
Secure Information Flow for Concurrent
Programs under Total Store Order

Jeffrey A. Vaughan

University of California, Los Angeles

Todd Millstein

University of California, Los Angeles

Abstract—Modern multicore hardware and multithreaded pro-
gramming languages expose weak memory models to program-
mers, which relax the intuitive sequential consistency (SC)
memory model in order to support a variety of hardware and
compiler optimizations. However, to our knowledge all prior
work on secure information flow in a concurrent setting has
assumed SC semantics. This paper investigates the impact of
the Total Store Order (TSO) memory model, which is used by
Intel x86 and Sun SPARC processors, on secure information flow,
focusing on the natural security condition known as possibilistic
noninterference. We show that possibilistic noninterference under
SC and TSO are incomparable notions; neither property implies
the other one. We define a simple type system for possibilistic
noninterference under SC and demonstrate that it is unsound
under TSO. We then provide two variants of this type system that
are sound under TSO: one that requires only a small change to
the original type system but is overly restrictive, and another that
incorporates a form of flow sensitivity to safely retain additional
expressiveness. Finally, we show that the original type system
is in fact sound under TSO for programs that are free of data
races.

Index Terms—information flow, language-based security, weak
memory models

I. INTRODUCTION

A memory model [1, 2] forms the foundation of shared-

memory multithreaded programming by defining the set of

possible orders in which memory operations can execute

and become visible to other threads. To our knowledge, all

prior work on information flow for multithreaded programs

has assumed sequential consistency (SC) [9], which requires

all memory operations to appear to have executed in a

global sequential order consistent with the per-thread program

order. SC is the most natural memory model for program-

mers, since it accords with the intuition of a multithreaded

program’s behavior as the set of all thread interleavings.

However, mainstream hardware architectures (e.g., x86 [13]

and POWER [17]) and programming languages (e.g., Java [10]

and C++ [4]) instead expose a weak memory model to

programmers, which can exhibit subtle non-SC behaviors

but gain the ability to perform a variety of compiler and

hardware optimizations. Therefore, prior results on concurrent

information flow are not immediately applicable to today’s

hardware and software platforms.

This paper explores the implications for secure information

flow of the Total Store Order (TSO) memory model. TSO is a

natural starting point for understanding how weak memory

This research was supported by the National Science Foundation under
award CNS-1064844.

X := 0;
Y := 0;
fork (X := 1;

y := Y);
Y := 1;
x := X

Fig. 1. TSO relaxes write-before-read program order dependencies, which
allows x and y to both end with value 0.

models interact with secure information flow for several

reasons. First, TSO is used by common hardware platforms

today, including Intel x86 and Sun SPARC processors, and

it has been recently explored as a memory model for con-

current programming languages as well [11, 23]. Second,

TSO represents a relatively small weakening of SC and has

a natural operational interpretation [13]. Third, understanding

the impact of TSO is a first step to understanding the impact of

the other memory models used by hardware today, for example

those of ARM and IBM POWER processors [17], which are

strictly weaker than TSO.

In the TSO memory model, a store in thread t can become

visible to other threads after a later non-dependent load on

thread t. For instance, in the canonical example1 shown in

Figure 1, it is possible for both x and y to be assigned the

value 0, while at least one of these variables is assigned the

value 1 in any SC execution. Under TSO, a thread can also

read its own stores before they become visible to other threads.

For instance, in the example shown in Figure 2, it is possible

to end in a state where X has the value 1, y has the value 0,

and x has the value 1. If the x := X assignment could not read

X early, then in any final state where X and y map to 1 and 0

variable x would have value 0.

Operationally, TSO’s relaxation of SC can be accounted for

by the presence of FIFO write buffers in hardware, which

allow a processor to execute later instructions before pending

writes have committed to memory [13]. In our first example

above, the writes of 1 to X and Y are buffered, the subsequent

loads read the value 0 from main memory, and finally the

two buffered writes commit. Our second example is accounted

for by TSO’s support for store-to-load forwarding, whereby a

load searches the processor’s write buffer for a value before

1Examples use a simple imperative language augmented with the ability
to fork new threads. Uppercase variables are shared across threads while
lowercase variables are thread-local temporaries. We formalize this language
in Section II.

2012 IEEE 25th Computer Security Foundations Symposium

v/12 $26.00 © 2012 IEEE

DOI

17

2012 IEEE 25th Computer Security Foundations Symposium

© 2012, Jeffrey A. Vaughan. Under license to IEEE.
DOI 10.1109/CSF.2012.20

17

2012 IEEE 25th Computer Security Foundations Symposium

19

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

X := 0;
Y := 0;
fork (X := 1;

x := X;
y := Y);

Y := 2;
X := 2

Fig. 2. Under TSO a thread can read its own writes early, which allows this
program to end in a state where X has the value 1, y has the value 0, and x
has the value 1.

accessing main memory. In the example, the read of X in the

forked thread occurs before the prior write to X commits to

memory but still sees the value of that write.

In this paper we explore the impact of TSO on possibilistic
noninterference [19], which is an intuitive generalization of the

traditional notion of noninterference to a concurrent setting.

We leave exploration of the impact of weak memory models

on stronger notions of security, for example those that take

into account the probability distribution of outputs due to the

thread scheduler [22], to future work.

This paper provides several contributions.

• We define a simple formal language to investigate secure

information flow under TSO (Section II). The language

includes a standard imperative core along with constructs

for dynamic thread creation, lock-based synchronization,

and memory barriers.

• We show that relaxing SC to TSO has a nontrivial impact

on secure information flow (Section III). There exist pro-

grams that satisfy possibilistic noninterference under SC

but not under TSO. Perhaps more surprisingly, there also

exist programs that satisfy possibilistic noninterference

under TSO but not under SC.

• We adapt an existing type system for possibilistic non-

interference under SC [19] to our formal language, aug-

menting it to support both dynamic thread creation and

lock-based synchronization (Section IV). The resulting

type system, �sc, is of independent interest.

• While sound under SC semantics, it turns out that

�sc does not ensure possibilistic noninterference under

TSO. We describe a simple modification to �sc that is

sound for TSO (Section V). However, the resulting type

system, �tso disallows concurrency-related constructs

from appearing in high-security contexts.

• We show how to resolve the expressiveness limitation

of �tso by refining it to track a security level for each

thread’s write buffer (Section VI). The resulting �wb type

system includes a simple form of flow sensitivity for this

purpose.

• Finally, we show that the �sc type system is in fact

sound under TSO for programs that are data-race-free
(Section VII). Since it is considered good programming

practice to write race-free programs, this result provides

an alternate approach to guaranteeing secure information

flow on top of weak memory models like TSO.

Figure 3 summarizes the results described above. It also

shows that our three type systems have a natural ordering:

typability of a command c in �tso implies typability in �wb,

which in turn implies typability in �sc. All three type systems

therefore ensure possibilistic noninterference under SC, and

�tso and �wb additionally ensure possibilistic noninterference

under TSO. Full formal development and proofs of the

theorems described in the paper can be found in a companion

technical report [21].

II. A FORMAL MODEL OF TSO PROGRAMS

A. Syntax

Figure 4 presents the syntax of the formal language that

we use throughout the paper. A program is a command c,
which consists of the usual imperative constructs including

assignments, sequencing, conditionals, and while loops. It is

convenient to distinguish between thread-local temporaries x
and possibly-shared variables X . The three kinds of assign-

ments respectively load a value from shared memory, perform

local computation, and store a value into shared memory. Ex-

pression metavariables a and b respectively include the usual

side-effect-free arithmetic and boolean operations, denoted ⊕
and �.

We augment this imperative language with constructs for

shared-memory concurrency. The command (fork c) forks

a new thread that asynchronously executes command c, and

(sync � do c) provides a simple form of lock-based

synchronization among threads. The fence command is a

memory barrier, which can be used to enforce stronger

semantics in the context of a weak memory model. Specifically

for TSO, this command stalls execution of the current thread

until all pending writes have been committed from the thread’s

write buffer. For example, inserting fences after the commands

X := 1 and Y := 1 in Figure 1 ensures that x and y cannot

both end with value 0. The (holding � do c) syntax is used

only to properly implement the semantics of reentrant locks

and may not appear in source programs.

B. Operational Semantics

Our operational semantics is defined as a binary relation

on execution states, which is a pair of a global state G and

a thread pool P (Figure 5). A global state G is a pair of a

global store and the set of available locks. A thread pool P
is a sequence of threads, with 0 denoting the empty thread

pool. Each thread contains a local state L and a command

to be executed. A local state includes a local store, the locks

currently held by this thread, and the thread’s write buffer.

A write buffer is a sequence of pending writes to the global

store, with nil denoting the empty write buffer.

Notation Suppose local state L = (M,λ,W). We write

L.mem , L.locks , and L.wb for M , λ, and W respectively. If

x ∈ LocalVar we write L[x �→ i] for (M [x �→ i], λ,W)
and L(x) for M(x). We use L ∪ λ′ and L \ λ′ and � ∈ L
for (M,λ∪λ′,W) and (M,λ \λ′,W) and � ∈ λ. We use the

analogous notations to manipulate the global store and lockset

within a global state G. We additionally use L++(X := i) for

181820

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

pc; Γ �sc c Thm. 3 �� c is possibilistically

noninterfering under SC and Γ
Cor. 16 ��

c data race free implies

c is possibilistically

noninterfering under TSO and Γ

pc; low ; Γ �wb c⇒ wt ′

Thm. 8

��

Thm. 6 �� c is possibilistically

noninterfering under TSO and Γ

pc; Γ �tso c

Thm. 7

��

Fig. 3. A summary of the paper’s key results. A program is represented as a command c, and Γ is a security policy mapping variables to security labels.
The typing judgments are described in detail later in the paper.

c ::= x := X | x := a | X := x
| skip | c1; c2
| if b do c1 else c2 | while b do c
| fork c | sync � do c
| fence | holding � do c

a ::= x | i | a⊕ a
b ::= true | false | isZero a | b � b

Fig. 4. The syntax of our formal language. Metavariable x ranges over a
set LocalVar of thread-local variables, X over a set HeapVar of global
variables, � over a set Lock of locks, and i over integer literals.

Global state G ::= S × λ
Global store S ∈ HeapVar→ Z

Lockset λ ∈ P(Lock)
Thread pool P,Q ::= 0 | t || P
Thread t ::= 〈L, c〉
Local state L ::= M × λ×W
Local store M ∈ LocalVar→ Z

Write buffer W ::= nil | (X := i)::W

Fig. 5. Domains for the operational semantics.

(M,λ,W++(X := i)::nil), where ++ denotes list append, and

(X := i)::L for (M,λ, (X := i)::W). Finally, when there is

no possibility of confusion we use a single thread t to denote

the corresponding singleton thread pool, t || 0.

Figure 6 provides the rules for taking one step of execution

on a thread, producing a new global state and zero or more

residual threads. We distinguish between two kinds of step

operations and annotate each step accordingly. A commit
operation commits the pending write at the head of the thread’s

write buffer to the global store. An eval operation performs

one computation step on the thread’s current command.

Most of the eval steps are standard. We highlight the most

interesting ones. Rule EC-STORE simply adds the write to

the end of the thread’s write buffer. Rule EC-LOAD uses the

auxiliary judgment shown in Figure 7 to lookup the value of

a shared variable X . That judgment implements the semantics

of store-to-load forwarding: if there is a pending write to X
in the thread’s write buffer, then the value of the most recent

one is returned; otherwise, the value of X is fetched from the

global store.

Rule EC-FENCE acts as a no-op but its premise has the

effect of forcing computation on this thread to stall until all

pending writes have committed. Forking a thread (EC-FORK)

as well as acquiring (EC-SYNCACQUIRE) and releasing (EC-

HOLDRELEASE) a lock also require an empty write buffer,

which accords with the typical semantics of these constructs.

As shown in rule EC-SYNCREENTER, our locks are reentrant;

the fence semantics of lock acquire and release are still

enforced in that case. Symbol L� in EC-FORK represents the

“empty” local state ((λx.0), ∅,nil). Finally, the thread may be

terminated by rule EC-REAP once its command is skip, it has

committed all pending writes, and it has released all locks.

Figure 8 shows the rules for stepping an execution state,

under both the TSO and SC memory models. Under TSO, a

thread is chosen nondeterministically for execution, and that

thread can perform either a commit or eval operation (ranged

over by metavariable op). The SC memory model is a special

case of TSO whereby a commit operation is always scheduled

for execution if one is enabled. This semantics has the effect

of forcing a write to be committed to main memory as soon

as it is added to the write buffer.

C. Possibilistic Noninterference

Now we can define the standard notion of possibilistic

noninterference [19] for programs in our formalism. Let a

security level be either low or high and a security context
Γ be a function from shared variables, local variables, and

locks to security levels. We define security levels as a lattice

with partial order �, least upper bound , and greatest lower

bound �. These operators respect the ordering low � high .

It is straightforward to allow an arbitrary lattice of security

levels rather than just two [6].

191921

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

(G, t) −→commit (G′, P)

(G, 〈(X := i)::L, c〉) −→commit (G[X �→ i], 〈L, c〉)

(G, t) −→eval (G′, P)

(G, 〈L,X := x〉) −→eval (G, 〈L++(X := L(x)), skip〉) EC-STORE

(G.mem;L.wb)[X] ⇓ i

(G, 〈L, x := X〉) −→eval (G, 〈L[x �→ i], skip〉) EC-LOAD
L[a] ⇓ i

(G, 〈L, x := a〉) −→eval (G, 〈L[x �→ i], skip〉) EC-EVALEXP

(G, 〈L, c1〉) −→eval (G′, 〈L′, c′1〉 || P)
(G, 〈L, c1; c2〉) −→eval (G′, 〈L′, c′1; c2〉 || P)

EC-SEQSTRUCT
(G, 〈L, skip; c〉) −→eval (G, 〈L, c〉) EC-SEQSKIP

L[b] ⇓ true

(G, 〈L, if b do c1 else c2〉) −→eval (G, 〈L, c1〉)
EC-IFTRUE

L[b] ⇓ false

(G, 〈L, if b do c1 else c2〉) −→eval (G, 〈L, c2〉)
EC-IFFALSE

L[b] ⇓ true

(G, 〈L,while b do c〉) −→eval (G, 〈L, c; while b do c〉) EC-WHILETRUE

L[b] ⇓ false

(G, 〈L,while b do c〉) −→eval (G, 〈L, skip〉) EC-WHILEFALSE

L.wb = nil

(G, 〈L, fork c〉) −→eval (G, 〈L, skip〉 || 〈L�, c〉)
EC-FORK

L.wb = nil

(G, 〈L, fence〉) −→eval (G, 〈L, skip〉) EC-FENCE

� ∈ G L.wb = nil

(G, 〈L, sync � do c〉) −→eval (G \ {�}, 〈L ∪ {�},holding � do c〉) EC-SYNCACQUIRE

� ∈ L

(G, 〈L, sync � do c〉) −→eval (G, 〈L, fence; c; fence〉) EC-SYNCREENTER

� ∈ L (G, 〈L, c〉) −→eval (G′, 〈L′, c′〉 || P)
(G, 〈L,holding � do c〉) −→eval (G′, 〈L′,holding � do c′〉 || P) EC-HOLDSTEP

� ∈ L L.wb = nil

(G, 〈L,holding � do skip〉) −→eval (G ∪ {�}, 〈L \ {�}, skip〉) EC-HOLDRELEASE

L.wb = nil L.locks = ∅
(G, 〈L, skip〉) −→eval (G, 0)

EC-REAP

Fig. 6. Rules for taking one step of execution on a thread. We omit the rules for standard judgments L[a] ⇓ i and L[b] ⇓ v, which evaluate arithmetic and
boolean expressions.

202022

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

(S;W)[X] ⇓ i

(S;W++(X := i))[X] ⇓ i

X �= Y (S;W)[X] ⇓ i

(S;W++(Y := i0))[X] ⇓ i

(S;nil)[X] ⇓ S(X)

Fig. 7. Rules to lookup the value of a shared variable.

(G,P) =⇒tso (G′, P ′)

P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→op (G′, Q)
(G,P) =⇒tso (G′, t1 . . . ti−1 || Q || ti+1 . . . tn)

(G,P) =⇒sc (G′, P ′)

P = t1 . . . ti−1 || ti || ti+1 . . . tn
(G, ti) −→commit (G′, Q)

(G,P) =⇒sc (G′, t1 . . . ti−1 || Q || ti+1 . . . tn)

P = t1 . . . ti−1 || ti || ti+1 . . . tn (G, ti) −→eval (G′, Q)
there is no tj such that (G, tj) −→commit (Gj , Qj)

(G,P) =⇒sc (G′, t1 . . . ti−1 || Q || ti+1 . . . tn)

Fig. 8. Program evaluation under both TSO and SC memory models.

Definition 1 (Low equivalence). Given a security context Γ,
we say that global store S is low-equivalent to global store
S′, denoted S ∼Γ S′, if for all shared variables X , it is the
case that Γ(X) = low implies S(X) = S′(X).

Let =⇒mm∗ be the reflexive, transitive closure of the

=⇒mm relation, where mm is either tso or sc.

Definition 2 (Possibilistic noninterference). We say
that command c is possibilistically noninterfering (or
possibilistically secure) under memory model mm and
policy Γ if for all S1, S2 such that S1 ∼Γ S2, if
((S1,Lock), 〈L�, c〉) =⇒mm∗ (G′1, 0) then there exists
G′2 such that ((S2,Lock), 〈L�, c〉) =⇒mm∗ (G′2, 0) and
G′1.mem ∼Γ G′2.mem .

III. TSO AND POSSIBILISTIC NONINTERFERENCE

In this section we show that possibilistic security under SC

is incomparable to possibilistic security under TSO. That is,

there exists a command that is possibilistically secure under

SC but not under TSO, and there also exists a command that

is possibilistically secure under TSO but not under SC.

Figure 9 shows a program that is possibilistically secure

under SC but not under TSO. The portion of this program

before the conditional is identical to the program in Figure 1,

except that a shared variable Y′ is used to transfer the value

of y from the forked thread to the main thread. Suppose that

X := 0;
Y := 0;
Y′ := 1;
fork (X := 1;

y := Y; Y′ := y)
Y := 1;
x := X;
y′ := Y′;
if (isZero x ∧ isZero y′)

do (h := H; L := h);
else skip

Fig. 9. A program that is possibilistically secure under SC but not under
TSO.

X := 0;
Y := 0;
Y′ := 1;
fork (X := 1;

y := Y; Y′ := y)
Y := 1;
x := X;
y′ := Y′;
(if (isZero x ∧ isZero y′)

do
if isZero H do L := 1 else L := 0

else
if isZero H do L := 0 else L := 1);

Fig. 10. A program that is possibilistically secure under TSO but not under
SC.

Γ maps all shared variables to security level high except for

L, which is mapped to low .

Under SC, at least one of x and y′ will be nonzero. Therefore

the conditional guard will always fail, so L is never updated

by the program. Since L is the only low variable, it is easy to

see that the program is possibilistically secure.

On the other hand, as we’ve seen, under TSO it is possible

for both x and y′ to have the value 0. Therefore, on some

executions the conditional block will execute, copying the

value of H to L. Consider the following global stores:

S1 = {(X, 0), (Y, 0), (Y ′, 0), (L, 0), (H, 1)}
S2 = {(X, 0), (Y, 0), (Y ′, 0), (L, 0), (H, 0)}

Clearly S1 and S2 are low-equivalent under Γ. However, there

is an execution starting from S1 that ends with L = 1, while

all executions starting from S2 end with L = 0.

Figure 10 shows a program that is possibilistically secure

under TSO but not under SC.2 The portion before the con-

ditional is identical to the portion before the conditional in

Figure 9. Again suppose that Γ maps all shared variables to

security level high except for L, which is mapped to low .

Under SC, at least one of x and y′ will be nonzero. Therefore

the conditional guard will always fail, and the result is that L

2For clarity our examples sometimes directly reference a shared variable
in a loop or conditional guard, rather than first loading the variable into a
temporary.

212123

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

always ends with value 0 if H is 0 and ends with value 1 if H is

nonzero. Hence the program is not possibilistically secure, and

the same stores S1 and S2 above serve as a counterexample.

On the other hand, under TSO it is possible for the

conditional guard to evaluate to true or false regardless of the

initial global store, depending on how threads are scheduled.

Therefore it is always possible for L to end with either the

value 0 or 1, so no information is leaked from H to L and the

program is possibilistically secure.

The example programs in Figures 9 and 10 use simple

mechanisms to leak high information and would be rejected

by standard information-flow type systems. The following

sections describe more subtle information flows due to con-

currency in general as well as TSO specifically.

IV. POSSIBILISTIC NONINTERFERENCE FOR SC

In this section we adapt an existing type system for

possibilistic noninterference of SC programs [19] to our formal

language. This involves extending that type system to handle

dynamic thread creation via fork as well as lock-based

synchronization. The type system is shown in Figure 11.

The rules for the sequential fragment of the language are

standard except for the extra restrictions on loops in rule SC-

WHILE. First, the loop guard cannot depend on high data [19].

This restriction prevents high data from affecting a program’s

termination, which can violate possibilistic noninterference as

illustrated in the following program, where Γ maps L to low
and H to high:

L := 1;
while (isZero H) do skip

More subtly, the type system also must prevent loops from

occurring in high contexts [19]. This is illustrated in the

program in Figure 12, where Γ maps X and L to low and H to

high . In this program, the final value of L records whether or

not H has the value 0. It is possible to allow more permissive

typing for high loops [18] by tracking additional information,

but such extensions are orthogonal to our goal of investigating

relaxed memory models.

Our language’s concurrency constructs have no analogue

in the language of Smith and Volpano [19], which supports

neither dynamic thread creation nor any form of synchroniza-

tion. The main novelty is the treatment of synchronization.

The security policy Γ provides a security level for each lock.

Similar to the treatment of conditionals and loops, if a high
lock is acquired then the body of the critical section must

type as high . Furthermore, the rules prevent a low lock from

being acquired in a high context. These restrictions on locks

rule out programs where synchronization allows high data

to influence whether or not a program terminates. Figure 13

shows a program which terminates when H is 1 but runs

forever when H is 0. This program does not satisfy possibilistic

noninterference assuming Γ maps H to high , and it properly

fails to typecheck in �sc in that case: Γ(�) must be low in

order to type the nested while loop, but Γ(�) must be high in

order to acquire the lock from a high context in the forked

thread. These rules for structured locks are less restrictive than

those proposed by Sabelfeld [15] for semaphores, a lower-level

concurrency construct that he requires be low -typed.

We have proven that well-typed programs are secure under

SC:

Theorem 3. If pc; Γ �sc c, then c is possibilistically nonin-
terfering under SC and Γ.

V. POSSIBILISTIC NONINTERFERENCE FOR TSO

Unfortunately, the �sc type system does not ensure possi-

bilistic noninterference under TSO. The key problem is that the

concurrency constructs all have the effect of flushing a thread’s

write buffer. Therefore, employing concurrency within a high
context can leak information to low variables by forcing low
writes to be committed.

Figure 14 illustrates a simple example of the problem. The

program is identical to the one in Figure 1 except that it copies

the values of x and y to shared variables X′ and Y′ and it

conditionally includes two fence instructions. The program

typechecks under �sc assuming all variables have security level

low except for H. However, the program is not possibilistically

secure under TSO. As we’ve seen, under TSO it is possible

for both X′ and Y′ to end with value 0. However, this is not

possible when H has the value 0, since in that case the program

executes sufficient fence instructions to ensure that the result

is sequentially consistent. As a result, if an execution does end

with both X′ and Y′ having the value 0, we have leaked the

fact that H is nonzero.

Figure 15 shows a type system that resolves this problem.

The rules for the sequential fragment are identical to those

in Figure 11. The rules for the concurrency constructs (fence,

sync, and fork) specialize those in Figure 11 by forbidding

such constructs from appearing in high contexts. This addi-

tional restriction makes the program in Figure 14 ill-typed.

This restriction also makes it unnecessary to track security

levels for locks. Indeed, we could soundly replace the sync
rule with the following revised version that ignores the lock’s

security level:

pc; Γ �tso c
low ; Γ �tso sync � do c

We use the slightly more complex rule in order to maintain

uniformity with the paper’s other type systems; there is no

loss of expressiveness.

We have proven that well-typed programs in �tso are secure

under TSO:

Theorem 4. If pc; Γ �tso c then c is possibilistically nonin-
terfering under TSO and Γ.

Furthermore, Theorems 7 and 8 described in Section VI below

imply the following property relating �tso to �sc:
Corollary 5. If pc; Γ �tso c then pc; Γ �sc c.
Together with Theorem 3 this means that the �tso type system

also ensures possibilistic noninterference under SC.

222224

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

Γ � a : τ

Γ(x) � τ

Γ � x : τ Γ � i : τ

Γ � a1 : τ Γ � a2 : τ

Γ � a1 ⊕ a2 : τ

Γ � b : τ

Γ � true : τ Γ � false : τ

Γ � a : τ

Γ � isZero a : τ

Γ � b1 : τ Γ � b2 : τ

Γ � b1 � b2 : τ

pc; Γ �sc c

pc Γ(Y) � Γ(x)

pc; Γ �sc x := Y
SC-LOAD

pc Γ(y) � Γ(X)

pc; Γ �sc X := y
SC-STORE

Γ � a : τ pc τ � Γ(x)

pc; Γ �sc x := a
SC-EVAL

pc; Γ �sc c1 pc; Γ �sc c2
pc; Γ �sc c1; c2

SC-SEQ
Γ � b : τ pc τ ; Γ �sc c1 pc τ ; Γ �sc c2

pc; Γ �sc if b do c1 else c2
SC-IF

Γ � b : low pc; Γ �sc c
low ; Γ �sc while b do c

SC-WHILE
pc; Γ �sc skip SC-SKIP

pc � Γ(�) Γ(�); Γ �sc c
pc; Γ �sc sync � do c

SC-SYNC

pc; Γ �sc fence SC-FENCE
pc; Γ �sc c

pc; Γ �sc fork c
SC-FORK

Fig. 11. A type system for possibilistic noninterference of SC programs.

X := 0;
fork (

if (isZero H) do
while(isZero X) do skip

else skip;
L := 0; X := 1

);
if !(isZero H) do

while (isZero X) do skip;
else skip;
L := 1; X := 1

Fig. 12. Leaking information through high while loops.

sync � do (
S := 0;
fork ((if (isZero H) do

sync � do skip
else

skip);
S := 1);

while (isZero S) do skip
)

Fig. 13. A program which is not possibilistically secure (under TSO or SC)
due to unrestricted use of synchronization.

X := 0;
Y := 0;
fork (X := 1;

if (isZero H) do fence else skip;
y := Y; Y′ := y);

Y := 1;
if (isZero H) do fence else skip;
x := X; X′ := x

Fig. 14. An example illustrating why fences and other concurrency constructs
cannot occur in high contexts.

While our new type system is sound under TSO, it does

not allow locks to be acquired nor threads forked from

within a high context. In the next section we show how to

safely relax these restrictions while preserving possibilistic

noninterference.

VI. TYPING THE WRITE BUFFER FOR MORE

EXPRESSIVENESS

As we saw in the previous section, employing concurrency

in a high context can leak information via the write buffer.

However, we observe that if the write buffer only contains

pending writes to high variables at the point where such

concurrency occurs, then no leakage is possible. We have

designed a new type system based on this observation. In

232325

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

pc; Γ �tso c

pc Γ(Y) � Γ(x)

pc; Γ �tso x := Y
TSO-LOAD

pc Γ(y) � Γ(X)

pc; Γ �tso X := y
TSO-STORE

Γ � a : τ pc τ � Γ(x)

pc; Γ �tso x := a
TSO-EVAL

pc; Γ �tso c1 pc; Γ �tso c2
pc; Γ �tso c1; c2

TSO-SEQ
Γ � b : τ pc τ ; Γ �tso c1 pc τ ; Γ �tso c2

pc; Γ �tso if b do c1 else c2
TSO-IF

Γ � b : low pc; Γ �tso c
low ; Γ �tso while b do c

TSO-WHILE
pc; Γ �tso skip TSO-SKIP

Γ(�); Γ �tso c
low ; Γ �tso sync � do c

TSO-SYNC

low ; Γ �tso fence TSO-FENCE
pc; Γ �tso c

low ; Γ �tso fork c
TSO-FORK

Fig. 15. A type system for possibilistic noninterference of TSO programs.

addition to tracking the security level of the program counter

as usual, the type system also tracks the security level of each

thread’s write buffer: high indicates that all entries in the write

buffer are writes to high variables, and low indicates that the

write buffer may contain writes to low variables. Tracking the

write buffer’s contents in this way requires our type system to

incorporate a form of flow sensitivity.

The rules for our new type system are shown in Figure 16.

The judgment pc;wt ; Γ �wb c ⇒ wt ′ includes a write buffer

typing wt as an extra assumption and “produces” a new write

buffer typing wt ′ that takes into account the possible effects

of the command c on the write buffer. The write buffer typing

is threaded through the typing of a command, as illustrated by

the rule WB-SEQ.

The most important rule in the sequential fragment is WB-

STORE, which ensures that the produced write buffer typing

wt ′ reflects the security level of the variable X . In particular,

if Γ(X) = low then wt′ = low . The rule for conditionals

conservatively takes the meet of the write buffer typings

resulting from the two branches. The rule for loops is similar,

except that—as is common in flow sensitive analyses—the

loop body’s output wt ′ must also be incorporated into its input

write buffer typing.

Typing for each of the concurrency constructs requires

pc � wt , which captures our earlier informal observation.

Namely, the type system allows concurrency in a high context

as long as the write buffer is guaranteed to only contain writes

to high variables. The concurrency constructs all produce a

write buffer typing of high to reflect the fact that they empty

the thread’s write buffer. For a similar reason it is safe to

typecheck the body of a sync and a fork under a high write

buffer typing.

The �wb type system properly rejects the program in

Figure 14 shown earlier. The two occurrences of fence fail

to typecheck because the write buffer typing at each of those

points is low , due to the preceding writes to X and Y.

At the same time, the type system safely supports several

useful idioms that involve concurrency in high contexts. For

example, in the following well-typed code sketch a group of

cooperating threads are forked to perform some high com-

putation whenever a password check succeeds. Additionally,

the number of password checks is recorded in a low global

variable.

Checks := 0;
password := Password;
fence;
while(true) do (

guess := ... ; //Read a password guess
if(guess = password) do (

fork c1;
fork c2;
fork c3

) else
skip;

Checks := Checks + 1;
fence

)

“Worker threads” c1, c2, and c3 may safely acquire high locks,

fork new high threads, and use the fence instruction to run a

concurrent protocol. These threads may not write low variables

or acquire low locks because they are spawned in a high
context, that is, within a conditional that branches on the high
password variable. The fork instructions occur in positions

where the type system can verify that the write buffer does

not contain low writes; the two fence instructions are used to

establish and maintain this invariant.

We have proven that well-typed programs in this type

system are secure under TSO:

Theorem 6. If pc;wt ; Γ �wb c ⇒ wt ′ then c is possibilisti-
cally noninterfering under TSO and Γ.

Our three type systems have a natural ordering in terms of

expressiveness:

242426

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

pc;wt ; Γ �wb c⇒ wt

pc Γ(Y) � Γ(x)

pc;wt ; Γ �wb x := Y ⇒ wt
WB-LOAD

pc Γ(y) � Γ(X)

pc;wt ; Γ �wb X := y ⇒ wt � Γ(X)
WB-STORE

Γ � a : τ pc τ � Γ(x)

pc;wt ; Γ �wb x := a⇒ wt
WB-EVAL

pc;wt ; Γ �wb c1 ⇒ wt1 pc;wt1; Γ �wb c2 ⇒ wt2

pc;wt ; Γ �wb c1; c2 ⇒ wt2
WB-SEQ

Γ � b : τ pc τ ;wt ; Γ �wb c1 ⇒ wt1 pc τ ;wt ; Γ �wb c2 ⇒ wt2

pc;wt ; Γ �wb if b do c1 else c2 ⇒ wt1 � wt2
WB-IF

Γ � b : low low ;wt � wt ′; Γ �wb c⇒ wt ′

low ;wt ; Γ �wb while b do c⇒ wt � wt ′
WB-WHILE

pc;wt ; Γ �wb skip⇒ wt
WB-SKIP

pc � Γ(�) pc � wt Γ(�); high; Γ �wb c⇒ wt ′

pc;wt ; Γ �wb sync � do c⇒ high
WB-SYNC

pc � wt

pc;wt ; Γ �wb fence⇒ high
WB-FENCE

pc; high; Γ �wb c⇒ wt ′ pc � wt

pc;wt ; Γ �wb fork c⇒ high
WB-FORK

Fig. 16. More precise security typing for TSO programs.

Theorem 7. If pc; Γ �tso c then there exists wt ′ such that
pc; low ; Γ �wb c⇒ wt ′.

Theorem 8. If pc;wt ; Γ �wb c⇒ wt ′ then pc; Γ �sc c.
The �sc type system in Figure 11 is the most expressive of the

three (i.e., it accepts the most programs) but is also the only

one that does not guarantee possibilistic security under TSO.

The last theorem above combined with Theorem 3 implies

that the �wb type system ensures possibilistic noninterference

under SC, just as the other two type systems do.

VII. DATA RACE FREEDOM AND POSSIBILISTIC

NONINTERFERENCE

It is considered good programming practice to properly syn-

chronize concurrent accesses to shared data, thereby avoiding

data races. In this section we consider the impact of data-race

freedom on secure information flow for concurrent programs.

Intuitively, a data race occurs when two threads are about

to access the same shared variable, where at least one access

is a write. The following definitions formalize this intuition

for our formal language.

Definition 9 (Reads Next). Thread 〈L, c〉 reads X next if one
of the following conditions holds:
• c has the form x := X
• c has the form c1; c2 and 〈L, c1〉 reads X next
• c has the form holding � do c′ and � ∈ L and 〈L, c′〉

reads X next

Definition 10 (Writes Next). Thread 〈L, c〉 writes X next if
one of the following conditions holds:

• c has the form X := x
• c has the form c1; c2 and 〈L, c1〉 writes X next
• c has the form holding � do c′ and � ∈ L and 〈L, c′〉

writes X next

Definition 11 (Accesses Next). Thread t accesses X next if
either t reads X next or t writes X next.

Definition 12 (Conflicting Threads). Threads s and t conflict

if there exists a variable X such that each thread accesses X
next and at least one thread writes X next.

Definition 13 (Race-Exhibiting Thread Pool). Thread pool P
exhibits a race if it contains two distinct threads that conflict.

A program is considered race-free if it cannot reach a race-

exhibiting thread pool on any SC execution [12]:

Definition 14 (Race-Free Command). Command c is de-
fined to be race-free if for all S, G′, and P ′ such that
((S,Lock), 〈L�, c〉) =⇒sc∗ (G′, P ′), it is not the case that
P ′ exhibits a race.

As a (non-)example, the program in Figure 1 is not race-

free, because there exists an SC execution in which the write

to X in the forked thread conflicts with the read of X in the

main thread.

It is well known that race-free programs do not exhibit any

more behaviors under TSO than they do under SC [12], and

this property holds in our formal language:

Theorem 15. If ((S,Lock), 〈L�, c〉) =⇒tso∗ (G′, 0) and c
is race-free, then ((S,Lock), 〈L�, c〉) =⇒sc∗ (G′, 0).

252527

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

This result, combined with the fact that SC executions are a

subset of TSO executions, implies that our original type system

for possibilistic noninterference under SC is sound under TSO

as well, as long as such programs are data-race-free:

Corollary 16. If c is race-free and c is possibilistically
noninterfering under SC and Γ then c is possibilistically
noninterfering under TSO and Γ.

Corollary 17. If c is race-free and pc; Γ �sc c, then c is
possibilistically noninterfering under TSO and Γ.

The above corollary provides an alternate way to ensure

secure information flow for programs running on weak mem-

ory models like TSO. Rather than designing dedicated type

systems for such memory models, we can typecheck the

program in a type system for secure information flow under

SC, such as our �sc system, and separately check the program

for data races. This approach is appealing because it reduces

the problem to two problems that have existing solutions, and

it avoids the need to reason about weak memory models.

On the other hand, dedicated type systems for weak memory

models can be more expressive. For example, our �tso and

�wb type systems safely allow some programs that contain

data races.

VIII. RELATED WORK

To the best of our knowledge this is the first paper to address

information-flow security for concurrency in the presence of

weak memory models.
Smith and Volpano [19] introduced the use of type systems

to ensure possibilistic noninterference of concurrent programs

with SC semantics. Their setting includes a fixed set of threads

with sequentially-consistent access to shared memory. Our �sc
type system starts from this work and extends it to support

synchronization (sync), thread creation (fork), and memory

barriers (fence).
Possibilistically noninterfering programs are vulnerable to

attacks based on timing, statistical inference, scheduling, and

termination. For instance, an attacker who knows how threads

are likely be scheduled may have an advantage in guessing a

concurrent process’s secret inputs based on its public outputs.

Broadly these attacks are based on the ability of an attacker

to resolve nondeterminism essential to the specification of

a program, a language model, a schedule, or a security

statement.
Probabilistic noninterference addresses these issues by en-

suring that high inputs to a program do not change the proba-

bility distribution describing its low outputs. Probabilistic non-

interference is a very strong property and difficult to enforce

in a practical manner. While some enforcement techniques

are purely type-based [18], others also mix static typing with

new runtime features such as atomicity instructions [22] or

special compilation strategies that ensure high-data-dependent

program paths are not distinguished by scheduling [16].
Observationally deterministic concurrency [14, 20, 24] en-

sures that all runs of a concurrent program look identi-

cal to low observers. Zdancewic and Myers [24] present a

lambda calculus with both message-passing and sequentially-

consistent shared-memory concurrency and introduce a type

system that ensures observational determinism. Observational

determinism is substantially more restrictive than the notion

of data-race-freedom that we employ in Section VII, but it in

turn provides stronger security guarantees.

As mentioned above, possibilistically noninterfering pro-

grams are vulnerable to timing attacks—where an attacker

makes inference about confidential values based on the execu-

tion time of a run—and termination attacks—where an attacker

makes inferences based on a program’s termination behavior.

Effective enforcement of timing and termination sensitive

variants of noninterference is an open area of research. Some

techniques include statically padding the branches of high-

data-dependent conditionals with no-op instructions to mask

(internally or externally) observable differences in instruction

count [3, 15, 16], statically tracking timing information using

information flow labels as an approximation mechanism [18],

and partitioning programs so that high components may be

treated specially by a security-aware scheduler [8].

This paper analyzes an idealized version of the TSO mem-

ory model, with a simple small-step semantics that captures

the essence of TSO and that is comparable to language

models commonly used to investigate information-flow type

systems [15, 16, 18, 19, 22]. Earlier formalisms of TSO have

different goals, including comparing multiple relaxed memory

models [7], supporting program verification [5], and accurately

describing extant hardware platforms [13].

IX. CONCLUSIONS AND FUTURE WORK

This paper has investigated the impact of the Total Store

Order (TSO) memory model on secure information flow. We

have shown that relaxing SC has a nontrivial impact on the

notion of possibilistic noninterference and that it causes a

natural security type system to become unsound. We provided

two alternative type systems that are sound under TSO, with

different tradeoffs between expressiveness and complexity. We

also proved that the original type system is sound under TSO

for programs that are free of data races.

Given the ubiquity of weak memory models in mainstream

multicore hardware and concurrent programming languages,

there is much more to be done in future work. We would like

to consider common memory models other than TSO, for ex-

ample hardware memory models like ARM and POWER [17]

and language-level memory models like those of Java [10]

and C++ [4]. We would also like to address more detailed

architectural models such as those supporting full instruction

sets [13] or with realistic bounds on hardware resources.

Finally, we would like to consider stronger notions of security

in the concurrent setting, such as probabilistic noninterfer-

ence [16, 18, 22] and notions that take into account timing

channels [3, 8, 15, 16, 18].

262628

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. Computer, 29(12):66–

76, 1996.

[2] Sarita V. Adve and Hans-J. Boehm. Memory models:

A case for rethinking parallel languages and hardware.

Commun. ACM, 53:90–101, August 2010.

[3] Johan Agat. Transforming out timing leaks. In Proc. 27th
ACM Symp. on Principles of Programming Languages
(POPL), pages 40–53, Boston, MA, January 2000.

[4] H. J. Boehm and S. Adve. Foundations of the C++

concurrency memory model. In Proceedings of PLDI,
pages 68–78. ACM, 2008.

[5] Sebastian Burckhardt and Madanlal Musuvathi. Effective

program verification for relaxed memory models. In

Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, volume 5123 of Lecture Notes in Computer
Science, pages 107–120. Springer Berlin / Heidelberg,

2008.

[6] Dorothy E. Denning. A lattice model of secure

information flow. Communications of the ACM, 19(5):

236–243, May 1976.

[7] Lisa Higham, Jalal Kawash, and Nathaly Verwaal.

Defining and comparing memory consistency models.

In In Proc. of the 10th Int’l Conf. on Parallel and
Distributed Computing Systems, pages 349–356, 1997.

[8] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf.

Timing- and termination-sensitive secure information

flow: Exploring a new approach. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy, SP

’11, pages 413–428, Washington, DC, USA, 2011. IEEE

Computer Society.

[9] L. Lamport. How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE
Transactions on Computers, 100(28):690–691, 1979.

[10] J. Manson, W. Pugh, and S. Adve. The Java memory

model. In Proceedings of POPL, pages 378–391. ACM,

2005.

[11] Daniel Marino, Abhayendra Singh, Todd Millstein,

Madanlal Musuvathi, and Satish Narayanasamy. A case

for an sc-preserving compiler. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, pages 199–210.

ACM, 2011.

[12] Scott Owens. Reasoning about the implementation of

concurrency abstractions on x86-tso. In ECOOP 2010 -
Object-Oriented Programming, pages 478–503. 2010.

[13] Scott Owens, Susmit Sarkar, and Peter Sewell. A

better x86 memory model: x86-TSO. In TPHOLs ’09:
Conference on Theorem Proving in Higher Order Logics,
volume 5674 of LNCS, pages 391–407. Springer, 2009.

[14] A. W. Roscoe. CSP and determinism in security

modelling. In In Proc. IEEE Symposium on Security and
Privacy, pages 114–127. Society Press, 1995.

[15] Andrei Sabelfeld. The impact of synchronisation on

secure information flow in concurrent programs. In

Proceedings of the Andrei Ershov 4th International
Conference on Perspectives of System Informatics,

volume 2244, pages 225–239. Springer-Verlag, July

2001.

[16] Andrei Sabelfeld and David Sands. Probabilistic

noninterference for multi-threaded programs. In Proc.
of 13th IEEE Computer Security Foundations Workshop,

pages 200–214. IEEE Computer Society, July 2000.

[17] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget,

and Derek Williams. Understanding power multipro-

cessors. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’11, pages 175–186. ACM, 2011.

[18] Geoffrey Smith. A new type system for secure

information flow. In Proc. of 14th IEEE Computer
Security Foundations Workshop, pages 115–125. IEEE,

June 2001.

[19] Geoffrey Smith and Dennis Volpano. Secure information

flow in a multi-threaded imperative language. In Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98,

pages 355–364. ACM, 1998.

[20] Tachio Terauchi. A type system for observational

determinism. In Proceedings of the 2008 21st IEEE
Computer Security Foundations Symposium, pages 287–

300, Washington, DC, USA, 2008. IEEE Computer

Society.

[21] Jeffrey A. Vaughan and Todd Millstein. Secure infor-

mation flow for concurrent programs under total store

order: Supplemental technical material. Technical Report

120007, Computer Science Department, University of

California, Los Angeles, April 2012. Available from

http://fmdb.cs.ucla.edu/Treports/120007.pdf.

[22] Dennis Volpano and Geoffrey Smith. Probabilistic

noninterference in a concurrent language. J. Comput.
Secur., 7:231–253, March 1999.

[23] Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco

Zappa Nardelli, Suresh Jagannathan, and Peter Sewell.

Relaxed-memory concurrency and verified compilation.

In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 43–54. ACM, 2011.

[24] Steve Zdancewic and Andrew C. Myers. Observational

determinism for concurrent program security. In Proc.
of 16th IEEE Computer Security Foundations Workshop,

July 2003.

272729

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:06:06 UTC from IEEE Xplore. Restrictions apply.

