
ENCOVER: Symbolic Exploration for Information Flow Security

Musard Balliu, Mads Dam, Gurvan Le Guernic

School of Computer Science and Communication
KTH Royal Institute of Technology

Stockholm, Sweden

Abstract—We address the problem of program verification
for information flow policies by means of symbolic execution
and model checking. Noninterference-like security policies are
formalized using epistemic logic. We show how the policies
can be accurately verified using a combination of concolic
testing and SMT solving. As we demonstrate, many scenarios
considered tricky in the literature can be solved precisely
using the proposed approach. This is confirmed by experiments
performed with ENCOVER, a tool based on Java PathFinder
and Z3, which we have developed for epistemic noninterference
concolic verification.

Keywords-information flow security, noninterference, model
checking, epistemic logic, SMT solver, declassification

I. INTRODUCTION

Information flow security concerns the problem of deter-

mining and controlling the nature of information flowing to

and from different components of a system. For confidential-

ity, sensitive information must be prevented from flowing to

public destinations, and dually, for integrity, untrusted infor-

mation must be prevented from affecting, or flowing to, data

that needs to be protected. In the possibilistic setting studied

here the key property used to model (absence of) information

flow is noninterference [1]. Noninterference ensures that the

view of an unlicensed observer of the program executions is

unaffected by the secret inputs. In a language-based setting,

this implies that any two executions having the same public

inputs, and possibly different private inputs, produce the

same public outputs. Vanilla noninterference turns out to be

over-restrictive for many applications, therefore, a controlled

release of private information is usually necessary [2]. This

operation is known as declassification or downgrading and

can be modeled by means of a predicate φ over initial

private inputs. The idea originates from selective dependency

of Cohen [3] and requires that all executions started with

initial inputs that satisfy φ, should produce the same public

observations.

Epistemic logic, the logic of knowledge, provides a clean

and intuitive tool for modeling different information flow

policies, including noninterference and many variants of

declassification, as showed in a number of recent works

[4], [5], [6], [7]. The knowledge of an attacker that is in

possession of the program text and has partial view of

program executions, e.g. by receiving some outputs, can

be defined as a partition of the set of secret inputs that

determines the observed outputs. This partition corresponds

to the properties of secret inputs disclosed by the program.

The desired security policy, e.g. some noninterference or

declassification property, gives rise to another partition of

secret inputs, the property of secret inputs allowed to flow

to the observer. Comparing these two partitions determines

whether the program meets the security policy. In epistemic

logic, the observer’s knowledge is expressed in terms of

knowledge operator Kφ, meaning that the observer knows

property φ i.e. φ is true in all states that are possible given

the observer’s current state [4], [8]. Intuitively, Kφ holds

for all formulas φ that induce a partition which is less

discriminating (included into) than the one induced by the

observed outputs.

Many verification techniques have been proposed for

checking information flow properties, including static and

dynamic analyses [2]. Security type systems [9], [10] is the

dominant technique, but other techniques have been explored

as well, including dependency analysis [11], program logics

[7], abstract interpretations[12], axiomatic approaches [13],

program slicing [14] and so on. Most verification approaches

for noninterference-like policies, type systems in particular,

enforce noninterference by separating the secret and public

computations, and as a consequence any interaction between

the secret and public computations, even a benign or cor-

rective one, deems the program as insecure. This increases

the number of false positives and limits applicability. Other

techniques are based on semantical reasoning and are often

computationally expensive or even undecidable. The verifi-

cation approach proposed in this paper is exclusively tailored

to end-to-end verification of noninterference and declassifi-

cation by means of off-the-shelf epistemic model checkers

and SMT solvers. Thereby, the approach is both sound

and complete with respect to verification in the underlying

(bounded) program model. Other works on model checking-

based verification of security properties are considered in a

later section [15], [16], [5], [17].

In this paper, concolic testing, a mix of concrete and

symbolic execution, is used to extract a bounded model

of program runtime behavior [18], [19], [20], [21]. This

model is subsequently verified against the target security

properties, expressed in epistemic logic, by means of an

epistemic model checker. Due to the size of the input

data domain epistemic model checking can, however, be

2012 IEEE 25th Computer Security Foundations Symposium

v/12 00 © 2012 IEEE

DOI

28

2012 IEEE 25th Computer Security Foundations Symposium

© 2012, Musard Balliu. Under license to IEEE.
DOI 10.1109/CSF.2012.24

28

2012 IEEE 25th Computer Security Foundations Symposium

30

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

extremely inefficient or even infeasible. To address this, an

alternative approach is proposed whereby the model check-

ing problem is transformed to a first order logic formula.

Due to the shape of epistemic formulas for noninterference

and declassification, the transformation produces a formula

which only contains existential quantifiers, thereby an SMT

solver can be used to perform the checking efficiently.

We have implemented the verification approach described

above in a tool prototype, ENCOVER. The prototype is

an extension of Java PathFinder, a software model checker

developed at NASA [22]. ENCOVER takes as input a

program written in Java and a security policy and generates

a symbolic output tree, which encodes conditions on pro-

gram inputs that produce output observations. The symbolic

output tree is used in two ways. First, it is combined with

the security policy to generate an SMT formula which is

subsequently verified with Z3, a state-of-art SMT solver [23]

and, secondly, as an alternative, it is used to generate an

input file for the epistemic model checker MCMAS [24].

The performance of ENCOVER is evaluated on a main case

study involving multiple parties accessing a joint store of tax

records, as well as on several smaller, but delicate, examples.

In summary, the main contributions of the paper are

• A framework for concolic verification of information

flow properties based on epistemic logic

• A symbolic model checking algorithm for

noninterference-like policies

• Formal correctness proofs of the model transformations

involved

• A tool prototype, ENCOVER, implementing the verifi-

cation techniques

• Evaluation of the ENCOVER tool on a non-trivial case

study

The paper starts by presenting the background context

(Sect. II) — including the computational model, the epis-

temic logic and the security properties of interest — needed

to expose the concolic testing based algorithm used to extract

the program model which is presented with the associ-

ated proofs in Sect. III. Information flow related epistemic

formulas can be verified on this model using either an

epistemic model checker (Sect. IV-A) or an SMT solver

(Sect. IV-B). This approach has been implemented in a

prototype, ENCOVER, and applied to a case study (Sect. V)

whose evaluation results are presented in Sect. VI. Related

work is addressed before concluding in Sect. VIII.

II. PRELIMINARIES

In this section we introduce the computational model

based on labelled state transition systems, and an epistemic

logic which is used to specify security properties over the

computational model. A more detailed discussion of the

information flow properties that can be characterized by this

logic can be found in [4].

A. Computational Model

A labelled transition system STS = (S,Act , T ,S0)
consists of a set of states σ ∈ S , resp. actions α ∈ Act ,
a labelled transition relation T ⊆ S ×Act ×S , and a set of

initial states S0 ⊆ S . The set of actions contains a neutral

element ε representing inaction. Other elements of Act are

assumed to be observable, and represent interactions with the

environment, for instance as inputs or outputs. The transition

relation σ
α−→ σ′ states that by taking one execution step in

state σ ∈ S the execution generates the action α ∈ Act and

the new state is σ′ ∈ S . We write σ −→ σ′ for σ
ε−→ σ′.

An execution is a finite sequence of execution states

π = σ0
α0−→ σ1

α1−→ · · · αn−1−→ σn (1)

where σ0 ∈ S0 and σi
αi−→ σi+1 ∈ T for all 0 ≤ i < n .

The length, len(π), of π is n . An execution point is a pair

(π, i) where 0 ≤ i ≤ len(π). The i ’th execution state is

σ(π, i) = σi . We write trunc(π, i) for the prefix of π up to

and including σi .
The observable part of the system is modeled by a func-

tion trace mapping executions to sequences of observations.

Definition 2.1 (Trace): A trace τ is sequence of observ-

able actions. For π as in (1), the trace of π up to point

i : 0 ≤ i ≤ n is the sequence trace(π, i) of actions αj

where 0 ≤ j < i and αj �= ε.
We write trace(π) for trace(π, len(π)).

In a more general setting, trace(π, i) can span from the

truncation function trunc(π, i) for the strongest observer

able to see all the internal computation, to the function

returning the last action generated for a weak memoryless

observer. In the remainder of this paper, we use the function

trace given in Def. 2.1. This definition corresponds to the

perfect recall observer, i.e. only able to observe actions and

having full memory of past observations.

Finally, a model MSTS (or simply M) is a set of exe-

cutions induced by a state transition system STS . Normally

we take as a model the set of all executions originating from

some set of initial states S0.

B. Interpreted Systems

The computational model can be associated with an

interpreted system [8]. In our two agent case, an interpreted

system consists of an environment agent E and an agent

under observation A, which interact over the course of a

computation. Each agent i can be in local state Li and

perform action ACTi . A protocol Pi ⊆ Li × ACTi selects

actions depending on the current local state and an evolution

function ti ⊆ Li ×ACT ×Li describes how agent i moves

to a new state depending on a joint action ACT = ×iACTi

performed by system agents. The product of evolution and

protocol functions determine how the system changes its

global state. In particular, a global state is the product of

agent’s local states, g = (LE ,LA). Agent A has a local

292931

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

state LA = trace(π, i) that records the sequence of actions

that have occurred when the environment E was in state

LE = trunc(π, i). A global state g = (LA,LE) describes

the system at a given point in time. In our case, as we

will see in Sect. IV, agent A performs no actions, while

agent E emits observable actions. An execution π induces

a sequence of global states, called runs r , such that for all

execution points π, i , r(π, i) = (trace(π, i), trunc(π, i)).
The initial state set I0 is a subset of global states G , where

g0 ∈ I0 and g0 = (ε, trunc(π, 0)) for some π ∈ M.

Finally an evaluation function V : G → ℘(AP) defines, for

every global state g ∈ G , the subset of atomic propositions

V (g) ∈ ℘(AP) holding in g .

Definition 2.2 (Interpreted System): An interpreted sys-

tem I over two agents Ag = {E ,A}, a set of atomic

propositions AP and a non empty initial state I0 is a tuple

I = 〈{Li}i∈Ag , {ACTi}i∈Ag , {Pi}i∈Ag , {ti}i∈Ag , I0,V 〉
To define knowledge, we associate an interpreted system

I with a Kripke structure MI = (G ,V ,KA) where G
and V are defined as before and KA is a binary relation

over G . In particular, KA defines the indistinguishability
relation for agent A, which is an equivalence relation among

global states from the point of view A. Two global states

g1, g2 ∈ KA are indistinguishable iff they define the same

trace τ . Next we introduce a logic where a formula φ is

known to agent A at global state g if that φ is true for all

global states in the KA relation with g .

C. Epistemic Propositional Logic

We now present a very simple logic that will be used to

reason about properties in the model described previously.

Let Val be a domain of values c, Ide a finite set of (program)

identifiers x , and u, v range over first order variables.

Arithmetic and boolean expressions use values, identifiers

and variables along with some set of arithmetic and boolean

operators, left unspecified for now. The language LK of

epistemic first-order formulas φ, ψ is:

φ, ψ ::= b | ∀u.φ | φ→ ψ | ¬φ | K φ

The logic contains primitive predicates b over identifiers x
and first order variables u . Program identifiers are inter-

preted in the initial state and first order variables are rigid i.e.

independent of the state. The formula ∀u.φ universally quan-

tifies over rigid variables. The operator K is the epistemic

knowledge operator. A formula K φ holds in an execution

point iff φ holds in any execution point epistemically equiv-

alent to the current one, i.e. φ is true in all execution points

having the same trace as current execution point. Various

connectives are definable in LK including the epistemic

possibility operator Lφ = ¬(K (¬φ)) meaning that φ holds

in at least one epistemically equivalent execution point.

The semantics is given in terms of satisfaction relation

M, π, i |= φ at execution points (π, i) in M. If the

model M is clear from the context we write π, i |= φ
for M, π, i |= φ. An execution π satisfies a formula φ,

π |= φ, if for all 0 ≤ i ≤ len(π), π, i |= φ. A model M
satisfies formula φ, M |= φ, iff for all π ∈ M, π |= φ.

In the remainder of this paper we take as model the set

of executions generated by some program P as detailed

in Sect. III. A state is a finite map σ : x
→ c, and

σ(e) denotes the value of formula or expression e in state

σ. The observable actions are output values belonging to

Act = {out(c) | c ∈ Val}. Below we report a few cases

of satisfaction relation. Other cases work as expected [4].

• π, i |= b iff σ(π, 0)(b)
• π, i |= ∀u.φ iff for all c ∈ Val π, i |= φ[u
→ c]
• π, i |= K φ iff for all execution points π′, i ′

such that trace(π, i) = trace(π′, i ′), π′, i ′ |= φ
• π, i |= Lφ iff there exists an execution point π′, i ′

such that trace(π, i) = trace(π′, i ′) and π′, i ′ |= φ

It is worth noting that the satisfaction relation over primitive

predicates only considers the initial value of identifiers. The

reason is that we are interested in verifying properties that

depend only on the initial assignment to program identifiers.

Example 2.3: Let M be the model of program P with

input identifier h . The initial value of h should remain secret

to the observer who knows the program text and can see

the program outputs. Let b(h) be a primitive predicate over

identifier h .

1) M |= ¬K (b(h)): Model M satisfies the formula iff

for all execution points (π, i), the observer can not

tell whether b(h) holds. Namely, for all points that

are epistemically possible, there exists at least one,

say π′, i ′, such that trace(π, i) = trace(π′, i ′) and

π′, i ′ �|= b(h). Hence the system keeps property b(h)
secret, which is known as opacity [25].

2) M |= L(b(h))∧L(¬b(h)): ModelM satisfies the for-

mula iff for all execution points (π, i), both b(h) and

its negation are possible i.e. there exist π′, i ′, π′′, i ′′

where trace(π, i) = trace(π′, i ′) = trace(π′′, i ′′)
and π′, i ′ |= b(h) and π′′, i ′′ |= ¬b(h). Hence the

observer is unable to deduce any information about the

property (or its negation) by looking at the sequences

of outputs. This security property is known as secrecy
[5].

D. Noninterference and Declassification

The absence of illegal information flows in a system is

usually expressed as a noninterference security condition [1].

In a possibilistic setting with a two-level security lattice only,

noninterference requires that high/secret input values do not

influence low/public output values. In this paper high inputs

correspond to the initial values of secret identifiers and low

outputs correspond to the traces defined in Section II-A. We

write σ1 ≈�x σ2 if two states σ1 and σ2 are equivalent with

regard to a set of identifiers
x , i.e. ∀x ∈
x . σ1(x) = σ2(x).

303032

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

Consider now a set of low identifiers
l , whose initial value

is known a priori, and a set of high identifiers
h . A program

P satisfies noninterference (NI) iff for any two executions

starting with equal initial values for
l the following condition

holds.

∀π1, π2 ∈MP . σ(π1, 0) ≈�l σ(π2, 0)

⇒ trace(π1) = trace(π2)

NI can be characterized using the epistemic logic LK .

A program P satisfies absence of knowledge (AK) if its

associated model MP satisfies the following formula.

MP |= ∀
v .
l =
v → ∀
u. L(
l =
v ∧
h =
u)

That is, any initial high input must be possible among the

executions having the same trace and the same initial low

inputs.
Noninterference turns out to be an over-restrictive pol-

icy for many applications. A controlled release of secret

information is necessary in many real software applications.

This feature is known as declassification or downgrading

and remains a challenge in information flow security [2].

One way of modeling declassification is by means of a

predicate φ, over initial values, which expresses the property

to declassify. Then the security condition states that all

secret inputs having the same property φ should not be

distinguished by the external observer. Let σ1 ≈φ σ2 denote

equivalent states according to the declassification policy φ
i.e. σ1(φ) = σ2(φ). A program P satisfies noninterference
modulo declassification (NID) φ if:

∀π1, π2 ∈MP .

(σ(π1, 0) ≈�l σ(π2, 0) ∧ σ(π1, 0) ≈φ σ(π2, 0))

⇒ trace(π1) = trace(π2)

The definition of NID specifies that any initial state having

the same low input values and agreeing on φ should pro-

duce the same output trace. Let φ be the declassification

policy. A program P satisfies absence of knowledge modulo
declassification (AKD) φ if:

MP |= ∀
v1,
u1.(
l =
v1 ∧
h =
u1)→
∀
u2.(φ(
v1,
u1)↔ φ(
v1,
u2))→ L(
l =
v1 ∧
h =
u2)

The semantical definition NID is proved to be equivalent

to its epistemic characterization AKD in [4]. The following

example will walk us through presenting the verification

approach in the subsequent sections of the paper.
Example 2.4: Consider the program P with high identi-

fier secret ranging over non-negative integers up to a fixed

constant max .

P ::=

⎡
⎢⎢⎢⎢⎣

i := 0;
if (secret < 0) then secret = 0;
if(secret > max) then secret = max ;
while (i < secret) do out(i ++);
while (secret < max) do out(secret ++);

Clearly P is noninterfering since it outputs (statement out)

the same sequence of numbers for any choice of secret , yet

the example is tricky to verify for most approaches in the

literature, and it illustrates well the complications regarding

mixed data and control flow our approach needs to handle.

Too see that P is noninterfering, consider the model M of

P and the corresponding AK formula φ = ∀u.L(secret =
u). We show that M |= φ. Let π ∈ M be an execution

originating from state σ(π, 0) = (max0, i0, secret0) and 0 ≤
j ≤ len(π). For all values c such that secret = c, there

exist π′, j ′ originating from state σ(π′, 0) = (max0, i0, c)
such that trace(π, j) = trace(π′, j ′). In fact, all executions

output the sequence of non-negative integers up to max0.

III. PROGRAM ANALYSIS BY CONCOLIC TESTING

In this section we present the formal underpinnings of

the approach we use for extracting the program model and

checking formulas in LK . The main idea is to start from

the flow graph of the source program, extract, by means

of concrete and symbolic execution (concolic testing), an

abstract model, and then use an epistemic model checker or

an SMT solver to verify formulas over this model.

We impose some constraints to make the construction

tractable. First we assume that all inputs from the external

environment are read at the start of program execution.

This restriction rules out reactive programs that receive

external inputs during execution. However, provided the

original program can be transformed, one can anticipate

reading inputs in the beginning of execution in many cases.

Secondly, we assume a bounded model of runtime behavior,

hence programs always terminate, loops can be unfolded,

method calls or exception handlers can be inlined in the

main method body and so on. This allows to present source

programs in the form of execution trees defined as follows.

Definition 3.1 (Basic Block, BB): A basic block is a por-

tion of sequential code (without jumps) of the following

type:

• Simple Basic Block (SBB): A sequence of assignments

b1; b2 · · · bn
• Output Basic Block (OBB): A single output expression

out(exp), for some expression exp

Definition 3.2 (Execution Tree, ET): An execution tree is

a directed labelled tree T = (B ,E ,C ,L, Start) such that

• B is a set of nodes n labelled by basic blocks B(n)
• E ⊆ B × B is a set of control flow edges

• C is a set of branch conditions, boolean expressions

over program identifiers

• L : E
→ C is a mapping from edges to branch

conditions

• Start ∈ B is the root node

For convenience we extend T with a special node End, in

order to make terminal states explicit in the construction.

To this end we require that
∨{L(n,n ′) | n ′ ∈ B} is a

313133

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

tautology for each node n ∈ B − {End}, something which

is easily achieved. This allows attention to be restricted to

executions that start at the Start node, follows the ET control

structure in the obvious way, and end at the End node. For

deterministic programs each initial state σ0 determines a

unique such execution π with σ(π, 0) = σ0. In general

a fixed initial state can determine a set of executions due

to different thread schedulers as well as possible internal

nondeterminism.

Definition 3.3 (ET path): Given an execution tree T , a

path Π is a sequence of consecutive basic blocks from the

node Start to the node End, connected by labelled edges in

E . The set Paths(T) is the set of all paths in T . The length,

len(Π), is the number of basic blocks in Π.

Definition 3.4 (ET model): A model of an ET T is the

set of all executions of T beginning in initial state σ0 and

following a path Π ∈ Paths(T).
Example 3.5: The execution tree corresponding to the

program in Example 2.4 is shown in Fig. 1. Here, for com-

pactness, we depict the ET as a graph, the tree representation

is easily derived by unfolding the loops.

i++

secret++End

out(i)

out(secret)

max = 2
i = 0

secret = 0 secret = max

skip

Start

skip

skip

secret<0 secret>max

i≥secret

secret<max

0≤secret≤max

i<secret

secret≥max

Figure 1. Execution Tree (represented as a graph due to lack of space)

Execution trees are analyzed using concolic testing to pro-

duce an abstract version called a symbolic output tree.

Concolic testing is a software verification technique that

combines executions on concrete and symbolic values [18],

[20], [21]. A concrete execution is a normal run of the

program from an initial input state. In symbolic execution

unknown input is represented as symbolic values and the

output is computed as a function of these values [19]. Con-

sequently, the program state is also symbolic and it includes

expressions over symbolic values of program identifiers.

States in the symbolic output trees are associated with

a path condition which represents a boolean predicate on

initial inputs and defines the constraints these inputs must

satisfy so that a concrete execution follows that path. Sym-

bolic execution can be viewed as a predicate transformer se-

mantics that represents programs as relations between logical

formulas and it is tightly related to strongest postcondition

computations [26].

A concolic testing algorithm does the following in a loop

until all ET paths are explored: it starts with concrete and

symbolic values for input variables and executes the program

concolically by collecting at each step path conditions.

These conditions are later used to generate, by means of a

constraint solver, a new input that explores a different path.

When an output statement is reached, the corresponding

output expression is also evaluated in the symbolic state. The

symbolic output tree represents conditions on initial inputs

that direct the program to an output statement. This is done

by saving the path conditions and the output expressions for

all reachable basic blocks.

Definition 3.6 (SOT): A Symbolic Output Tree is an ET

which only contains output basic blocks.

The following algorithm describes how the symbolic

execution part of the analysis extracts the SOT from the ET.

The concrete executions are not reported in the algorithm

as they do not directly participate in the construction of the

SOT.

Algorithm 1 uses the procedure DFSVisit to visit the ET and

build the SOT on the fly. The input is an initial ET T and

the output is the corresponding SOT S. The algorithm creates

an SOT S containing a Start and an End node (line 1) and

then calls the procedure DFSVisit with input parameters the

initial nodes of T and S, the symbolic state Sym generated

by function InitSym (a map from input identifiers in T to

symbolic values), and the path condition Pc (initially set

to true), respectively (line 2). Moreover CurrT.Children are

the immediate successors of node CurrT, SAT(Pc) checks

whether formula Pc is satisfiable, Eval(EF, Sym) evaluates

an expression or a formula EF in the symbolic state Sym,

Add(A, a) adds a node a to a set A, and finally SP(B.Stat,
Sym) computes the strongest postcondition for the sequence

of statements in B.Stat and Sym.

The algorithm visits all basic blocks in the tree. If the

basic block is a simple basic block, the algorithm updates

the symbolic state by computing the strongest postconditions
(line 10). If the basic block is an output basic block, it

evaluates the output expression in the current symbolic state

and saves the result in a new SOT node (line 5), connects

the nodes with an edge labelled by current Pc and updates

the current node (line 6-8). Otherwise, an End node has

been reached, hence, the current node is connected (line

323234

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 ET to SOT

INPUT: ET T
OUTPUT: SOT S
1. S := new SOT()

2. Call DFSVisit(T.Start, S.Start, InitSym, true)

DFSVisit(ET node CurrT, SOT node CurrS,

Symbolic state Sym, Path condition Pc)

1. For B in CurrT.Children
2. Pc := Eval(L(CurrT, B), Sym) ∧ Pc
3. If SAT(Pc)

4. If B is OBB

5. SotN := new OBB(Eval(B.Out, Sym))

6. Add(CurrS.Children, SotN)

7. L(CurrS, SotN) := Pc
8. CurrS := SotN
9. Else If B is SBB

10. Sym := SP(B.Stat, Sym)
11. Else
12. Add(CurrS.Children, S.End)

13. DFSVisit(B, CurrS, Sym, Pc)

12). An SMT solver is used to determine whether the

conjunction of the path condition with the edge condition

evaluated in the symbolic state is satisfiable (line 2-3). If

this is the case, then there exist inputs that can explore

that path, thus the algorithm continues with the analysis

of the basic block (line 4-13). Otherwise, if the formula is

unsatisfiable, the path will never be taken, so the algorithm

backtracks and explores another edge condition (line 1). The

analysis continues until all reachable basic blocks have been

explored and the corresponding symbolic output tree has

been constructed. The symbolic states are saved at each step

of the analysis, hence it is possible to restore the right one

during the backtracking phase of the algorithm.

Example 3.7: Figure 2 shows the symbolic output tree

generated by Alg. 1 on execution tree in Fig. 1. Let Sym =
[secret
→ α] and Pc := true be the initial symbolic state

and path condition, respectively. Suppose Alg. 1 chooses to

analyse first the path depicted in bold arrows in Fig. 1. The

first SBB is reached and the local variables max and i are

added to Sym1 = [secret
→ α, i
→ 0,max
→ 2], while Pc
remains unchanged as the edge condition, i.e. true , evaluated

in Sym1 is the same. The next two basic blocks only update

the path condition to Pc1 := (0 ≤ α ≤ max ∧ i ≥ α)
since skip has no effect on the symbolic state. Afterwards

the path condition becomes Pc2 := (0 ≤ α ≤ max ∧ i ≥
α∧Eval((secret < max),Sym1)) which evaluates to (α =
0). The corresponding OBB statement, out(secret), is then

evaluated in Sym1 and a new OBB is added to SOT with

output expression Eval(secret ,Sym1) = α. The next SBB

produces Sym2 := Sym1[secret
→ α+ 1], as SP(secret +

+,Sym1) = Sym1[secret
→ Sym1(secret) + 1]. The path

condition remains unchanged as the edge condition was the

constant true . The DFS analysis enters the loop one more

iteration, creates the OBB node with Eval(secret ,Sym2) =
α + 1 and yields Sym3 := Sym2[secret
→ α + 2] and

Pc2 := (α = 0). At this point the condition (α = 0 ∧
α + 2 ≥ max) becomes true and the algorithm starts the

backtracking phase. The bold path in Fig. 2 corresponds the

path created by the DFS analysis explained here.

End

Start

out(0)

out(1)

out(0)

out(1)

out(0)

out(1)out(secret)

out(secret)

out(secret+1)

secret<0

secret>2

secret=1 secret=2

0<secret≤2 secret=0

secret>0secret=0

secret<0

Figure 2. Symbolic Output Tree

A. Formal Correctness

We now move to proving correctness of the approach

and showing that the abstraction generated by the SOT is

complete with respect to the formulas in LK . As we show

in Lemma 3.10 this boils down to proving the equivalence

between pre-traces generated by the ET and executions
generated by the SOT.

Definition 3.8 (ET execution): Let C be a boolean ex-

pression over identifiers and T an ET. Then Exec(C ,T)
is the set of all executions π in T where σ(π, 0) |= C . We

abbreviate Exec(true,T) as Exec(T).
Definition 3.9 (ET pre-trace): Let π be an execution in

an ET T where π = σ0
α0−→ σ1

α1−→ σ2
α2−→ · · · αn−→ σn .

Then a pre-trace is the execution

ptrace(π) = σ0
αi0−→ σ0

αi1−→ σ0
αi2−→ · · · αik−→ σ0

where αij �= ε and trace(π) = trace(ptrace(π)). Moreover,

ptrace(C ,T) is the set of pre-traces of Exec(C ,T). Simi-

larly ptrace(T) is the set of pre-traces of Exec(T).
A trace consists of the sequence of outputs in the pre-trace

and many pre-traces can correspond to the same trace. A

pre-trace can be viewed as an execution, hence satisfiability

and validity of a formula over ptrace(E) is defined as for the

executions. Since the formulas in logic LK concern initial

input values only, one can prove the following lemma.

Lemma 3.10: Let π be an execution in a model M and

ptrace(π) the pre-trace in the corresponding pre-trace model

333335

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

ptrace(M). Then, for all formula φ in LK

M, π |= φ⇔ ptrace(M), ptrace(π) |= φ

Proof: Induction on structure of formula φ. Suppose

φ = Kφ′: We get π |= φ iff for all π′ such that trace(π) =
trace(π′), π′ |= φ′. But, by induction hypothesis, we know

ptrace(π′) |= φ′, hence we’re done. Suppose φ = b: Then

π |= b iff σ(π, 0) |= b. But also ptrace(π) |= b iff σ(π, 0) |=
b. Other cases are equally trivial and the other direction

holds as the logic is closed under negation.

An SOT is an ET, therefore the executions are defined in

the same manner. One can easily show that all executions

generated by SOT are pre-traces. The next step is to prove

that an ET and the corresponding SOT define the same set

of pre-traces. Then, one can prove properties expressed in

LK in the SOT model, which by Lemma 3.10 will hold in

the original ET model.

Lemma 3.11: Let σ0 be a concrete program state and

Sym a symbolic state. Then, for all SBBs B∗ there exist

σ, σ′ and Sym ′ such that

Eval(Sym, σ0) = σ ∧ (B∗, σ)→ σ′∧
SP(B∗,Sym) = Sym ′ ⇒ Eval(Sym ′, σ0) = σ′

Lemma 3.12: Let C ,Pc be two boolean expressions on

program identifiers, σ0, σ two concrete states and Sym a

symbolic state. Then,

Eval(Sym, σ0) = σ ∧ σ0 |= Pc ∧ σ |= C

⇒ σ0 |= Pc ∧ Eval(C ,Sym)

Lemma 3.13: Let π be an ET execution and B∗ the SBB

between states σi and σj as in the execution.

π = σ0
α0−→ · · ·σi ε−→ · · · ε−→ σj · · ·

αn−1−→ σn

Then ptrace(π) = ptrace(π′) where π′ = σ0
α0−→

· · ·σi ε−→ σj · · ·
αn−1−→ σn .

Lemmas 3.11 and 3.12 state that the path condition and the

symbolic state computed by Alg. 1 represent the set of initial

states that lead to the program point they are associated with.

If σ is a state obtained by evaluating a symbolic state Sym
in a state σ0 that satisfies the path condition Pc, then there

exists a concrete program execution starting from σ0 and

reaching state σ. On the other hand Lemma 3.13 shows that

the program instructions in an SBB can be considered as

executed atomically since they will produce the same pre-

trace anyway.

Theorem 3.14 (ET-SOT pre-trace equivalence): Let T be

an ET and S the corresponding SOT generated by Alg. 1.

Then,

ptrace(T) = Exec(S)

Proof Sketch: We prove inclusion in both directions

using previous Lemmas.

(⇒) We show that ptrace(T) ⊆ Exec(S) by induction on

the length i of an ET execution using Algorithm 1. This can

be reduced to induction on length i ′ of executions π′ derived

from π ∈ Exec(T) as in Lemma 3.13. Intuitively executions

π′ have the same length as the path in the ET which they

correspond to. Let the resulting model be Exec(T ′) and

Cl(Exec(T ′)) its prefix closure. Then we show that for

all π′ ∈ Cl(Exec(T ′)), there exists an (prefix) execution

π∗ ∈ Cl(Exec(S)) and ptrace(π′) = π∗. This is done by

proving that there exist nodes NT in the ET, NS in SOT,

Sym and Pc such that (a) π′ is an execution from Start to

NT (b) π∗ is an execution from Start to NS (c) Algorithm 1

calls DFSVisit(NT , NS , Sym , Pc) and (d) ptrace(π) = π∗

and σ(π, len(π)) = Eval(Sym, σ(π, 0)) and σ(π, 0)(Pc).
Base case: (i = 0) Let π′ ∈ Cl(Exec(T)) and len(π′) = 0,

then π′ = σ0 by definition. Algorithm 1 starts with a sym-

bolic state (InitSym in line 2) when it first creates the SOT

node. Hence, any π∗ ∈ Cl(Exec(S)) with σ(π∗, 0) = σ0
will do. Moreover, DFSVisit(Start, Start, InitSym, true) is

initially called with NT = Start, NS = Start and π =
π∗ = σ0 is such an execution. In particular, ptrace(π) =
π∗ = σ0, σ(π, len(π)) = Eval(Sym, σ(π, 0)) = σ0 and

σ(π, 0)(Pc) = σ(π, 0)(true) which trivially holds.

Induction: We prove that for all π ∈ Cl(Exec(T)) with

len(π) = k , there exists π∗ ∈ Cl(Exec(S)) and all

conditions (a-d) hold. By induction hypothesis, conditions

(a-d) hold for the prefix execution of length k − 1 of π,

say π′ ∈ Cl(Exec(T)). Let π′∗ be the corresponding SOT

execution and Algorithm 1 has called DFSVisit(N ′
T , N ′

S ,

Sym ′, Pc′). Then, ptrace(π′) = π′∗, σ(π′, len(π′)) =
Eval(Sym ′, σ(π′, 0)) and σ(π′, 0)(Pc′) holds. Let now C
be the boolean expression associated with the edge from

N ′
T to NT and σ(π′, 0)(C), otherwise we are done. There

are two possible cases. First suppose NT is an OBB

(with out(e)) that outputs v = σ(π, len(π))(e). Since

an output action is performed, both execution state and

symbolic state remain unchanged, hence σ(π, len(π)) =
Eval(Sym, σ(π, 0)) and Pc = Pc′ ∧ Eval(C ,Sym ′).
Then, by Lemma 3.12 also σ(π, 0)(Pc) holds. The out-

put value is v since Eval(Eval(e,Sym), σ(π, 0)) =
Eval(e, σ(π, len(π))) = v . Otherwise, NT is an SBB. By

applying Lemma 3.11 and 3.12, similarly it can be shown

that the path condition and the symbolic state are computed

correctly.

(⇐) We prove that ptrace(T) ⊇ Exec(S) if for all

executions π∗ ∈ Exec(S) there exists π ∈ Exec(T)
and π∗ = ptrace(π). The induction hypothesis works as

previously. The only difference is that a single transition

in SOT can correspond to an arbitrary but finite number of

SBBs followed by one OBB in the ET. In that case the claim

is proved by applying Lemma 3.11 and 3.12 repeatedly.

343436

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

IV. EPISTEMIC MODEL CHECKING

In this section we consider the model checking problem

of formulas in LK over a SOT model. There exist different

off-the-shelf model checkers [24], [27] for the logic of

knowledge and time. Traditionally, their main application

domains are distributed systems and protocol verification.

Section IV-A explores the use of epistemic model checking

for software verification by encoding a SOT model and

LK formula into an MCMAS model. As shown by our

experiments, the performance is inversely proportional to the

inputs domain size. Section IV-B introduces a new model

checking algorithm which is tailored to the verification of

noninterference and declassification policies. The algorithm

transforms a SOT and a policy formula into an existentially

quantified FOL formula which can be checked efficiently by

an SMT solver.

A. Encoding a SOT as an Interpreted System

MCMAS is an epistemic model checker which can be

used to model a multiagent system and reason about its

epistemic and temporal properties [24]. Any SOT can be en-

coded into an interpreted system model, similar to Def. II-B,

on which MCMAS can be used to prove information flow

properties. The encoding simply transforms the SOT in an

MCMAS model with perfect recall where the Environment
agent simulates “internal” executions in the SOT model,

while an Attacker agent collects the observable traces gen-

erated during those SOT executions. An internal variable of

the Environment agent, state, records the current node of

the SOT execution. For all SOT node n , the Environment
agent’s protocol can emit an action “go to n” only if state
corresponds to a predecessor of n and the path condition

associated with n holds. The associated evolution function

sets state to n and assigns the output expression of n to a

variable, out , observable by the Attacker agent. In order to

model a perfect recall attacker, the Attacker agent possesses

a variable for each “depth” level in the SOT, obsLi . At

every step s , the Attacker agent copies the content of the

out variable into its obsLs variable, and updates its state in

order to copy next into obsLs+1.

Any SOT can be systematically transformed to an in-

terpreted system by following Template 1 where the SOT

has n nodes, m inputs, d max depth, where pred(i) is a

predecessor of node i , Pci and ei are the path condition

and output expression associated with node i , secret is any

secret to be protected and v any value this secret can take.

The correctness of such transformation is then stated by the

following theorem.

Theorem 4.1 (SOT-IS equivalence): Let SOT be a sym-

bolic output graph and IS the associated interpreted system

derived by the previous construction. Then,

M(SOT) =M(IS)

Template 1 SOT to MCMAS model

Environment agent

Obsvars: out

Vars: in1, . . . , inm , state: {init, s1, . . . , sn}
Actions: start, gos1, . . . , gosn
Protocol:

...

Pci and state = spred(i): {gosi}
...

Evolution:
...

out = ei and state = si if {gosi}
...

Attacker agent

Vars: lev, obsL1, . . . , obsLd

Actions: none

Protocol: none

Evolution:

(lev = lev + 1) if lev = 0
...

(lev = lev + 1) and obsLl = out if lev = l
...

Initial state

state = init and lev = 0

Formula
AG(

∧
secret,v !K(Attacker,!(secret = v))

Performance Analysis: A number of experiments have

been performed and reported in the last column of Fig. 5.

The SOT generated for each use case (described in Sect. V)

has been encoded as an input to the MCMAS model checker

[24] by the transformation presented above. The evaluation

results show a strong correlation between the domain size

of the input variables and the running time of the model

checker. The numbers refer to the running time (in seconds)

of MCMAS, where the domain of integer variables is the

interval [−50, 50]. Most of the mediun-size examples fail

even for small domains due to the huge size of the epistemic

formula that we verify. Moreover, our experiments show that

also for simple formulas the running time increases with the

domain size.

The graph in Fig. 3 (abscissa in multiple of 104) represents

the MCMAS running time as a function of the input domain

size for two simple examples. In both cases MCMAS verifies

a simple epistemic formula which is true in one example

(voidSecretTest) and is false in the other (getSign). Beside

the steep increase of running time with domain size, one can

also note that proving a formula which is true in a model

353537

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6

·104

0

1,000

2,000

3,000

4,000

Domain Size

T
im

e
(i

n
se

c)

voidSecretTest

getSign

Figure 3. Running Time vs Domain Size

requires more time than disproving a similar formula is false

in a model of roughly same size.

B. A New Model Checking Algorithm

It is known that model checking via BDDs works well

when the size of the domain is relatively small [28]. In

software model checking domain size can be large or even

infinite, therefore model checking can be problematic, as

confirmed by our experiments. To face this problem, we

present a new algorithm that reduces the epistemic model

checking over SOT models to SMT solving of a formula

which only contains variables in existential form. While in

general the transformation to existential form is not possible

for every formula, this can be done for the information flow

properties we are interested in verifying.

Given a formula φ and a model M associated with an

SOT S , we define a transformation T (S , φ) and prove that

φ holds in M iff T (S , φ) is valid. We then derive the

noninterference-like formulas which can be verified by an

SMT solver.

In what follows
On is the tuple of output expressions

encountered on an SOT path, from node Start to node n .

We write
On =
On′ to denote the component-wise equality

between tuple expressions and, N (S) to denote the nodes

of an SOT S .

Definition 4.2 (T (S , φ)): Given an SOT S and a formula

φ in LK , T (S , φ) is defined as:

T (S , φ) =
∧

n∈N (S)

∀
x (Pcn ⇒ T (S ,n, φ))

where T (S ,n, φ) is defined as

• T (S ,n, b) = b
• T (S ,n,¬φ) = ¬T (S ,n, φ)
• T (S ,n, φ1 → φ2) = T (S ,n, φ1)→ T (S ,n, φ2)

• T (S ,n, ∀
u.φ) = ∀
u.T (S ,n, φ)
• T (S ,n,Kφ) =

∧
n′∈N (S) ∀
x ′. ([Pcn′]′ ⇒

On = [
On′]
′ ⇒ [T (S ,n ′, φ)]′)

where [F]′ = F [
x
→
x ′] is a renaming of all free variables

x in F with
x ′.
The intuition behind the transformation T (S , φ) is that each

node in N (S) represents an epistemic state in which both

the path condition and the sequence of output expressions

up to that node are true (atomic propositions in Def. 2.2).

Consequently, if a formula φ is weaker, i.e. implied, than

the atomic propositions for all nodes, φ is true in the SOT

model.

Proposition 4.3: Let S be an SOT and M (S) the corre-

sponding model. Then for all formula φ

M (S) |= φ ⇔ |= T (S , φ)

Proof Sketch: Let Π be a path in S , with Start and

End node removed, and the sequence of pairs (Pc1, e1)⇒
· · · ⇒ (Pck , ek) occurring in Π. Then the model M (S) =
{π | ∃Π ∈ Paths(S). len(π) = len(Π) ∧ ∀i . σ(π, i) |=
Pci ∧ αi = σ(π, i)(ei)}.
(⇒) We show, by structural induction on φ, for all π, i ∈
M (S), that if π, i |= φ then Pci ⇒ T (S , i , φ) is valid.

Suppose φ = Kφ′. By definition of satisfaction, for all

π′, i ′ ∈ M (S), if trace(π, i) = trace(π′, i ′) then π′, i ′ |=
φ′. We then show ∀
x (Pci ⇒

∧
i′∈N (S) ∀
x ′. ([Pci′]′ ⇒

Oi = [
Oi′]
′ ⇒ [T (S , i ′, φ′)]′))(∗∗) holds, which follows

from definition of M (S) and induction hypothesis. Other

cases are easy.

(⇐) Let φ be a formula and assume T (S , φ) holds. We

show that M (S) |= φ. Suppose φ = Kφ′. Then (∗∗) is

true. Consider the tuples of values
c∗,
O∗ such that Pc(
c∗)
and
Oi(
c

∗) =
O∗ and a state σ∗ with identifier values

from
c∗. In particular, σ∗ |= Pci and σ∗(
Oi) =
O∗.

Again by assumption consider
c1
∗ where [Pci′]

′(
c∗1) and

[
Oi′]
′(
c∗1) =
O∗, hence the state σ∗

1 mapping identifiers to

values
c∗1 implies σ∗
1 |= [Pci′]

′ and σ∗([
Oi′]
′) =
O∗. By

hypothesis and these facts the claim follows.

We can now safely use transformation T for

noninterference-like formulas.

Corollary 4.4: Let S be an SOT associated with program

P and AK the noninterference formula. Then, P(
l ,
h),
program P with high identifiers
h and low identifiers
l is

noninterfering iff the following formula is unsatisfiable.

∃
l ,
h,
h ′.
∨

n∈N (S)

(Pcn(
l ,
h) ∧ (
∧

n′∈N (S)

¬(Pcn′(
l ,
h ′) ∧

On(
l ,
h) =
On′(
l ,
h
′))))

Proof: Applying transformation T to the negation of

AK , defined in Sect. II-D, and substituting
l =
l ′ and
h =
u ,

proves the claim.

Indeed, AK := ∀
v ,
u.((
l =
v) ⇒ L(
l =
v ∧
h =

363638

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

u)), then T (S ,AK) =
∧

n∈N (S) ∀
l ,
h. (Pcn(
l ,
h) ⇒
T (S ,n,AK)) =

∧
n∈N (S) ∀
l ,
h. (Pcn(
l ,
h)⇒ ∀
v ,
u. (
l =

v ⇒ ¬∧
n′∈N (S) ∀
l ′,
h ′. (Pcn′(
l

′,
h ′) ⇒ On(
l ,
h) =

On′(
l
′,
h ′)⇒ ¬(
l ′ =
v ∧
h ′ =
u)))).

Then the negation of the last formula is true if∨
n∈N (S) ∃
l ,
h. (Pcn(
l ,
h) ∧ ∃
v ,
u. (
l =
v ∧∧
n′∈N (S) ∀
l ′,
h ′. ¬(Pcn′(
l ′,
h ′)∧On(
l ,
h) = On′(
l

′,
h ′)∧
(
l ′ =
v∧
h ′ =
u)))) which holds iff the formula is satisfiable

for
l =
l ′ and
h =
u . Finally we perform these substitutions

in the formula and derive the claim.

In case of a declassification policy φ(
l ,
h) one can similarly

apply transformation T and obtain a formula T (AK) ∧
φ(
l ,
h). We now apply the algorithm in Corollary 4.4 to

our running example.

Example 4.5: Consider the SOT S in Fig. 2 correspond-

ing to the program in Example 2.4 which we explained to be

noninterfering. This means that the following formula must

be unsatisfiable.

∃secret , secret ′.
∨

n∈N (S)

(Pcn(secret) ∧ (
∧

n′∈N (S)

¬(Pcn′(secret ′) ∧
On(secret
′) =
On′(secret

′)))

Consider a node n ∈ N (S), say the one on top left,

where Pc1 = (0 < secret ≤ 2) and O = 0. Then the

formula is satisfiable if there exists a value of secret where

Pc(secret) holds, for instance secret = 1, and a value of

secret ′ that falsifies, for all nodes, the path conditions or

the equality between output expressions. We only do the

check for nodes at the same level of n , otherwise the output

sequences will never be equal. Moreover, nodes at the same

level have equal outputs, hence the formula can only be

falsified (hence the condition satisfied) by a value of secret ′

that sets to false all path conditions at that level. But since

some of the conditions are pairwise disjoint, this will never

be the case. Consequently the formula is unsatisfiable for

node n . The check for other nodes can be done similarly

and prove that P is noninterfering.

V. IMPLEMENTATION

The theory presented above has been implemented in a

prototype called ENCOVER [29]. For the extraction of the

symbolic output tree (SOT) from Java bytecode, ENCOVER

relies on Symbolic PathFinder (SPF) [30], an extension of

Java PathFinder [31]. SPF exercises all possible execution

paths of the analyzed program by means of concolic test-

ing [19]. During this phase, SPF computes and maintains

symbolic expressions representative of the current path con-

dition and of the value of every variable for the current

path under test. Whenever a statement rendering a value

“observable” is executed, ENCOVER creates a new node in

the SOT under generation using the symbolic expressions

corresponding to this observable value and the current path

condition. After this first phase corresponding to the SOT

generation, ENCOVER converts the SOT into an interference

formula (f) with free variables. This formula, with its free

variables existentially quantified, is the negation of the

noninterference formula applied to the program analyzed, as

described in Section IV. Any assignment to the free variables

that renders the formula f true is a counterexample proving

that the program is not noninterfering. Finally, ENCOVER

feeds the formula f to a satisfiability modulo theory (SMT)

solver (Z3 [23] in the current implementation). If the SMT

solver answers that the formula is unsatisfiable, then the

analyzed program is deemed noninterfering. Otherwise the

program is declared interfering, and the assignment provided

by the SMT solver is returned as a counterexample of the

noninterference behavior of the analyzed program.

ENCOVER has been implemented in Java as an extension

of Java PathFinder (JPF). The extension by itself has 86

classes/interfaces and 6 KLOC as computed by CLOC [32],

and 161 KLOC including the required parts of SPF. The

class of programs that the current implementation of EN-

COVER can handle is indirectly limited by the class of

programs SPF (JPF core and its symbc extension) can handle

and the class of expressions Z3 can solve. There is no

intrinsic limitation induced by the specifics of ENCOVER

itself. Theoretically SPF can execute any Java bytecode,

however in practice SPF is limited by missing implementa-

tions for some native libraries (such as java.io and java.net),

a few bugs (such as NullPointer exceptions being reported

as NoSuchMethod exceptions), and of course state space

explosion (particularly when dealing with multithreaded pro-

grams with loose synchronization constraints). In the current

implementation (due to the way SPF handles booleans, and

differences between SPF expressions and Z3 expressions

that requires typing in order to translate from one to the

other), ENCOVER is limited to the manipulation of integer

expressions as described by the Core and Ints theories of

the SMT-LIB standard [33]. Z3 can solve a fair number of

formulas based on those expressions [34], [35]. In the future,

the class of programs handle by ENCOVER should grow due

to continuous development on SPF and Z3.

A. Case study

As a main case study, ENCOVER has been applied to

the security-oriented case study of the HATS project [36].

This case study, Tax Record (TR), simulates the interactions

between a server handling tax records, tax payers, tax

checker entities, and a charity. Tax payers can dedicate

part of their payments to a charity. To every tax payer is

associated a tax record which is initialized with her incomes,

and to every tax record is associated a tax checker. The tax

payer can query the amount of taxes due, and perform a

payment indicating how much is to be given to the charity.

After each payment, the associated tax checker verifies that

the cumulated payments cover the sum of the taxes due and

373739

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

the charity donation. If that is the case, the tax record is

frozen and no further modification can be made. Once all

the tax records have been frozen, the server informs the

charity of the sum of money given by the tax payers.

The Java implementation has 8 classes/interfaces (as

shown in Fig 4) and 267 LOC. There is one class for each

taxPayer1

taxRecord1

*

checker1

1

server1

1*
taxRecords

TaxRecord

<<interface>>
TaxRecord4taxPayer

getTaxes(): int
getAmountPayed(): int
payTaxes(don:int, amnt:int)

<<interface>>
TaxRecord4taxChecker

verifyPayment(): int
freeze(): int

TaxPayer

TaxChecker
checkTaxes(tr:TaxRecord4taxChecker): int

Charity

<<interface>>
TaxServer4charity

getCharity(): int

TaxServer

Figure 4. Class diagram of the Tax Record case study

of the two “types of object” (TaxServer and TaxRecord,

ranged over by O) and each of three “types of principal”

(TaxPayer, TaxChecker and Charity, ranged over by P). The

three interfaces (TaxServer4charity, TaxRecord4taxPayer

and TaxRecord4taxChecker, ranged over by O4P) describe

the actions/queries that principals of type P can perform

on objects of type O . The implementations of TaxPayer,

TaxChecker and Charity describe the intended processes

those principals should follow. However, “bad” principals

of type P could perform different actions on objects of

type O , but only using methods listed in interface O4P and

implemented in O . Two taxation schemes have been imple-

mented. The tax rate is either fixed (F%) and computed by

a simple multiplication, or variable over “slices” of income

and computed in a while loop by cumulating the taxes for

each slice of the income where the n th slice of 10 K$ is

taxed (n × V)%.

From a security point of view, one property to verify is

whether a given tax payer is able to deduce any information

about the income, payments and donation of other tax payers

by triggering and observing the result of actions specified

in TaxRecord4taxPayer. Similarly, the tax checker is only

allowed to know if the cumulated payments are equal to or

higher than the sum of the taxes and donation of a tax record,

and, if that is the case, to know the amount of overpayment.

Finally, the charity should not be able to learn anything

except the cumulated amount of donations.

B. Application of ENCOVER to the TR case study

The HATS’ case study is intrinsically an interactive pro-

gram whose behavior mainly depends on the actions of the

tax payers. In order to extract the SOT from the program,

Symbolic PathFinder (SPF), which relies on a concolic

testing approach [21], executes the program to be verified.

This requires to provide an additional executable program

simulating the behavior of the different participants involved

in an execution of this interactive program. Three different

scenarios have been examined. The first scenario (smpl),

involves a single tax payer (Alice) which queries for her

amount of taxes and pays that exact amount without making

any donation. The only input in this scenario is the income

of Alice. The second scenario (oneP) involves the same

tax payer initially performing a first payment and donation,

then, if she has under-payed, queries for her amount of taxes

and pay what remains, including the donation. The inputs

are Alice’s income, donation and first payment. It is to be

noted that donation can be zero, which is equivalent to not

making a donation. The last scenario (twoP) involves two

tax payers, Alice and Others, representing all the other tax

payers. Both act as Alice in the second scenario. There are 6

inputs: incomes, donations and first payments of Alice and

Others.

For every scenario and taxation scheme, ENCOVER is

used multiple times to verify the noninterfering behavior of

the program with regard to the 3 different principals (Alice,

tax checker and charity, ranged over by P) under different

policies regarding values that have to be protected from those

principals. Each analysis involves a different configuration of

ENCOVER. Among other parameters such as input domains,

there are 3 main parameters to configure: the input values

(or expressions) known by P at the beginning (the low

values in the theory), the input expressions that should be

kept secret from P (the high values), and finally the events

and associated values that are observable by P . This last

parameter is configured by providing an expression with

wild-cards specifying which method calls are observable by

P and which parameter or return value P will observe. In

the case of the tax checker, resp. charity, the configuration

of this parameter indicates that the return value of any

method in TaxRecord4taxChecker, resp. TaxServer4charity,

is observable. In the case of Alice, specifying that the return

value of any method in TaxRecord4taxPayer is observable

would not allow ENCOVER from distinguishing between

observations made by Alice and Others. Therefore, the SOT

would contain observations made by both, instead of the

observations made by Alice only. However, the expression

specifying observable events may include some runtime

values of method call parameters. To specify the events

observable by Alice, a method obs(String, int), tak-

ing as parameter a tax payer name and another value,

is coded with an empty body. The observable expression

383840

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

is set to *.obs("Alice", O) and, in any method m
specified in TaxRecord4taxPayer, a call to this obs method

is inserted with parameters the name of the tax payer

for this tax record and the value to be returned by m
(obs(this.taxpayerName, res)).

Figure 5 contains the evaluation results. The remainder of

this section focuses on the noninterference analysis results

for the Tax Record case study in column 4 (ENCOVER:NI)

of Figure 5. The relevant tests are named S -P -R, where

S indicates the scenario, P is the principal for which the

program is verified, and finally R specifies taxation scheme,

Fixed or Variable. For the smpl scenario, all configurations

are found noninterfering. The only input is the income of

Alice, which is known by Alice and has no relation to the

values observed by charity (0, as there is no donation in

this scenario) and taxChecker (0, as Alice pays directly the

exact amount of taxes due). For the oneP scenario, the

inputs are the income, donation and first payment of Alice

known by Alice and hidden from charity and taxChecker.

Obviously, this scenario is noninterfering from Alice’s point

of view, but not from the point of view of charity as

the only donation is Alice’s. For the principal taxChecker,

many different configurations have been tested: In the tax-

Checker1 case, the declassification policy is “income ×
F% + donation > payment”, and for taxChecker2 it is

“income×F%+donation−payment”. ENCOVER finds the

configuration interfering for taxChecker1 and noninterfering

for taxChecker2, as expected. Indeed, the value declassified

in the taxChecker1 case, resp. taxChecker2 case, is a lower

bound, resp. upper bound, of the value revealed to the

tax checker in the fixed tax rate variant. The exact value

revealed to taxChecker in the specification of TaxRecord is

“if income × F% + donation > payment then −1 else

payment− (income×F%+donation)”. The configuration

taxChecker3 corresponds exactly to the declassification of

this formula. For the variable tax rate case, the expression

computing the taxes ((
∑N

n=1 n × V% × slice) + ((N +
1) × V% × (income mod slice)) where the n th slice is

taxed (n × V)% and N = income ÷ slice is the number

of full slices) can be declassified to the taxChecker by

rewriting
∑N

n=1 n as ((N +1)×N /2). This declassification

corresponds to the configuration taxChecker4. The case of

the twoP scenario, is similar to the previous case for

Alice and taxChecker. However, this time there are two

different donations, one from Alice and one from Others.

By declassifying “donationAlice + donationOthers” to

charity, ENCOVER concludes that charity does not learn

more than is allowed. In conclusion, apart from potential

efficiency problems that are addressed in the next section, the

ENCOVER prototype behaves as expected and can handle

the majority of configurations of the tax record scenarios.

VI. EVALUATION

ENCOVER has been used to verify multiple test pro-

grams. Figure 5 contains data for some of the tests. The

first test program, empty, is used as a base reference for

normalizing the number of instructions executed by JPF. The

two tests getSign and voidSecretTest are used to

verify the correctness of the answer returned by ENCOVER.

The program getSign takes a secret h as input and returns

-1, resp. 0 or 1, if h is negative, resp. zero or strictly

positive. This program is obviously interfering. The program

voidSecretTest tests if its secret input h is equal to 0,

and returns h if it is true, 0 otherwise. As this program

always returns 0, it is noninterfering.

The “double while” running example used previously

corresponds to the tests named whileLoops-X , where

X is the maximum number of loops (2 in the case of the

running example). The same specification (2 consecutive

iterative structures whose total number of iterations is X)

has been implemented using recursive method calls instead

of while statements. However, as the results are similar to

the double while implementation, they are not reported in

Fig. 5. The other lines correspond to different configurations

for the use case described in the previous section.

A. Efficiency

Two test cases caused ENCOVER to fail completely:

twoP-charity-V and twoP-taxChecker4-V. The

analysis of the logs reveals that ENCOVER runs out of mem-

ory while generating the interference formula, consisting of

a large number of identical subformula objects. We believe

this problem can be remedied by subformula sharing. As a

side effect, once the interference formula is composed of

references to a smaller number of unique subformulas, it

will be possible to feed it in incremental steps to Z3. It is

expected that this will allow Z3 to handle cases where it

runs out of memory while trying to satisfy the interference

formula. This is indeed what prevents Z3 to conclude for

the test cases whileLoops-40 and twoP-Alice-V.

The test case whileLoops-30 shows that ENCOVER

can handle programs with nontrivial SOT’s. Symbolic

PathFinder (SPF) extracted more than 500 different SOT

nodes. A single execution of whileLoops-30 outputs 30

different values, for which there exists 33 different potential

output expressions depending on the path followed for at

least one of those values. As suggested by the tax record

use case, many “real” programs are likely to produce smaller

SOT’s with less diverse output expressions. It is noteworthy

that for whileLoops-30, Z3 needs only a little more

than 2 minutes to conclude that the interference formula

is unsatisfiable.

The results for the tax record study show that the ex-

traction of the output behavioral model can be quite time

consuming especially when the number of paths explodes,

mainly due to while loops.

393941

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

TEST JPF ENCOVER

States Inst NI Timing (in ms) SOT Fml MC
O (in s) E G S N D W V A I

empty 1 0 Y .4 9 3 4 0 0 0 0 0 0 .0
getSign 13 48 N .6 115 2 36 3 1 3 2 34 68 .1
voidSecretTest 3 18 Y .5 88 2 18 2 1 2 2 11 22 .1
whileLoops-2 23 181 Y .6 137 7 53 9 2 5 2 219 454 .2
whileLoops-30 1059 6873 Y 143.0 1795 8980 131662 555 30 33 2 579371 4150614 488
whileLoops-40 1809 11543 ? 2595.2 2415 48867 - 940 40 43 2 1680161 15359218 -
smpl-Alice-F 5 877 Y .6 173 3 8 3 3 1 2 17 62 .4
smpl-Alice-V 1067 19382 Y 3.3 1528 249 1054 63 3 21 2 18777 103926 2.3
smpl-charity-F 5 877 Y .6 179 3 8 1 1 1 2 8 26 .9
smpl-charity-V 1067 19382 Y 2.5 1470 86 576 21 1 21 2 5968 31098 .1
smpl-taxChecker-F 5 877 Y .6 167 3 8 1 1 1 2 8 36 .1
smpl-taxChecker-V 1067 19382 Y 2.7 1452 88 724 21 1 21 2 5968 37650 .1
oneP-Alice-F 13 1353 Y 2.3 1900 6 12 5 4 2 6 42 236 14.4
oneP-Alice-V 2185 32604 Y 6.9 3659 240 2546 87 4 24 6 29114 179100 -
oneP-charity-F 13 1353 N 2.3 1861 4 42 2 1 2 6 28 107 -
oneP-charity-V 2185 32604 N 4.7 3517 96 637 24 1 24 6 7916 42957 -
oneP-taxChecker1-F 13 1353 N 2.3 1872 4 27 3 2 2 6 32 154 -
oneP-taxChecker2-F 13 1353 Y 2.4 1895 4 25 3 2 2 6 32 154 -
oneP-taxChecker3-F 13 1353 Y 2.3 1844 4 24 3 2 2 6 32 164 -
oneP-taxChecker4-V 2185 32604 Y 128.9 3632 129 124709 45 2 24 6 14500 84462 -
twoP-Alice-F 37 3578 Y 6.3 5820 6 26 5 4 2 12 57 266 -
twoP-Alice-V 54601 824013 ? 2541.3 2537857 293 - 87 4 24 12 29129 179130 -
twoP-charity-F 37 3578 Y 6.5 5962 10 45 4 1 4 12 107 588 -
twoP-charity-V - - ? - - - - - - - - - - -
twoP-taxChecker3-F 37 3578 Y 6.6 5852 12 250 9 4 3 12 159 1134 -
twoP-taxChecker4-V - - ? - - - - - - - - - - -

• JPF

– States: number of states encountered during concolic execution
– Inst: total number of instructions executed (normalized such that the value for the empty test is 0 rather than 2926)

• ENCOVER

– NI: Y iff ENCOVER concludes that the program is noninterfering
– Timing: given in ms (O: overall in s; E: model extraction (JPF+symbc); G: interference formula generation; S: interference formula

satisfiability checking)
– SOT: information related to the SOT (N: number of nodes; D: depth of the SOT (correspond to the longest possible sequence of outputs);

W: width of the SOT (corresponds to the maximum number of nodes at any level))
– Fml: information related to the interference formula (V: number of distinct variables; A: number of atomic formulas; I: number of instances

of variables or constants)
– MC: timing in s for MCMAS model checker (independent additional execution on the generated model; not included in the overall time

taken by ENCOVER when using SMT resolution)

Figure 5. Evaluation results

ENCOVER’s memory handling can be improved. How-

ever, the results demonstrate that the approach proposed

in this paper can be used to verify complex information

flow policies on non-trivial programs with complex, control-

dependent information flow.

VII. RELATED WORK

The most closely related work is that of Cerny and Alur

[15] which presents an automated analysis of conditional

confidentiality for Java midlet methods. A property f is

conditionally confidential (CC) wrt. to property g if for every

execution r for which property g holds another execution

r ′ exists with the same observation as r but such that r
and r ′ disagree on f . This condition is expressed as a

formula over program identifiers involving existential and

universal quantifiers. To check the formula over- and under-

approximations of reachable states are computed for every

program location and universal quantification is carefully set

to take place over a bounded domain. A tool called CONAN

is developed for analyzing CC of Java midlet methods. We

strongly believe that CC can be expressed in epistemic logic

by the formula (g ⇒ (Lf ∧ L¬f)), where, intuitively, g is

a property known by the observer and f is the property to

protect. In our case the corresponding formulas will involve

existential quantifiers only and they can be immediately

fed to an SMT solver. Moreover, the noninterference-like

properties we are verifying are much stronger than CC, and

we expect to handle the weaker properties as well. On the

tools side, ENCOVER performs global analysis for Java

programs and is fully automatic. It would be interesting to

further investigate how an extension of the epistemic logic

considered here relates to CTL ≈, which can express CC

[16] properties.

Halpern and O’Neill [5] introduce a framework for rea-

soning about secrecy requirements in multiagent systems.

404042

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

They show how the interpreted systems formalism [8] can

be used to express in a clean way different trace-based

information flow properties both for synchronous and asyn-

chronous systems. Nondeterminism and probability are also

considered. The definition of secrecy is based on an abstract

model, the run-and-systems model, which is different from

the primary concern of this paper, language-based security.

Moreover, they do not consider the verification problem.

Another security notion, related to secrecy, is that of opacity

[25], [37], which models the ability of a system to keep

some critical information secret. The verification techniques

presented in this paper can also be applied to opacity.

Askarov and Sabelfeld introduce the gradual release model

[6], [38] where attackers knowledge is modeled as equiv-

alence relations on input states. A verification technique

based on security type systems and monitors is used to

verify gradual release for a while language with inputs and

and outputs. Other language-based approaches have been

used to characterize the attackers power or the declassified

information, by means of partial equivalence relations [39]

or abstract interpretations [12]. We believe [4] that our

epistemic framework can nicely capture these approaches

and move a step closer to their verification.

VIII. CONCLUSION

In this paper we have considered the verification problem

for noninterference and declassification policies expressed as

formulas in epistemic logic. We have used concolic testing

(a mix of concrete and symbolic execution) to obtain an ab-

stract model of the original program such that the verification

problem for the epistemic logic is brought within scope of

current SMT solvers. This is done by reducing the problem

of verification of noninterference and declassification into

the satisfiability of a formula that contains variables in

existential form only. As showed by the case studies our

approach is quite elegant and able to handle tricky cases of

information flow, even for programs of non-trivial size. The

ENCOVER prototype performs a precise sensitive global

analysis and relies on a clear separation between security

policy and program text. ENCOVER indicates that recent

advances in SMT solving can be combined with symbolic

techniques to reduce false alarms and scale up to real

software for the case of information flow analysis. Moreover

we have showed how to transform the model generated

by concolic testing as an interpreted system, which can be

subsequently used to for epistemic model checking.

Limitations and Future Work: Many limitations of the

approach we put forward are due to constraints imposed by

the tools used for implementation. On the other hand, the

class of programs we can certify automatically is still of

interest, as shown by the experiments.

Assuming that inputs are read at the start of program

execution rules out a class of reactive programs that receive

inputs during the execution [40], [41]. One way to overcome

this restriction is to rewrite the original program to an

equivalent one that reads all inputs prior to execution start

and uses them as needed. This can be done for the class

of interactive deterministic programs [42]. In particular, one

can rewrite the original program by replacing internal inputs

with a dummy output operation and introducing a fresh

variable which is read in the beginning of execution. A more

general account of interactive programs must take attacker

strategies into account [41].

Another limitation is that our tool only supports a bounded

model of runtime behavior. Automatic invariant generation

techniques may be integrated with ENCOVER to speed up

the analysis and overcome this limitation.

A further issue concerns the background arithmetic the-

ories that the SMT solver is able to handle. Currently

Z3 works well with linear arithmetics, while non linear

constraints are not handled [23]. Consequently, it becomes

crucial to apply abstraction techniques, e.g. predicate ab-

straction [43], when the path conditions represent as non-

linear constraints. Moreover performing modular verification

at level of Java methods, would improve performance at cost

of losing the precision that global analysis provides. We plan

to address these techniques in the future.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers,

as well as the participants to the Åre workshop, for their

helpful comments. This work was partially supported by the

EU-funded FP7-project HATS (grant No 231620).

REFERENCES

[1] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in Proc. IEEE Symp. on Security and Privacy. Los
Alamitos, Calif.: IEEE Comp. Soc. Press, 1982, pp. 11–20.

[2] A. Sabelfeld and A. Myers, “Language-based information-
flow security,” IEEE J. on selected ares in communications,
vol. 21, no. 1, pp. 5–19, 2003.

[3] E. S. Cohen, “Information Transmission in Sequential Pro-
grams,” J. Foundations of Secure Comp., pp. 297–335, 1978.

[4] M. Balliu, M. Dam, and G. Le Guernic, “Epistemic Temporal
Logic for Information Flow Security,” in PLAS, 2011.

[5] J. Y. Halpern and K. R. O’Neill, “Secrecy in multiagent
systems,” ACM Trans. Inf. Syst. Secur., vol. 12, no. 1, 2008.

[6] A. Askarov and A. Sabelfeld, “Gradual release: Unifying
declassification, encryption and key release policies,” in IEEE
Symposium on Security and Privacy, 2007, pp. 207–221.

[7] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive
Declassification Policies and Modular Static Enforcement,” in
Proc. Symp. Security and Privacy, 2008, pp. 339–353.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning
about knowledge. Cambridge, Mass.: MIT Press, 1995.

414143

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

[9] D. Volpano, G. Smith, and C. Irvine, “A sound type system for
secure flow analysis,” Journal of Computer Security, vol. 4,
no. 2,3, pp. 167–187, 1996.

[10] S. Hunt and D. Sands, “On flow-sensitive security types,” in
POPL, 2006, pp. 79–90.

[11] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A Core
Calculus of Dependency,” in Proc. Principles of Programming
Languages. New York: ACM-Press, 1999, pp. 147–160.

[12] R. Giacobazzi and I. Mastroeni, “Abstract Non-Interference:
Parameterizing Non-Interference by Abstract Interpretation,”
in Proc. Principles of Programming Languages. New York:
ACM-Press, 2004, pp. 186–197.

[13] G. Andrews and R. P. Reitman, “An axiomatic approach to
information flow in programs,” ACM Trans. Program. Lang.
Syst., vol. 2, no. 1, pp. 56–76, 1980.

[14] D. Wasserrab, D. Lohner, and G. Snelting, “On PDG-Based
Noninterference and its Modular Proof,” in Proc. Work. on
Programming Languages and Analysis for Security. ACM,
Jun. 2009, pp. 31–44.

[15] P. Cerný and R. Alur, “Automated analysis of java methods
for confidentiality,” in CAV, 2009, pp. 173–187.

[16] R. Alur, P. Cerný, and S. Chaudhuri, “Model checking on
trees with path equivalences,” in TACAS, 2007, pp. 664–678.

[17] R. van der Meyden and C. Zhang, “Algorithmic verification
of noninterference properties,” Electr. Notes Theor. Comput.
Sci., vol. 168, pp. 61–75, 2007.

[18] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed auto-
mated random testing,” in PLDI, 2005, pp. 213–223.

[19] J. C. King, “Symbolic execution and program testing,” Com-
mun. ACM, vol. 19, no. 7, pp. 385–394, 1976.

[20] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit
testing engine for c,” in ESEC/SIGSOFT FSE, 2005, pp. 263–
272.

[21] C. S. Pasareanu, N. Rungta, and W. Visser, “Symbolic execu-
tion with mixed concrete-symbolic solving,” in ISSTA, 2011,
pp. 34–44.

[22] C. S. Pasareanu and N. Rungta, “Symbolic pathfinder: sym-
bolic execution of java bytecode,” in ASE, 2010, pp. 179–180.

[23] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,”
Tools and Algorithms for the Construction and Analysis of
Systems, vol. 4963/2008, pp. 337–340, 2008.

[24] A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: A Model
Checker for the Verification of Multi-Agent Systems,” in
Computer Aided Verification, ser. LNCS. Springer Berlin
/ Heidelberg, 2009, vol. 5643, pp. 682–688.

[25] J. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
generalised to transition systems,” in Formal Aspects in
Security and Trust, 2005, pp. 81–95.

[26] G. Winskel, The formal semantics of programming languages:
an introduction. Cambridge, Mass.: MIT press, 1993.

[27] P. Gammie and R. van der Meyden, “MCK: Model Checking
the Logic of Knowledge,” in CAV, 2004, pp. 479–483.

[28] T. Bultan, “BDD vs. Constraint-Based Model Checking:
An Experimental Evaluation for Asynchronous Concurrent
systems,” in TACAS, 2000, pp. 441–455.

[29] M. Balliu and G. Le Guernic, “ENCoVer,” Jun. 2012,
software release. [Online]. Available: http://www.nada.kth.
se/∼musard/encover

[30] S. Khurshid, C. Pasareanu, and W. Visser, “Generalized
symbolic execution for model checking and testing,” in Tools
and Algorithms for the Construction and Analysis of Systems,
ser. LNCS. Springer Berlin / Heidelberg, 2003, vol. 2619,
pp. 553–568.

[31] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda,
“Model checking programs,” Automated Software Engineer-
ing, vol. 10, pp. 203–232, 2003.

[32] A. Danial, “CLOC: Count lines of code,”
http://cloc.sourceforge.net, Oct. 2011, version 1.55.

[33] C. Barrett, A. Stump, and C. Tinelli, “SMT-LIB Theories
(Version 2),” 2011. [Online]. Available: http://goedel.cs.
uiowa.edu/smtlib/theories.html

[34] R. Bruttomesso, M. Deters, and A. Griggio, “Main Track
Results of the Satisfiability Modulo Theories Competition
(SMT-COMP),” 2011. [Online]. Available: http://www.
smtexec.org/exec/?jobs=856

[35] C. Barrett, A. Stump, and C. Tinelli, “SMT-LIB Logics
(Version 2),” 2011. [Online]. Available: http://goedel.cs.
uiowa.edu/smtlib/logics.html

[36] HATS project (FP7-231620), Deliverable D4.1: Report
on Security, 2012, chapter 2. [Online]. Available: www.
hats-project.eu/sites/default/files/Deliverable4.1.pdf

[37] J. Dubreil, “Opacity and Abstractions,” in Proc. Work. Ab-
stractions for Petri Nets and Other Models of Conc., 2009.

[38] A. Askarov and A. Sabelfeld, “Tight enforcement of
information-release policies for dynamic languages,” in CSF,
2009, pp. 43–59.

[39] A. Sabelfeld and D. Sands, “A per model of secure informa-
tion flow in sequential programs,” in ESOP, 1999, pp. 40–58.

[40] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic, “Reactive noninterference,” in Proc. Computer
and Communications Security, 2009, pp. 79–90.

[41] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-
flow security for interactive programs,” in CSFW, 2006, pp.
190–201.

[42] D. Clark and S. Hunt, “Non-interference for deterministic
interactive programs,” in Formal Aspects in Security and
Trust, 2008, pp. 50–66.

[43] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani,
“Automatic predicate abstraction of c programs,” in PLDI,
2001, pp. 203–213.

424244

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2024 at 00:42:59 UTC from IEEE Xplore. Restrictions apply.

