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Evaluating Software Complexity Measures 
ELAINE J.  

Abstract-A set of properties of syntactic software complexity mea- 
sures is proposed to serve as a basis for the evaluation of such mea- 
sures. Four well-known complexity measures are evaluated and com- 
pared using these criteria. This type of formalized evaluation should 
help to clarify the strengths and weaknesses of existing and proposed 
complexity measures, aid in the selection of appropriate measures, and 
ultimately lead to the definition of better measures by emphasizing im- 
portant properties. 

Index Terms-Cyclomatic number, data flow, software complexity, 
software metrics, software science. 

INTRODUCTION 
N the last several years, there has been a great deal of I interest in defining appropriate ways to measure the 

complexity of software. Most of the proposed measures 
are syntactic in nature and frequently involve counting one 
or more textual properties of the program. In most cases, 
the author presents arguments to show that as the fre- 
quency of the selected features increases, while every- 
thing else remains the same, so does the complexity of 
the program. 

Rather than informally discussing the pros and cons of 
various proposed measures, or doing an empirical study 
to see how well each of the proposed measures correlate 
with actual data as in [ 3 ] ,  we present instead abstract 
properties that permit us to formally compare software 
complexity models. This should allow one to determine 
the most suitable measure for various purposes and to 
evaluate newly proposed measures. We then check 
whether such well-known complexity measures as Mc- 
Cabe’s cyclomatic number, Halstead’s programming ef- 
fort, statement count, and Oviedo’s data flow complexity 
satisfy our properties. 

Similar attempts to abstract properties of software met- 
r i c ~ ,  and thereby facilitate the comparison and evaluation 
of competing models have recently been reported. 
Weyuker [30]  has looked at properties of software test 
data adequacy criteria, and Iannino et al .  [14 ]  have done 
similar research for software reliability models. In [ 2 3 ] ,  
Prather presents a set of three axioms for software com- 
plexity measures. Our intent is somewhat different and 
more pragmatic than his. Traditionally when a mathe- 

Manuscript received February 4,  1986; revised May 28, 1986. This was 
supported in  part by the National Science Foundation under Grant 
DCR8501614 and by the Office of Naval Research under Contract N00014- 

The author is with the Department of Computer Science, Courant Insti- 
tute of Mathematical Sciences, New York University, 251 Mercer Street, 
New York, NY 10012. 

85-K-04 14. 

IEEE Log Number 8822457. 

WEYUKER 

matician axiomatizes some notion, the goal is to define a 
set of properties which describe all and only objects that 
might plausibly be considered to be of the desired type. 
Prather shows that, in spite of explicitly identified weak- 
nesses in McCabe’s cyclomatic number, this complexity 
measure satisfies all of his axioms. As mentioned above, 
we are attempting to present a formal framework in which 
proposed measures can be compared and contrasted. By 
doing this, an assessment can be made of the suitability 
of proposed measures for a given purpose. This allows 
one to identify the weaknesses of a measure in a concrete 
way and ultimately should lead to the definition of really 
good notions of software complexity. 

One of the difficulties in assessing complexity measures 
is that it is not always clear what the measure is supposed 
to be measuring. Frequently mentioned characteristics in- 
clude the difficulty of implementing, testing, understand- 
ing, modifying, or maintaining a program. But in most 
cases, these terms are themselves vague. By formalizing 
the properties we use for evaluation, measures can be 
compared and assessed based on the particular needs of 
the user of the proposed metric. 

We view this work as an initial step. We believe the 
properties we propose are generally desirable and rele- 
vant, but certainly are not complete. Hopefully this work 
will provide a foundation which can be built upon. 

DEFINITIONS 
Although most of the ideas of the paper are not really 

dependent on the particular details of the programming 
language, it is nonetheless necessary to have an explicit 
syntax in order to make our definitions precise. Our lan- 
guage will contain a finite number of identifiers. Arith- 
metic expressions are to be constructed using constants, 
identifiers, and the arithmetic operators + , - , *, /, in the 
usual manner. 

An assignment statement has the form: 

VAR + EXP 

where VAR is an identifier and EXP is an arithmetic 
expression. 

A predicate is a Boolean expression having one of the 
forms: 

B1 = B 2 ,  B1 # B 2 ,  B1 < B 2 ,  B1 I B 2 ,  

where B1 and B 2  are each either a constant or an identi- 
fier. A program body is defined recursively: 

1 )  An assignment statement is a program body. 
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2) IF PRED THEN P 
ELSE Q 
END 

is a program body if PRED is a predicate and P and Q are 
program bodies. 

is a program body if PRED is a predicate and P is a pro- 
gram body. 

3) IF PRED THEN P END 

4) WHILE PRED DO P 
ENDWHILE 

is a program body if PRED is a predicate and P is a pro- 
gram body. 

5 )  p 
Q 

is a program body if P and Q are program bodies. 
We shall refer to program bodies of the form 2), 3), or 

4) as conditionals. The program body formed as in 5 )  will 
be said to be composed from P and Q ,  and will be denoted 
by P ;  Q. 

A program statement has the form: 

PROGRAM(variab1es) 

where variables is a list of the input variables. 
An output statement has the form: 

OUTPUT(variab1es) 

where variables is a list of the output variables. 
Finally, a program consists of a PROGRAM state- 

ment, followed by a program body, followed by an OUT- 
PUT statement. We will frequently call this program body 
a program, provided no confusion results. Since our lan- 
guage consists of entirely familiar locutions, there is no 
need for us to specify further its formal semantics. 

For a given program P ,  we write P ( c )  = b to mean 
that the program P on input c halts with output b. We 
write P = Q ( P  is equivalent to Q ), to mean that P and 
Q halt on the same inputs and that P (  c)  = Q (  c )  for all 
such inputs c. 

One way to think of a program is as an object made up 
of smaller programs. Certainly this is the perspective used 
in our definition of a program body, or any recursive def- 
inition. Using this point of view, the basic operation in 
constructing programs is composition. Because of this 
perspective, we will apply measures of complexity to pro- 
gram bodies, rather than programs. This will not affect 
the results in any substantial way for any of the measures 
considered. 

We use the following notation: P ,  Q ,  and R will denote 
program bodies, and 1 P 1 will denote the complexity of 
P ,  with respect to some hypothetical measure. We shall 
assume that for any complexity measure being considered 
and any program body P ,  1 P I is a nonnegative number. 
It follows immediately, therefore, that for any P and Q,  

[ P I  5 I Q 1  of I Q (  5 ( P I .  
That is, the complexity of any pair of program bodies can 
be compared and ordered. It is true that measures have 
been proposed [2], [ 111, [ 191 which are vectors of non- 

negative numbers. A primary advantage of such a mea- 
sure is that it allows the user to consider different (and not 
necessarily related) aspects which contribute to the pro- 
gram’s overall complexity. In such a case the user can 
select whichever components are most relevant for the 
current assessment, and lexicographically order the vec- 
tors accordingly. Alternatively, the user could use a 
scheme which encodes a vector into a single number. In 
either case, the above property holds for complexity mea- 
sures which are vectors of numbers. We consider this 
property to be essential since a primary reason for mea- 
suring program complexity is to be able to compare the 
relative complexities of any set of programs. 

COMPLEXITY MEASURES 
A large number of software complexity measures have 

been proposed in recent years, and there have been a num- 
ber of interesting comparisons of the usefulness of these 
complexity measures [ l ] ,  [6], [8], [16], [27], 1311. 
Among the most frequently cited measures are the number 
of program statements, McCabe’s cyclomatic number 
[18], Halstead’s programming effort [lo], and the knot 
measure [32]. We will not consider this last measure, 
since for a structured language such as ours, the knot 
measure of every program is 0. 

Probably the oldest and most intuitively obvious notion 
of complexity is the number of statements in the program, 
or the statement count. A primary advantage of this mea- 
sure is its simplicity. Although there are a number of dif- 
ferent ways to define a statement, once one has been cho- 
sen, it is a straightforward and easily automated task to 
compute the statement complexity of a program. 

McCabe [18] defines the complexity of a program to 
be : 

z, = e - n + 2p 

where e is the number of edges in a program flow graph, 
n the number of nodes, and p the number of connected 
components. It is further demonstrated that if p = 1, then 
z, = a + 1 where K is the number of predicates in the 
program. 

Questions have been raised as to the most appropriate 
way to treat compound predicates [ 191, but once the de- 
cision has been made, the cyclomatic complexity of a sin- 
gle component program is trivial to compute. Since our 
programming language permits only simple predicates, the 
question of compound predicates is moot for us. 

Halstead [ 101 introduced software science in an attempt 
to measure properties of programs. Following Halstead’s 
notation: 

q l  = Number of distinct operators. 
q2 = Number of distinct operands. 
NI = Total number of operators. 
N2 = Total number of operands. 

The program volume is defined to be: 

v = (NI + N2) log2 (111 + 72) 
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The potential volume V* is defined as the minimum pos- 
sible volume for a given algorithm. Programming effort 
is then defined to be: 

E = V2/V*. 

Since V* is obviously difficult to compute, and not a 
purely syntactic notion, an approximate computational 
formula is frequently used [6], [9], [lo] as a measure of 
program complexity: 

171N2(N* + N2) log2 (171 + 172)  

2172 
E =  

This is a purely syntactic, implementation-dependent no- 
tion, and we shall refer to this measure as the efort mea- 
sure. When several program bodies are being compared, 
we shall sometimes wish to indicate the program body for 
which a property is being computed. Thus we shall write 
E( P ) to denote the effort for program body P or q2( Q ) 
to denote the number of distinct operands in Q. 

A substantially different type of complexity measure, 
based on the data flow characteristics of a program, was 
proposed by Oviedo [2 13. The programming language he 
defined is similar to the one given above, although GOT0 
statements are permitted in his language but do not con- 
tribute to the data flow complexity of the program. Oviedo 
uses terms familiar from compiler optimization literature 
[ 121, [26], defined below: 

A program can be uniquely decomposed into a set of 
disjoint blocks of ordered statements having the property 
that whenever the first statement of the block is executed, 
the other statements are executed in the given order. Fur- 
thermore, the first statement of the block is the only state- 
ment which can be executed directly after the execution 
of a statement in another block. Intuitively, a block is a 
chunk of code which is always executed as a unit. 

AprogramJEow graph is a directed graph in which each 
node corresponds to a block of the program and the edges 
correspond to the program branches. If the nodes ni and 
nj of the flow graph correspond to the program blocks n, 
and nj then there is an edge ( n j ,  nj ) from node ni to node 
nj if it is possible for control to transfer directly from block 
ni to block nj in the program. 

A variable dejinition takes place in a PROGRAM state- 
ment or in an assignment statement. A variable reference 
takes place when the variable is used in an expression 
(i.e., in an assignment statement or predicate) or an OUT- 
PUT statement. 

A locally available variable definition for a program 
block is a definition of the variable in the block. A locally 
exposed variable reference in a block is a reference to a 
variable which is not preceded in the block by a definition 
of that variable. 

A variable definition in block ni is said to reach block 
nk if the definition is locally available in block ni and there 
is a path from ni to nk (i.e.,  nk is a successor of ni) along 
which the variable is not locally available in any block on 
the path (i.e. , the variable is not redefined along that path.) 

A variable definition in a block kills all other definitions 
of this variable that might otherwise reach the block. Let: 

Ri = the set of variable definitions that reach n i .  
Oviedo makes the following assumptions: 
1) a programmer can determine the definition-refer- 

ence relationships within blocks more easily than the def- 
inition-reference relationships between blocks, and 

2 )  the number of different variables which are locally 
exposed in each block is more important than the total 
number of locally exposed variable references in each 
block. 

Let Vi be the set of variables whose references are lo- 
cally exposed in block ni. Then block ni’s dataflow com- 
plexity is 

I1 vr II 
OFi = c DEF ( uj ) 

where DEF ( vi ) represents the number of available defi- 
nitions of variable uj in the set Ri, and 1) 1) denotes the 
cardinality of the set V i .  That is, OFi counts all prior def- 
initions of locally exposed variables in ni which reach n i .  

J = 1  

Finally, the dataJEow complexity of a program body is: , 
II s I1 

DF = OFi 

where S is the set of blocks in the program body. That is, 
the data flow complexity of a program body is the sum of 
the data flow complexities of each block of the program 
body. By this definition, only interblock data flow con- 
tributes to the complexity of a program body. We will 
write D F ( P )  to denote the data flow complexity of P. 
Since we consider the complexity of program bodies, and 
a variable referenced within a program body may have 
been defined in a different program body, we assume that 
for every variable referenced in the program body, there 
is a single definition at the entry node (i.e., we assume 
there is a PROGRAM statement which defines each 
variable). Recall that every program body is single en- 
trant, and hence it makes sense to speak of “the entry 
node. ’ ’ 

This definition is closely related to the test data selec- 
tion or adequacy criterion, all-uses, defined in [24], [25] 
which requires that a test case be included which exer- 
cises every definition-reference pair. Similar testing cri- 
teria have also been proposed in [ 131, [ 171, [20]. Other 
complexity measures have been proposed which depend 
at least in part on data flow in [4], [15], [16], [28]. 

i =  I 

DESIRABLE PROPERTIES OF COMPLEXITY MEASURES 
We now begin our investigation of desirable properties 

of complexity measures. All of the measures we consider 
depend only on syntactic features of the program. This is 
desirable, even necessary, as virtually all semantic ques- 
tions about a program are in general recursively undecid- 
able [7], [29]. 

Our first property reflects the intuition that a measure 
which rates all programs as equally complex is not really 
a measure. We therefore propose: 
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Properry I : ( 3 P ) ( 3 Q ) ( l P I  f I Q l ) .  
Clearly, this is a property which is satisfied by each of 

the measures we consider. Recall, however, that it was 
the failure to satisfy this property for structured languages 
that led us to exclude the knot metric [32] from this study. 

Our next property is a strengthening of Property 1 which 
requires that the measure not be too “coarse”. Property 
1 states that a measure should not rank all programs as 
equally complex. Similar intuition implies that a measure 
is not sensitive enough if it divides all programs into just 
“a few” complexity classes. Property 2 is an attempt to 
formalize this intuition. In a much more abstract vein, 
Blum [5] presented a pair of axioms, which, it is generally 
believed, should be satisfied by any reasonable definition 
of complexity. Property 2 is Blum’s first axiom. 

Property 2: Let c be a nonnegative number. Then there 
are only finitely many programs of complexity c. 

Our language permits only finitely many identifiers. In 
addition, it is reasonable to assume there is some largest 
possible number that can be represented and an upper 
bound on the length of an instruction (perhaps measured 
in terms of the number of bits needed to represent the 
instruction, or the number of operators or operands per- 
mitted, or some similar syntactically determinable char- 
acteristic). This upper bound may be a function of the 
particular machine used, and will be assumed to exist. 

With these assumptions, it follows that statement count 
fulfills Property 2, but cyclomatic number does not. This 
reflects one of the obvious intuitive weaknesses of the cy- 
clomatic number measure: it makes no provision for dis- 
tinguishing between programs which perform very little 
computation and those which perform massive amounts 
of computation, provided that they have the same decision 
structure. This was, at least in part, Hansen’s motivation 
for defining the complexity measure in [ 1 11. 

Since our language permits only finitely many identi- 
fiers and constants, there are at most finitely many distinct 
operands in a program. Similarly, the language contains 
only a fixed, finite number of distinct operators. There- 
fore, for given values of 7, and q2 ,  there are only finitely 
many program bodies having that number of distinct op- 
erators and operands. Since N2( P ) 1 q2( P ), it then fol- 
lows that for a given value e of E ,  there are only finitely- 
many different program bodies P such that E (  P ) = e .  

For data flow complexity, Property 2 does not hold, 
since a program body could contain arbitrarily many as- 
signment statements of the form: 

VAR +- C 

where VAR is an identifier and C is a constant. These 
statements contribute nothing to the data flow complexity 
of the program body. Of course, one might argue that such 
a counterexample of this property is not really a reason- 
able one, especially since there are only finitely many 
identifiers and constants. But since intrablock data flow 
does not contribute at all to the complexity of a program 
body, a block could contain the statements: 

x + f ( X )  
where f is some function of one variable and there are 
arbitrarily many copies of the statement “ X  + f ( X ) ”  in 
the block. These statements add nothing to the complexity 
of the program body in which they appear, and thus the 
complexity of the program body would be the same 
whether there were one or one million copies of the state- 
ment. 

Just as we have argued (Property 2) that it is undesir- 
able for a measure to be too “coarse,” in the sense of 
rating too many programs as being of equal complexity, 
we also do not want a measure to be too “fine” and assign 
to every program a unique complexity. 

Property 3: There are distinct programs P and Q such 
that I P I = 1 Q 1 .  

Clearly, each of the complexity measures we consider 
satisfies Property 3. An interesting question, then, is what 
type of measure would fail to satisfy Property 3? It is easy 
to see that any measure which assigns a unique numerical 
name to each program (sometimes known as a Godel 
numbering [7]), and treats this name as the program’s 
complexity, would fail to satisfy this property. For ex- 
ample, if the binary representation of the program was 
considered as its complexity, such a measure would not 
satisfy Property 3. 

The first three properties we have proposed are really 
properties of measures and do not directly reflect the fact 
that we are dealing with programs which have a syntax 
and semantics. The next property we consider is another 
strengthening of Property 1 ,  and reflects the fact that we 
are considering syntacric complexity measures. 

Properry4: ( 3 P ) ( 3 Q ) ( P  = Q &  [ P I  # I Q / ) .  
The intuition behind Property 4 is that even though two 

programs compute the same function, it is the details of 
the implementation that determine the program’s com- 
plexity. This is, we are measuring the complexity of the 
program, not the function being computed by the pro- 
gram. Since all the measures we consider are entirely im- 
plementation dependent, they all satisfy this property. 

As mentioned earlier, the knot measure [32] would not 
satisfy Property 1 for our language, since for a structured 
language such as ours, the knot measure of every program 
is 0. It therefore follows that the knot measure would also 
fail to satisfy Property 4. Of course, any measure that 
satisfies Property 4, automatically satisfies Property 1 .  
Under what circumstances, then, might a measure satisfy 
Property 1 but not Property 4? Since program equivalence 
is an undecidable question [7], it is clear, intuitively, that 
no usable measure could divide programs into complexity 
classes based on the equivalence of computations. There- 
fore, from a pragmatic point of view, Properties 1 and 4 
are essentially equivalent. 

Our view of programs is that they are objects composed 
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from simpler programs (or more properly program bod- 
ies). Thus it is important to consider the relative com- 
plexities of program bodies related in this way. Central to 
any notion of syntactic program complexity, should be the 
property that the components of a program are no more 
complex than the program itself. We believe that 
“monotonicity” is another fundamentally important 
property and it is difficult to imagine the sense in which 
a measure which fails to satisfy the monotonicity property 
is measuring program complexity. That is: 

Properry5: ( V P ) ( V Q ) ( l P 1  I ( P ;  Q l  and IQ1 5 

It is easy to see that for statement count, 
( v P ) ( V Q ) ( l P ;  Q l  = / P I  + 1QI)andforcyclomatic  
number ( v P ) ( V Q ) (  IP; Q 1 = ( P  1 + IQ 1 - 1 ) .  It fol- 
lows immediately from these relationships that Property 
5 holds for these two complexity measures. It is very dis- 
appointing to discover, however, that Property 5 does nor 
hold for data flow complexity or the effort measure. 

For the data flow measure, the program arises because 
only interblock data flow contributes to the program’s 
complexity. Thus, if when P and Q are concatenated they 
form a single block, the complexity, as computed by this 
measure, could well decrease. For example, the program 
body X + 0 has a data flow complexity of 0, while the 
program body Y + X has a data flow complexity of 1. 
The program body formed by concatenation: 

IP; Q I). 

x+-0 

Y + X  

has a data flow complexity of 0 (since all data references 
are to variables defined within the block), which is less 
than the complexity of one of its parts. 

The problem appears to arise only in cases in which two 
program bodies (or parts of program bodies) are com- 
posed to form a single block. If this is not the case, then 
( v P ) ( V Q ) ( l P ; Q l  2 (PI  + IQI),andhenceProperty 
5 holds. 

For the effort measure, however, the program seems to 
be far more fundamental. Consider the case of a program 
body P with y l ( P )  = 12, q 2 ( P )  = 4,  N l ( P )  = 35, and 
N,(P)  = 44. For such a program, E ( P )  = 20,856. As- 
sume P;  Q is a program body composed from (the above) 
P a n d  Q with q l ( P ;  Q )  = 12, q 2 ( P ;  Q )  = 20, N I ( P ;  Q )  
= 60, and N 2 ( P ;  Q )  = 60. Then E ( P ;  Q )  = 10,800. 
We see that for this, and many other easily constructed 
cases, E ( P )  > E ( P ;  Q )  (i.e., IP 1 > 1 P ;  Q 1 ) .  Notice 
that this is a feasible set of values. If P and Q use exactly 
the same set of operators, then q i ( P )  = q l ( Q )  = ql(P; 
(2). In addition, assume that each of the 4 distinct oper- 
ands of P are each used 11 times, and hence N2( P ) = 
44. If Q contains 16 distinct operands ( i . e . ,  q2( Q ) = 16) 
each used once, then N2( Q ) = 16. If, furthermore, the 
operands of P are all different from the operands of Q ,  it 
follows that q2(P; Q )  = 4 + 16 = 20, and N2(P; Q )  = 
44 + 16 = 60. 

Programming effort was proposed as a measure of the 

amount of effort (time) needed to construct a given pro- 
gram. It is difficult to imagine an argument that i t  is rea- 
sonable that it would take more effort to produce the ini- 
tial portion of a program, than to produce the entire 
program. The failure of the effort measure to fulfill this 
property is therefore of fundamental importance, and 
makes questionable its usefulness as a complexity mea- 
sure. 

Two variants of this measure have been proposed and 
used [ lo] ,  [33] and it is interesting to notice that this prop- 
erty does not hold for any of these versions of the effort 
measure. Halstead speaks of “impurities” (which are fre- 
quently interpreted to be instances of poor programming 
style), and uses the following measure of effort to mini- 
mize their effects when present: 

VlN2(% log:! 111 + 7 2  log2 v 2 )  log2 ( V I  + r2) 

2112 
E =  

That is, the estimator v i  log, v i  + q2 log? 7, replaces NI 
+ N 2 .  Using this definition of E, and the values of y l ,  v 2 ,  
and N2 for P and P ;  Q of the example above, it follows 
that: 

E ( P )  = 13,469 

E ( P ;  Q )  = 11,648 

and thus Property 5 does not hold for this version of the 
effort measure. 

A third variant of the effort measure is based on defin- 
ing: 

I/* = ( 2  + 11;) log, (2  + 7;) 
where T,: is the number of input/output operands needed 
by the program. Then: 

Considering again the above example, with qz (  P ) = 2, 
q;(P; Q )  = 14, for this measure of effort, 

E ( P )  = 12,482 

E ( P ;  Q )  = 5625. 

This demonstrates that Property 5 does not hold for any 
of the three proposed definitions of the effort measure. 

Another related question to consider is whether or not 
the concatenation of a given program body with other pro- 
gram bodies should always affect the complexity of the 
resultant program body in a uniform way? Although a 
given program body R has a fixed complexity in isolation, 
R may not interact at all with a program body P with which 
it is concatenated, while R might interact with Q in subtle 
and important ways which affect the complexity of the 
resulting program body. Similarly, if R was P ,  but R and 
Q were different program bodies of the same complexity, 
the complexity of P;  R = P;  P might well be different 
than that of Q; R. These intuitions are reflected in the next 
property: 
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Property&: ( 3 P ) ( g Q ) ( 3 R ) ( I P [  = IQ1 & ( P ; R (  
f I Q ; R I )  
b: ( g P ) ( 3 Q ) ( g R ) ( I P I  = ( Q l & ( R ; P (  
f IR e l ) .  

Since both cylcomatic number and statement count view 
program bodies as having inherent complexities which are 
static, regardless of their context, they are not able to re- 
flect this possible difference in interaction, and hence nei- 
ther measure satisfies Property 6. 

To see that these properties hold for the data flow mea- 
sure, let P be a program body using a given set of vari- 
ables, while Q is a program body using a different set of 
variables. If R uses some of the same variables as P ,  then 
the computation in R might depend directly on the com- 
putation in P and this should be reflected in the complex- 
ity. In contrast, assume Q and R use totally disjoint sets 
of variables. In that case, they can be considered to call 
for two totally independent computations and thus Q; R 
might be expected to have a lower complexity than P; R .  
A similar example can be constructed to show that Prop- 
erty 6b holds for data flow complexity. 

It is also easy to show that Property 6 holds for the 
effort measure. Let P and Q be program bodies using ex- 
actly the same set of operators and the same total number 
ofoperators. T h e n q l ( P )  = q l ( Q ) a n d N I ( P )  = N l ( Q ) .  
Assume too that P and Q have the same number of distinct 
operands, but that no operand is used in both P and Q 
(that is, the sets of operands in P and Q are disjoint), and 
that the total number of operands used in P and Q is the 
same. Then q2( P ) = q2( Q ) and N2( P ) = N2( Q ). There- 
fore it follows that E(  P ) = E (  Q ). 

Now assume that R uses exactly the same set of oper- 
ators as P and Q, and the same set of operands as P (and 
hence a set disjoint from Q’s set qf oprands). Then: 

= R 1.  
Therefore, in computing the efforts for P ;  R and Q; R, 

the only different value of the factors is q2(Q;  R )  > 
q2(P; R ) .  Hence, E ( P ;  R )  # E ( Q ;  R )  even though 
E ( P )  = E ( Q > .  

Consider now two program bodies P and Q which con- 
tain exactly the same statements but in different orders. 
Are P and Q always of equal complexity? We believe the 
answer to this question should be “not necessarily.” 
Other researchers have argued convincingly that the order 
of statements may well affect the complexity. Piwowarski 
[22] argued, for example, that the depth of nesting of 
loops play a critical role in the complexity of software. 

For a nonstructured language, Woodward et al. [32] ar- 
gued that the complexity of a program is determined by 
the flow of control through the program, and hence the 
order of the statements. 

Property 7 asserts that program complexity should be 
responsive to the order of the statements, and hence the 
potential interaction among statements. 

Property 7: There are program bodies P and Q such 
that Q is formed by permuting the order of the statements 
o f P , a n d ( P (  # I Q \ .  

Neither statement count, cyclomatic number, nor the 
effort measure, satisfy this property since the complexity 
of a program is completely independent of the placement, 
and therefore potential interaction among, the program’s 
statements using these measures. In contrast, since the lo- 
cation of statements may affect their interaction and hence 
the program’s complexity if evaluated using the data flow 
measure, one would expect this property to hold. 

To verify that this property does indeed hold for data 
flow complexity, consider the following program bodies. 

P: WHILEXzO D O X + X - Y  
ENDWHILE 

W H I L E Y z l O D O X + X +  1 
Y + Y -  1 

ENDWHILE 

Q: WHILEX10 D O X + X -  Y 
WHILE Yz 10 DOX + X + 1 

Y t Y - 1  
ENDWHILE 

ENDWHILE 

For these program bodies, DF( P ) = 12 while DF( Q ) 
= 14. The only difference between P and Q is that in P 
the two loops are sequential, whereas in Q the loops are 
nested. In P ,  therefore, the assignments to X and Y in the 
second loop can have no influence on their values in the 
first loop. In Q,  however, the assignments to X and Y in 
the inner loop may affect their values in the outer loop. 

An obvious question is: what kinds of syntactic modi- 
fications should leave the complexity of a program un- 
changed? We shall call P a renaming of Q if P is identical 
to Q except that all instances of an identifier xf of Q have 
been replaced in P by xi where x, does not appear in Q ,  

7 P,f = p 
where Pi + is a renaming of Pi for i = 1, 

Although we believe that in general renaming repre- 
sents a reasonable criterion for deeming two programs of 
equal complexity, we do recognize that there may be cir- 
cumstances under which one might not wish to rank such 
programs as equally complex. In particular, if a complex- 
ity measure is intended to assess the difficulty of under- 
standing (sometimes called the psychological complex- 
ity), then, in fact, the care with which variable names are 
chosen might well affect the measured complexity. How- 
ever, how does one quantify the usefulness of mnemonics 
since this would presumably vary with the individual pro- 
grammer? We therefore propose: 

or if there exists a sequence Q = P I ,  P2,  
* , n - 1. 
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Property 8: If P is a renaming of Q, then 1 P 1 = I Q 1 .  
This property is clearly satisfied by each of the consid- 

ered complexity measures. We therefore ask: what type 
of measure would fail to satisfy Property 8? Again, as was 
the case for Property 3 ,  if a Godel numbering were used 
as a complexity measure, it would fail to satisfy Property 
8. Since using a program's name as its complexity does 
not correspond to one's intuition about what is a reason- 
able complexity measure, it is interesting to note that such 
an encoding scheme considered as a measure of complex- 
ity not only fails to satisfy Properties 3 and 8, but also 
Properties 6 and 7. We consider it corroboration of our 
theory that such an encoding scheme is rated as a very 
inappropriate way to measure program complexity by our 
properties. 

The next property asserts that, at least in some cases, 
the complexity of a program formed by concatenating two 
program bodies is greater than the sum of their complex- 
ities. This reflects the fact that there may be interaction 
between the concatenated subprograms. 

Property9: (3P)(3Q)OPI + I Q 1  < IP; el). 
Properties 5 and 9 allow for the possibility that as a 

program grows from its component program bodies, ad- 
ditional complexity is introduced due to the potential in- 
teraction among these parts. Both cyclomatic number and 
statement count view program bodies as having inherent 

IF Y I  100 THEN Y + 0 
ELSE Y + 1 
END 

Then5 = D F ( P ;  Q )  > D F ( P )  + DF(Q) = 3 + 1. 
This example demonstrates that data flow complexity 

recognizes that there may be interaction between program 
parts and that this interaction will add to the difficulty in 
implementing, testing, understanding, maintaining, or 
modifying the resulting program. 

For the effort measure, Property 9 also holds. To see 
this, consider the case for which the set of operators and 
operands in P is identical to the set of operators and op- 
erands in Q. Then it follows that: 

complexities which are static, regardless of their context, 
and hence Property 9 does not hold for either of these 
measures. 

It is clear that Property 9 does hold for the data flow 
complexity measure since it is exactly this type ofointer- 
action that the measure is designed to capture. Let P be 
the program body: 

IF X < O  THEN Y + -X 
ELSE Y + X 
END 

and Q be the program body: 

where c > 0. 
The last question we discuss is, given that the com- 

plexity of a program body should be no less than the com- 
plexities of each of its parts (Property 5 ) ,  can we make a 
stronger statement? For example, should the complexity 
of a program body be no less than the sum of the com- 
plexities of its components? Intuitively, in  order to im- 
plement a program, each of its parts must be imple- 
mented. Thus one might want to require: 

Property: ( v P ) ( V Q > ( l P I  + I Q 1  5 IP; el). 
Since neither the effort measure nor data flow complex- 

ity fulfill Property 5 ,  it follows immediately that they do 
not satisfy this property. From the relationship stated ear- 
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lier, it follows that this property does hold for statement 
count (and data flow complexity if as a result of compos- 
ing P and Q, two blocks are not merged into one). Tech- 
nically, this property never holds for cyclomatic number 
since for that measure, since I P;  Q I = I P I + I Q I - 1 
< 1 P 1 + 1 Q 1 .  But if cyclomatic number is changed so 
that 

U' = e - n + 2p - 1 = R 

then 1 P ;  Q I = 1 P 1 + 1 Q 1 ,  and this property holds. Note 
that the measure is not changed in any fundamental way 
by this modification, and thus we consider this property 
to hold for cyclomatic number. (Alternately, we could 
consider the modified property: 

( g c > ( v P > ( v Q > ( [ P I  + I Q [  5 If'; Q l  + c )  
where c is a nonnegative constant. Clearly with c = 1, 
this modified property holds for cyclomatic number.) 

But is this really what we want to require? Consider the 
program body P ;  P (that is, the same set of statements 
repeated twice.) Would it take twice as much time to im- 
plement or understand P ;  P as P? Probably not. In gen- 
eral, a measure which views the complexity of a program 
body as independent of its context (such as statement 
count or cyclomatic number) will satisfy this property. 
Although it seems reasonable that the complexity of a 
program body be related to the complexities of all of its 
parts, it is difficult to determine the precise desired rela- 
tionship. We consider this an interesting open question. 

CONCLUSIONS, SUMMARY, AND FUTURE DIRECTIONS 
We have introduced several properties which we be- 

lieve a syntactic complexity measure should fulfill. We 
have closely examined four proposed syntactic complex- 
ity measures to see which properties they have in com- 
mon, and which properties distinguish them. 

We summarize our findings: 

1 Property )I Statement I Cyclomaric 1 Effort 1 Data Flow 1 
Number  11 Count ~ N u m b e r  1 Measure 1 Complexity- 

1 YES YES YES YES 
YES 
YES 
YES 
YES 
NO 
NO 
YES 
NO 

NO 
YES 
YES 
YES 
NO 

NO __ 

YES 
YES 
YES 
NO 

YES 

NO 
YES 
Y E S  
NO 
YES 
YES 
YES 
YES 

By viewing a program as an object built up from smaller 
programs, important differences between the measures 
become clear. Conceptually, both statement count and cy- 
clomatic number view a program's components as having 
inherent complexity, regardless of their context in the 
program. In contrast to this, the complexity of a program 
using the data flow measure depend directly on the place- 
ment of statements and how the components interact via 
the potential flow of data. Programming effort falls some- 
where between these two views. A given group of state- 

ments will yield the same effort regardless of their order, 
but depending on the other program bodies with which a 
program body is composed to build a program, the amount 
that is contributed to the complexity by various textual 
units could vary. 

The failure to satisfy Property 2 is an important weak- 
ness of both the cyclomatic number and data flow mea- 
sures. The problem is that they rate too many programs 
as equally complex. That is, they are not sensitive enough 
to what might reasonably be considered differences in 
program complexity. 

Even more fundamental, however, is the failure of the 
effort measure to satisfy Property 5 .  We believe it is so 
important that it calls into question its usefulness as a syn- 
tactic complexity measure, especially since E (  P ) is sup- 
posed to directly predict the amount of time needed to 
implement P. It is difficult to imagine how it is possible 
that it take longer to produce the initial part of a program, 
than the entire program. 

The data flow complexity measure also failed to satisfy 
Property 5 ,  but in this case it was due to the fact that the 
measure only includes the flow of data between blocks, 
not within blocks. Since two concatenated program bod- 
ies (or their parts) may form a single block, it is possible 
for the data flow complexity of P ;  Q to be less than that 
of P or Q. Oviedo's assumption that it is easier to deter- 
mine definition-reference relationships within blocks than 
between blocks seems reasonable. But perhaps his con- 
clusion that all intrablock data flow should be discounted 
is too strong. Similarly, the assumption that multiple ref- 
erences to the same variable within a block add nothing 
to the complexity may also be too strong. It seems likely 
that minor modifications of this measure can solve its fail- 
ure to fulfill all of our proposed properties. 

Properties 6-9 point out subtle differences between pro- 
grams that neither statement count nor cyclomatic number 
are responsive to. Their failure to satisfy Properties 6 ,  7, 
and 9 reflect their lack of responsiveness to the interaction 
among program units. This is a weakness shared to a lesser 
extent, by the effort measure. Specifically, the failure to 
satisfy Property 7 shows that none of these three measures 
have any provision for differentiating between nested and 
sequential loops. Properties 6-9 also identify positive as- 
pects of using data flow to measure program complexity. 

We have provided the foundation for comparing and 
evaluating software complexity measures in a formal way. 
We have considered four of the most widely cited mea- 
sures and have shown that there are substantial differences 
among them. 

We believe that several questions and future areas of 
study are opened by our investigation. The most obvious 
one is whether the properties proposed here can serve as 
a foundation for the definition of new complexity mea- 
sures. Such measures would presumably avoid the weak- 
nesses of previously proposed measures. 

Another interesting question to consider is whether the 
importance of a given property depends on the particular 
aspect of complexity being studied. For example, as noted 
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in our discussion of Property 8,  the use of well-chosen plexity metrics,” North Carolina State Univ., Tech. Rep. TR-84-06, ~. 
1984. 

[I71 J .  W. Laski and B. Korel. “A data flow oriented program testing 
strategv.” IEEE Trans. Software Enp.. vol. SE-9. no. 3. DD. 347- 

mnemonics might affect the Of a pro- 
gram. Therefore, if the measurement of the comprehend- .. 
ability of a program were the primary feature being as- 
sessed by a complexity measure, and the failed 
to satisfy Property because it took mnemonic use into 
account, then the failure to satisfy Property 8 might be 

354, May 1983. 

vol. SE-2, No. 4 ,  pp. 308-320, Dec. 1976. 

complexity,” SIGPLAN Notices, vol. 12, no. IO,  pp. 61-64, Oct. 

[I81 T. J .  McCabe, “A complexity measure,” IEEE Trans. Software Eng., 

[I91 G. J. Myers, “An extension to the cyclomatic measure of program 

acceptable. A related question is: can additional proper- 
ties be added which are relativized for the particular in- 

1987. 

Eng., vol. SE-IO, no. 6 ,  m. 795-803, No\ 1984. 
1201 S .  C.  Ntafos, “On required element testing ’ ’  IEEE Trans. Softwure 

.. 
tended use of the measure? 1211 E. I. Oviedo, “Control flow, data flow and program complexity,” in  

We hope that this work will encourage a more rigorous 
look at complexity measures and ultimately lead to the 
definition of good meaningful measures. We also hope 
that others will be encouraged to add to our list of prop- 
erties which we view as an initial step in the development 
of a theory of software complexity measures. 
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