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cryptographic analysis of Java programs, can in fact be used

for that purpose.

Our work contributes to the field of language-based anal-

ysis of crypto-based software, which recently has gained

much attention, in that i) a new approach is proposed, ii)

our approach works for a (rich fragment of a) practical

programming language, namely Java, which has not gotten

much attention so far in this area, and iii) computational

indistinguishability guarantees are obtained, rather than only

guarantees in more abstract symbolic (Dolev-Yao) models

and rather than trace properties, such as authentication

and weak secrecy, as in most other works, and iv) these

guarantees are obtained directly without taking a detour

through symbolic models in combination with computational

soundness results, as in most other works.

There are many directions for future work. We briefly

mention a few. First, we are confident that, besides Joana,

also other program analysis tools can be used within our

framework to establish cryptographic security properties of

Java programs, with possible candidates being the interactive

theorem prover KeY [1], a tool based on Maude [3], and Jif

[27], [28].
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