IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 9, SEPTEMBER 1988

1357

Evaluating Software Complexity Measures

ELAINE J. WEYUKER

Abstract—A set of properties of syntactic software complexity mea-
sures is proposed to serve as a basis for the evaluation of such mea-
sures. Four well-known complexity measures are evaluated and com-
pared using these criteria. This type of formalized evaluation should
help to clarify the strengths and weaknesses of existing and proposed
complexity measures, aid in the selection of appropriate measures, and
ultimately lead to the definition of better measures by emphasizing im-
portant properties.

Index Terms—Cyclomatic number, data flow, software complexity,
software metrics, software science.

INTRODUCTION

N the last several years, there has been a great deal of

interest in defining appropriate ways to measure the
complexity of software. Most of the proposed measures
are syntactic in nature and frequently involve counting one
or more textual properties of the program. In most cases,
the author presents arguments to show that as the fre-
quency of the selected features increases, while every-
thing else remains the same, so does the complexity of
the program.

Rather than informally discussing the pros and cons of
various proposed measures, or doing an empirical study
to see how well each of the proposed measures correlate
with actual data as in [3], we present instead abstract
properties that permit us to formally compare software
complexity models. This should allow one to determine
the most suitable measure for various purposes and to
evaluate newly proposed measures. We then check
whether such well-known complexity measures as Mc-
Cabe’s cyclomatic number, Halstead’s programming ef-
fort, statement count, and Oviedo’s data flow complexity
satisfy our properties.

Similar attempts to abstract properties of software met-
rics, and thereby facilitate the comparison and evaluation
of competing models have recently been reported.
Weyuker [30] has looked at properties of software test
data adequacy criteria, and Iannino ez al. [14] have done
similar research for software reliability models. In [23],
Prather presents a set of three axioms for software com-
plexity measures. Our intent is somewhat different and
more pragmatic than his. Traditionally when a mathe-

Manuscript received February 4, 1986; revised May 28, 1986. This was
supported in part by the National Science Foundation under Grant
DCR8501614 and by the Office of Naval Research under Contract NO0014-
85-K-0414.

The author is with the Department of Computer Science, Courant Insti-
tute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012.

IEEE Log Number 8822457.

matician axiomatizes some notion, the goal is to define a
set of properties which describe all and only objects that
might plausibly be considered to be of the desired type.
Prather shows that, in spite of explicitly identified weak-
nesses in McCabe’s cyclomatic number, this complexity
measure satisfies all of his axioms. As mentioned above,
we are attempting to present a formal framework in which
proposed measures can be compared and contrasted. By
doing this, an assessment can be made of the suitability
of proposed measures for a given purpose. This allows
one to identify the weaknesses of a measure in a concrete
way and ultimately should lead to the definition of really
good notions of software complexity.

One of the difficulties in assessing complexity measures
is that it is not always clear what the measure is supposed
to be measuring. Frequently mentioned characteristics in-
clude the difficulty of implementing, testing, understand-
ing, modifying, or maintaining a program. But in most
cases, these terms are themselves vague. By formalizing
the properties we use for evaluation, measures can be
compared and assessed based on the particular needs of
the user of the proposed metric.

We view this work as an initial step. We believe the
properties we propose are generally desirable and rele-
vant, but certainly are not complete. Hopefully this work
will provide a foundation which can be built upon.

DEFINITIONS

Although most of the ideas of the paper are not really
dependent on the particular details of the programming
language, it is nonetheless necessary to have an explicit
syntax in order to make our definitions precise. Our lan-
guage will contain a finite number of identifiers. Arith-
metic expressions are to be constructed using constants,
identifiers, and the arithmetic operators +, —, *, /, in the
usual manner.

An assignment statement has the form:

VAR < EXP

where VAR is an identifier and EXP is an arithmetic
expression.

A predicate is a Boolean expression having one of the
forms:

B1 = B2, Bl # B2, Bl < B2, Bl < B2,

where B1 and B2 are each either a constant or an identi-
fier. A program body is defined recursively:
1) An assignment statement is a program body.

0098-5589/88/0900-1357$01.00 © 1988 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

1358

2) IF PRED THEN P
ELSE O
END
is a program body if PRED is a predicate and P and Q are
program bodies.
3) IF PRED THEN P END
is a program body if PRED is a predicate and P is a pro-

gram body.
4) WHILE PRED DO P
ENDWHILE
is a program body if PRED is a predicate and P is a pro-
gram body.
S5y P
0

is a program body if P and Q are program bodies.

We shall refer to program bodies of the form 2), 3), or
4) as conditionals. The program body formed as in 5) will
be said to be composed from P and Q, and will be denoted
by P; Q.

A program statement has the form:

PROGRAM(variables)

where variables is a list of the input variables.
An output statement has the form:

OUTPUT (variables)

where variables is a list of the output variables.

Finally, a program consists of a PROGRAM state-
ment, followed by a program body, followed by an OUT-
PUT statement. We will frequently call this program body
a program, provided no confusion results. Since our lan-
guage consists of entirely familiar locutions, there is no
need for us to specify further its formal semantics.

For a given program P, we write P(c) = b to mean
that the program P on input ¢ halts with output . We
write P = Q (P is equivalent to Q), to mean that P and
Q halt on the same inputs and that P(c) = Q(c) for all
such inputs c.

One way to think of a program is as an object made up
of smaller programs. Certainly this is the perspective used
in our definition of a program body, or any recursive def-
inition. Using this point of view, the basic operation in
constructing programs is composition. Because of this
perspective, we will apply measures of complexity to pro-
gram bodies, rather than programs. This will not affect
the results in any substantial way for any of the measures
considered.

We use the following notation: P, Q, and R will denote
program bodies, and | P | will denote the complexity of
P, with respect to some hypothetical measure. We shall
assume that for any complexity measure being considered
and any program body P, | P | is a nonnegative number.
It follows immediately, therefore, that for any P and Q,

[Pl =gl or Q] =|P[.

That is, the complexity of any pair of program bodies can
be compared and ordered. It is true that measures have
been proposed [2], [11], [19] which are vectors of non-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 9. SEPTEMBER 1988

negative numbers. A primary advantage of such a mea-
sure is that it allows the user to consider different (and not
necessarily related) aspects which contribute to the pro-
gram’s overall complexity. In such a case the user can
select whichever components are most relevant for the
current assessment, and lexicographically order the vec-
tors accordingly. Alternatively, the user could use a
scheme which encodes a vector into a single number. In
either case, the above property holds for complexity mea-
sures which are vectors of numbers. We consider this
property to be essential since a primary reason for mea-
suring program complexity is to be able to compare the
relative complexities of any set of programs.

COMPLEXITY MEASURES

A large number of software complexity measures have
been proposed in recent years, and there have been a num-
ber of interesting comparisons of the usefulness of these
complexity measures [1], [6], [8], [16], [27], [31].
Among the most frequently cited measures are the number
of program statements, McCabe’s cyclomatic number
[18], Halstead’s programming effort [10], and the knot
measure [32]. We will not consider this last measure,
since for a structured language such as ours, the knot
measure of every program is 0.

Probably the oldest and most intuitively obvious notion
of complexity is the number of statements in the program,
or the statement count. A primary advantage of this mea-
sure is its simplicity. Although there are a number of dif-
ferent ways to define a statement, once one has been cho-
sen, it is a straightforward and easily automated task to
compute the statement complexity of a program.

McCabe [18] defines the complexity of a program to
be:

v=e—n+2p

where e is the number of edges in a program flow graph,
n the number of nodes, and p the number of connected
components. It is further demonstrated that if p = 1, then
v = 7 + 1 where 7 is the number of predicates in the
program.

Questions have been raised as to the most appropriate
way to treat compound predicates [19], but once the de-
cision has been made, the cyclomatic complexity of a sin-
gle component program is trivial to compute. Since our
programming language permits only simple predicates, the
question of compound predicates is moot for us.

Halstead [10] introduced software science in an attempt
to measure properties of programs. Following Halstead’s
notation:

7, = Number of distinct operators.
7, = Number of distinct operands.
N, = Total number of operators.
N, = Total number of operands.

The program volume is defined to be:

V = (N; + N) log, (m + n2).

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

WEYUKER: SOFTWARE COMPLEXITY MEASURES

The potential volume V* is defined as the minimum pos-
sible volume for a given algorithm. Programming effort
is then defined to be:

E = V?/V*,

Since V* is obviously difficult to compute, and not a
purely syntactic notion, an approximate computational
formula is frequently used [6], [9], [10] as a measure of
program complexity:

- 7 Nx(N, + N,) log, (91 + m)
2,

E

This is a purely syntactic, implementation-dependent no-
tion, and we shall refer to this measure as the effort mea-
sure. When several program bodies are being compared,
we shall sometimes wish to indicate the program body for
which a property is being computed. Thus we shall write
E(P) to denote the effort for program body P or 1,(Q)
to denote the number of distinct operands in Q.

A substantially different type of complexity measure,
based on the data flow characteristics of a program, was
proposed by Oviedo [21]. The programming language he
defined is similar to the one given above, although GOTO
statements are permitted in his language but do not con-
tribute to the data flow complexity of the program. Oviedo
uses terms familiar from compiler optimization literature
[12], [26], defined below:

A program can be uniquely decomposed into a set of
disjoint blocks of ordered statements having the property
that whenever the first statement of the block is executed,
the other statements are executed in the given order. Fur-
thermore, the first statement of the block is the only state-
ment which can be executed directly after the execution
of a statement in another block. Intuitively, a block is a
chunk of code which is always executed as a unit.

A program flow graph is a directed graph in which each
node corresponds to a block of the program and the edges
correspond to the program branches. If the nodes n; and
n; of the flow graph correspond to the program blocks »,
and n; then there is an edge (n;, n;) from node n; to node
n; if it is possible for control to transfer directly from block
n; to block n; in the program.

A variable definition takes place in a PROGRAM state-
ment or in an assignment statement. A variable reference
takes place when the variable is used in an expression
(i.e., in an assignment statement or predicate) or an OUT-
PUT statement.

A locally available variable definition for a program
block is a definition of the variable in the block. A locally
exposed variable reference in a block is a reference to a
variable which is not preceded in the block by a definition
of that variable.

A variable definition in block #; is said to reach block
n, if the definition is locally available in block n; and there
is a path from n; to n; (i.e., n; is a successor of n;) along
which the variable is not locally available in any block on
the path (i.e., the variable is not redefined along that path.)

1359

A variable definition in a block kills all other definitions
of this variable that might otherwise reach the block. Let:

R; = the set of variable definitions that reach n;.

Oviedo makes the following assumptions:

1) a programmer can determine the definition-refer-
ence relationships within blocks more easily than the def-
inition-reference relationships between blocks, and

2) the number of different variables which are locally
exposed in each block is more important than the total
number of locally exposed variable references in each
block.

Let V; be the set of variables whose references are lo-
cally exposed in block n;. Then block n;’s data flow com-
plexity is

il
DF; = Z][DEF (7;)
=

where DEF (v,) represents the number of available defi-
nitions of variable 2, in the set R;, and ||V, || denotes the
cardinality of the set V;. That is, DF; counts all prior def-
initions of locally exposed variables in n; which reach n;.

Finally, the data flow complexity of a program body is:

st
DF = ‘ZI DF,

where § is the set of blocks in the program body. That is,
the data flow complexity of a program body is the sum of
the data flow complexities of each block of the program
body. By this definition, only interblock data flow con-
tributes to the complexity of a program body. We will
write DF(P) to denote the data flow complexity of P.
Since we consider the complexity of program bodies, and
a variable referenced within a program body may have
been defined in a different program body, we assume that
for every variable referenced in the program body, there
is a single definition at the entry node (i.e., we assume
there is a PROGRAM statement which defines each
variable). Recall that every program body is single en-
trant, and hence it makes sense to speak of ‘‘the entry
node.’’

This definition is closely related to the test data selec-
tion or adequacy criterion, all-uses, defined in {24], [25]
which requires that a test case be included which exer-
cises every definition-reference pair. Similar testing cri-
teria have also been proposed in [13], [17], [20]. Other
complexity measures have been proposed which depend
at least in part on data flow in [4], [15], [16], [28].

DESIRABLE PROPERTIES OF COMPLEXITY MEASURES

We now begin our investigation of desirable properties
of complexity measures. All of the measures we consider
depend only on syntactic features of the program. This is
desirable, even necessary, as virtually all semantic ques-
tions about a program are in general recursively undecid-
able [7], [29].

Our first property reflects the intuition that a measure
which rates all programs as equally complex is not really
a measure. We therefore propose:

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

1360

Property 1:(3P)(3Q)(|P| # |Q])

Clearly, this is a property which is satisfied by each of
the measures we consider. Recall, however, that it was
the failure to satisfy this property for structured languages
that led us to exclude the knot metric [32] from this study.

Our next property is a strengthening of Property 1 which
requires that the measure not be too ‘‘coarse’’. Property
1 states that a measure should not rank all programs as
equally complex. Similar intuition implies that a measure
is not sensitive enough if it divides all programs into just
‘‘a few’’ complexity classes. Property 2 is an attempt to
formalize this intuition. In a much more abstract vein,
Blum [5] presented a pair of axioms, which, it is generally
believed, should be satisfied by any reasonable definition
of complexity. Property 2 is Blum’s first axiom.

Property 2: Let ¢ be a nonnegative number. Then there
are only finitely many programs of complexity c.

Our language permits only finitely many identifiers. In
addition, it is reasonable to assume there is some largest
possible number that can be represented and an upper
bound on the length of an instruction (perhaps measured
in terms of the number of bits needed to represent the
instruction, or the number of operators or operands per-
mitted, or some similar syntactically determinable char-
acteristic). This upper bound may be a function of the
particular machine used, and will be assumed to exist.

With these assumptions, it follows that statement count
fulfills Property 2, but cyclomatic number does not. This
reflects one of the obvious intuitive weaknesses of the cy-
clomatic number measure: it makes no provision for dis-
tinguishing between programs which perform very little
computation and those which perform massive amounts
of computation, provided that they have the same decision
structure. This was, at least in part, Hansen’s motivation
for defining the complexity measure in [11].

Since our language permits only finitely many identi-
fiers and constants, there are at most finitely many distinct
operands in a program. Similarly, the language contains
only a fixed, finite number of distinct operators. There-
fore, for given values of », and »,, there are only finitely
many program bodies having that number of distinct op-
erators and operands. Since N,(P) = 7,(P), it then fol-
lows that for a given value e of E, there are only finitely-
many different program bodies P such that E(P) = e.

For data flow complexity, Property 2 does not hold,
since a program body could contain arbitrarily many as-
signment statements of the form:

VAR « C

where VAR is an identifier and C is a constant. These
statements contribute nothing to the data flow complexity
of the program body. Of course, one might argue that such
a counterexample of this property is not really a reason-
able one, especially since there are only finitely many
identifiers and constants. But since intrablock data flow
does not contribute at all to the complexity of a program
body, a block could contain the statements:

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. i4. NO. 9. SEPTEMBER 1988

X< C
X < f(X)

X < flX)

where f is some function of one variable and there are
arbitrarily many copies of the statement **X < f(X)’’ in
the block. These statements add nothing to the complexity
of the program body in which they appear, and thus the
complexity of the program body would be the same
whether there were one or one million copies of the state-
ment.

Just as we have argued (Property 2) that it is undesir-
able for a measure to be too ‘‘coarse,’’ in the sense of
rating too many programs as being of equal complexity,
we also do not want a measure to be too ‘‘fine’” and assign
to every program a unique complexity.

Property 3: There are distinct programs P and @ such
that |P| = |Q].

Clearly, each of the complexity measures we consider
satisfies Property 3. An interesting question, then, is what
type of measure would fail to satisfy Property 3? It is easy
to see that any measure which assigns a unique numerical
name to each program (sometimes known as a Gédel
numbering [7]), and treats this name as the program’s
complexity, would fail to satisfy this property. For ex-
ample, if the binary representation of the program was
considered as its complexity, such a measure would not
satisfy Property 3.

The first three properties we have proposed are really
properties of measures and do not directly reflect the fact
that we are dealing with programs which have a syntax
and semantics. The next property we consider is another
strengthening of Property 1, and reflects the fact that we
are considering syntactic complexity measures.

Property 4: (3P)(3Q)(P = Q& |P| # |Q)).

The intuition behind Property 4 is that even though two
programs compute the same function, it is the details of
the implementation that determine the program’s com-
plexity. This is, we are measuring the complexity of the
program, not the function being computed by the pro-
gram. Since all the measures we consider are entirely im-
plementation dependent, they all satisfy this property.

As mentioned earlier, the knot measure [32] would not
satisfy Property 1 for our language, since for a structured
language such as ours, the knot measure of every program
is 0. It therefore follows that the knot measure would also
fail to satisfy Property 4. Of course, any measure that
satisfies Property 4, automatically satisfies Property 1.
Under what circumstances, then, might a measure satisfy
Property 1 but not Property 4? Since program equivalence
is an undecidable question [7], it is clear, intuitively, that
no usable measure could divide programs into complexity
classes based on the equivalence of computations. There-
fore, from a pragmatic point of view, Properties 1 and 4
are essentially equivalent.

Our view of programs is that they are objects composed

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

WEYUKER: SOFTWARE COMPLEXITY MEASURES

from simpler programs (or more properly program bod-
ies). Thus it is important to consider the relative com-
plexities of program bodies related in this way. Central to
any notion of syntactic program complexity, should be the
property that the components of a program are no more
complex than the program itself. We believe that
“‘monotonicity’” is another fundamentally important
property and it is difficult to imagine the sense in which
a measure which fails to satisfy the monotonicity property
is measuring program complexity. That is:

Property 5: (VP)(VQ)(|P| = |P; Q| and |Q]| =
[P; Q).

It is easy to see that for statement count,
(VPY(VQ)(|P; Q| = |P| + |Q]) and for cyclomatic
number (VP)(VQ)(|P; Q| =[P+ [Q]| — 1). It fol-
lows immediately from these relationships that Property
5 holds for these two complexity measures. It is very dis-
appointing to discover, however, that Property 5 does not
hold for data flow complexity or the effort measure.

For the data flow measure, the program arises because
only interblock data flow contributes to the program’s
complexity. Thus, if when P and Q are concatenated they
form a single block, the complexity, as computed by this
measure, could well decrease. For example, the program
body X < 0 has a data flow complexity of 0, while the
program body Y < X has a data flow complexity of 1.
The program body formed by concatenation:

X<0
Y« X

has a data flow complexity of O (since all data references
are to variables defined within the block), which is less
than the complexity of one of its parts.

The problem appears to arise only in cases in which two
program bodies (or parts of program bodies) are com-
posed to form a single block. If this is not the case, then
(VP)Y(YQ)(|P, Q| = |P| +|@Q]|), and hence Property
5 holds.

For the effort measure, however, the program seems to
be far more fundamental. Consider the case of a program
body P with 7,(P) = 12, 5,(P) = 4, Ni(P) = 35, and
N,(P) = 44. For such a program, E(P) = 20,856. As-
sume P; Q is a program body composed from (the above)
P and Q with n,(P; Q) = 12, y(P; Q) = 20, Ny(P; Q)
= 60, and N,(P; @) = 60. Then E(P; Q) = 10,800.
We see that for this, and many other easily constructed
cases, E(P) > E(P; Q) (i.e., |P| > | P; Q). Notice
that this is a feasible set of values. If P and Q use exactly
the same set of operators, then 7,(P) = ,(Q) = n,(P;
Q). In addition, assume that each of the 4 distinct oper-
ands of P are each used 11 times, and hence N,(P) =
44. If Q contains 16 distinct operands (i.e., 7,(Q) = 16)
each used once, then N,(Q) = 16. If, furthermore, the
operands of P are all different from the operands of Q, it
follows that 7,(P; @) =4 + 16 = 20, and N,(P; Q) =
44 + 16 = 60.

Programming effort was proposed as a measure of the

1361

amount of effort (time) needed to construct a given pro-
gram. It is difficult to imagine an argument that it is rea-
sonable that it would take more effort to produce the ini-
tial portion of a program, than to produce the entire
program. The failure of the effort measure to fulfill this
property is therefore of fundamental importance, and
makes questionable its usefulness as a complexity mea-
sure.

Two variants of this measure have been proposed and
used [10], [33] and it is interesting to notice that this prop-
erty does not hold for any of these versions of the effort
measure. Halstead speaks of “‘impurities’’ (which are fre-
quently interpreted to be instances of poor programming
style), and uses the following measure of effort to mini-
mize their effects when present:

E - 1 Na(n logy my + 7, log, np) logy (m + n2)

2n,

That is, the estimator 5, log, 7, + 7, log, 1, replaces N,
+ N,. Using this definition of E, and the values of 4, 72,
and N, for P and P; Q of the example above, it follows
that:

E(P) = 13,469
E(P; Q) = 11,648

and thus Property 5 does not hold for this version of the
effort measure.
A third variant of the effort measure is based on defin-
ing:
V¥ = (2 + 7)) log, (2 + 7%)

where 55 is the number of input/output operands needed
by the program. Then:
2
((N; + N>) log, (m + 12))

(2 + 7)) logz (2 + n)

Considering again the above example, with 75 (P) = 2,
n5(P; Q) = 14, for this measure of effort,

E(P) = 12,482
E(P; Q) = 5625.

This demonstrates that Property 5 does not hold for any
of the three proposed definitions of the effort measure.

Another related question to consider is whether or not
the concatenation of a given program body with other pro-
gram bodies should always affect the complexity of the
resultant program body in a uniform way? Although a
given program body R has a fixed complexity in isolation,
R may not interact at all with a program body P with which
it is concatenated, while R might interact with Q in subtle
and important ways which affect the complexity of the
resulting program body. Similarly, if R was P, but R and
Q were different program bodies of the same complexity,
the complexity of P; R = P; P might well be different
than that of Q; R. These intuitions are reflected in the next
property:

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

1362

Property 6a: (3P)(3Q)(3R)(|P| = Q| & |P; R|
#|Q;R])
b: (3P)(3Q)(IR)(|P| = |Q| & |R; P |
|R; Q).

Since both cylcomatic number and statement count view
program bodies as having inherent complexities which are
static, regardless of their context, they are not able to re-
flect this possible difference in interaction, and hence nei-
ther measure satisfies Property 6.

To see that these properties hold for the data flow mea-
sure, let P be a program body using a given set of vari-
ables, while Q is a program body using a different set of
variables. If R uses some of the same variables as P, then
the computation in R might depend directly on the com-
putation in P and this should be reflected in the complex-
ity. In contrast, assume Q and R use totally disjoint sets
of variables. In that case, they can be considered to call
for two totally independent computations and thus Q; R
might be expected to have a lower complexity than P; R.
A similar example can be constructed to show that Prop-
erty 6b holds for data flow complexity.

It is also easy to show that Property 6 holds for the
effort measure. Let P and Q be program bodies using ex-
actly the same set of operators and the same total number
of operators. Then (P) = 7,(@Q) and N\ (P) = N,(Q).
Assume too that P and Q have the same number of distinct
operands, but that no operand is used in both P and Q
(that is, the sets of operands in P and Q are disjoint), and
that the total number of operands used in P and Q is the
same. Then n,(P) = 5,(Q) and N,(P) = Ny(Q). There-
fore it follows that E(P) = E(Q).

Now assume that R uses exactly the same set of oper-
ators as P and Q, and the same set of operands as P (and
hence a set disjoint from Q’s set of oprands). Then:

n(P; R) = n(Q; R)
N(P; R) = Ni(Q; R)
1(P; R) = ny(P)
1(Q; R) = m(Q) + mAR) = n(P) + m(R)
> 7(P; R)
No(P; R) = Ny(P) + Ny(R) = No(Q) + Ny(R)

= N(Q; R).

Therefore, in computing the efforts for P; R and Q; R,
the only different value of the factors is 7,(Q; R) >
1(P; R). Hence, E(P; R) # E(Q; R) even though
E(P) = E(Q).

Consider now two program bodies P and Q which con-
tain exactly the same statements but in different orders.
Are P and Q always of equal complexity? We believe the
answer to this question should be ‘‘not necessarily.”
Other researchers have argued convincingly that the order
of statements may well affect the complexity. Piwowarski
[22] argued, for example, that the depth of nesting of
loops play a critical role in the complexity of software.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 9, SEPTEMBER 1988

For a nonstructured language, Woodward er al. [32] ar-
gued that the complexity of a program is determined by
the flow of control through the program, and hence the
order of the statements.

Property 7 asserts that program complexity should be
responsive to the order of the statements, and hence the
potential interaction among statements.

Property 7: There are program bodies P and Q such
that @ is formed by permuting the order of the statements
of P,and |P| + |Q].

Neither statement count, cyclomatic number, nor the
effort measure, satisfy this property since the complexity
of a program is completely independent of the placement,
and therefore potential interaction among, the program’s
statements using these measures. In contrast, since the lo-
cation of statements may affect their interaction and hence
the program’s complexity if evaluated using the data flow
measure, one would expect this property to hold.

To verify that this property does indeed hold for data
flow complexity, consider the following program bodies.

P: WHILEX=0 DOX < X-Y
ENDWHILE
WHILE Y=10DO X « X + 1
Y<Y-1
ENDWHILE

Q: WHILE X=0 DOX < X-Y
WHILE Y=10DO X <« X + 1
Y<Y-1
ENDWHILE
ENDWHILE

For these program bodies, DF(P) = 12 while DF(Q)
= 14. The only difference between P and Q is that in P
the two loops are sequential, whereas in Q the loops are
nested. In P, therefore, the assignments to X and Y in the
second loop can have no influence on their values in the
first loop. In Q, however, the assignments to X and Y in-
the inner loop may affect their values in the outer loop.

An obvious question is: what kinds of syntactic modi-
fications should leave the complexity of a program un-
changed? We shall call P a renaming of Q if P is identical
to Q except that all instances of an identifier x; of Q have
been replaced in P by x; where x; does not appear in Q,
or if there exists a sequence Q = P, Py, -+ * , P, = P
where P;, | is a renaming of P;fori =1, - -+ ,n — 1.

Although we believe that in general renaming repre-
sents a reasonable criterion for deeming two programs of
equal complexity, we do recognize that there may be cir-
cumstances under which one might not wish to rank such
programs as equally complex. In particular, if a complex-
ity measure is intended to assess the difficulty of under-
standing (sometimes called the psychological complex-
ity), then, in fact, the care with which variable names are
chosen might well affect the measured complexity. How-
ever, how does one quantify the usefulness of mnemonics
since this would presumably vary with the individual pro-
grammer? We therefore propose:

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

WEYUKER: SOFTWARE COMPLEXITY MEASURES

Property 8: If P is a renaming of @, then |P| = | Q.

This property is clearly satisfied by each of the consid-
ered complexity measures. We therefore ask: what type
of measure would fail to satisfy Property 8?7 Again, as was
the case for Property 3, if a Godel numbering were used
as a complexity measure, it would fail to satisfy Property
8. Since using a program’s name as its complexity does
not correspond to one’s intuition about what is a reason-
able complexity measure, it is interesting to note that such
an encoding scheme considered as a measure of complex-
ity not only fails to satisfy Properties 3 and 8, but also
Properties 6 and 7. We consider it corroboration of our
theory that such an encoding scheme is rated as a very
inappropriate way to measure program complexity by our
properties.

The next property asserts that, at least in some cases,
the complexity of a program formed by concatenating two
program bodies is greater than the sum of their complex-
ities. This reflects the fact that there may be interaction
between the concatenated subprograms.

Property 9: (3P)(3Q)(|P| + Q| < |P; Q).

Properties S and 9 allow for the possibility that as a
program grows from its component program bodies, ad-
ditional complexity is introduced due to the potential in-
teraction among these parts. Both cyclomatic number and
statement count view program bodies as having inherent

E(P; Q)

1363

IF Y<100 THEN Y < 0
ELSE Y « 1
END

Then 5 = DF(P; Q) > DF(P) + DF(Q) =3 + 1.

This example demonstrates that data flow complexity
recognizes that there may be interaction between program
parts and that this interaction will add to the difficulty in
implementing, testing, understanding, maintaining, or
modifying the resulting program.

For the effort measure, Property 9 also holds. To see
this, consider the case for which the set of operators and
operands in P is identical to the set of operators and op-
erands in Q. Then it follows that:

n(P) = n(Q) = n(P; Q)

and

n(P) = 1(Q) = maAP; Q).
However:

N(P; Q) = Ni(P) + Ni(Q)
and

NoP; Q) = Ny(P) + Ny(Q).
Therefore:

_ (P Q)(N:(P) + No(Q))(Mi(P) + Ni(Q) + No(P) + No(Q)) logy (m(P; @) + m(P; 0))

2n,(P; Q)

_ m(P) Ny(P)(N((P) + Ny(P)) log, (m(P) + ny(P))

2772(P)

N 71(Q) No(Q)(Ni(Q) + Nx(Q)) logy (m(Q) + m(Q))

2112(Q)

+ ﬂl(P) Nz(P)(NI(Q) + Nz(Q)) log, (m(P) + ﬂz(P))

2772(P)

. M(P) No(Q)(N(P) + No(P)) logs (m(P) + noP))

2’72(Q)
=E(P)+ E(Q) +c

complexities which are static, regardless of their context,
and hence Property 9 does not hold for either of these
measures.

It is clear that Property 9 does hold for the data flow
complexity measure since it is exactly this type of dnter-
action that the measure is designed to capture. Let P be
the program body:

IF X<OTHEN Y « —-X
ELSEY « X
END

and Q be the program body:

where ¢ > 0.

The last question we discuss is, given that the com-
plexity of a program body should be no less than the com-
plexities of each of its parts (Property 5), can we make a
stronger statement? For example, should the complexity
of a program body be no less than the sum of the com-
plexities of its components? Intuitively, in order to im-
plement a program, each of its parts must be imple-
mented. Thus one might want to require:

Property: (VP)(VQ)(|P| +|Q| =< |P; Q).

Since neither the effort measure nor data flow complex-
ity fulfill Property 5, it follows immediately that they do
not satisfy this property. From the relationship stated ear-

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

1364

lier, it follows that this property does hold for statement
count (and data flow complexity if as a result of compos-
ing P and Q, two blocks are not merged into one). Tech-
nically, this property never holds for cyclomatic number
since for that measure, since |P; Q| = [P| + |Q| — 1
< |P| + |Q]|. But if cyclomatic number is changed so
that

vVV=e—-n+2p-—-1=n

then |P; Q| = |P| + | @, and this property holds. Note
that the measure is not changed in any fundamental way
by this modification, and thus we consider this property
to hold for cyclomatic number. (Alternately, we could
consider the modified property:

(3)(vPY(vQ)([P| + |l = [Ps 2] + ¢)

where c is a nonnegative constant. Clearly with ¢ = 1,
this modified property holds for cyclomatic number.)
But is this really what we want to require? Consider the
program body P; P (that is, the same set of statements
repeated twice.) Would it take twice as much time to im-
plement or understand P; P as P? Probably not. In gen-
eral, a measure which views the complexity of a program
body as independent of its context (such as statement
count or cyclomatic number) will satisfy this property.
Although it seems reasonable that the complexity of a
program body be related to the complexities of all of its
parts, it is difficult to determine the precise desired rela-
tionship. We consider this an interesting open question.

CONCLUSIONS, SUMMARY, AND FUTURE DIRECTIONS

We have introduced several properties which we be-
lieve a syntactic complexity measure should fulfill. We
have closely examined four proposed syntactic complex-
ity measures to see which properties they have in com-
mon, and which properties distinguish them.

We summarize our findings:

Property || Statement | Cyclomatic TEffort Data Flow
Number Count | Number Measure | Complexity
1 YES YES YES YES
2 YES NO YES NO
3 YES YES YES YES
4 YES YES YES YES
5 YES YES NO NO
6 NO NO YES YES
7 NO NO NO YES
8 YES YES YES YES
| 9 NO NO YES YES |

By viewing a program as an object built up from smaller
programs, important differences between the measures
become clear. Conceptually, both statement count and cy-
clomatic number view a program’s components as having
inherent complexity, regardless of their context in the
program. In contrast to this, the complexity of a program
using the data flow measure depend directly on the place-
ment of statements and how the components interact via
the potential flow of data. Programming effort falls some-
where between these two views. A given group of state-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 9, SEPTEMBER 1988

ments will yield the same effort regardless of their order,
but depending on the other program bodies with which a
program body is composed to build a program, the amount
that is contributed to the complexity by various textual
units could vary.

The failure to satisfy Property 2 is an important weak-
ness of both the cyclomatic number and data flow mea-
sures. The problem is that they rate too many programs
as equally complex. That is, they are not sensitive enough
to what might reasonably be considered differences in
program complexity. _

Even more fundamental, however, is the failure of the
effort measure to satisfy Property 5. We believe it is so
important that it calls into question its usefulness as a syn-
tactic complexity measure, especially since E(P) is sup-
posed to directly predict the amount of time needed to
implement P. It is difficult to imagine how it is possible
that it take longer to produce the initial part of a program,
than the entire program.

The data flow complexity measure also failed to satisfy
Property 5, but in this case it was due to the fact that the
measure only includes the flow of data between blocks,
not within blocks. Since two concatenated program bod-
ies (or their parts) may form a single block, it is possible
for the data flow complexity of P; Q to be less than that
of P or Q. Oviedo’s assumption that it is easier to deter-
mine definition-reference relationships within blocks than
between blocks seems reasonable. But perhaps his con-
clusion that a// intrablock data flow should be discounted
is too strong. Similarly, the assumption that multiple ref-
erences to the same variable within a block add nothing
to the complexity may also be too strong. It seems likely
that minor modifications of this measure can solve its fail-
ure to fulfill all of our proposed properties.

Properties 6-9 point out subtle differences between pro-
grams that neither statement count nor cyclomatic number
are responsive to. Their failure to satisfy Properties 6, 7,
and 9 reflect their lack of responsiveness to the interaction
among program units. This is a weakness shared to a lesser
extent, by the effort measure. Specifically, the failure to
satisfy Property 7 shows that none of these three measures
have any provision for differentiating between nested and
sequential loops. Properties 6-9 also identify positive as-
pects of using data flow to measure program complexity.

We have provided the foundation for comparing and
evaluating software complexity measures in a formal way.
We have considered four of the most widely cited mea-
sures and have shown that there are substantial differences
among them.

We believe that several questions and future areas of
study are opened by our investigation. The most obvious
one is whether the properties proposed here can serve as
a foundation for the definition of new complexity mea-
sures. Such measures would presumably avoid the weak-
nesses of previously proposed measures.

Another interesting question to consider is whether the
importance of a given property depends on the particular
aspect of complexity being studied. For example, as noted

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

WEYUKER: SOFTWARE COMPLEXITY MEASURES

in our discussion of Property 8, the use of well-chosen
mnemonics might affect the understandability of a pro-
gram. Therefore, if the measurement of the comprehend-
ability of a program were the primary feature being as-
sessed by a complexity measure, and the measure failed
to satisfy Property 8 because it took mnemonic use into
account, then the failure to satisfy Property 8 might be
acceptable. A related question is: can additional proper-
ties be added which are relativized for the particular in-
tended use of the measure?

We hope that this work will encourage a more rigorous
look at complexity measures and ultimately lead to the
definition of good meaningful measures. We also hope
that others will be encouraged to add to our list of prop-
erties which we view as an initial step in the development
of a theory of software complexity measures.

ACKNOWLEDGMENT

I am grateful to M. Davis, P. Frankl, and S. Weiss for
making many helpful and interesting suggestions.

REFERENCES

[1] A. L. Baker and S. H. Zweben, ‘‘A comparison of measures of con-
trol flow complexity,”” IEEE Trans. Software Eng., vol. SE-6, no. 6,
pp. 506-512, Nov. 1980.

[2] V. R. Basili and E. E. Katz, ‘*Metrics of interest in Ada develop-
ment,”” in Proc. 1983 IEEE Computer Society Workshop Software
Engineering Technology Transfer, 1983, pp. 22-29.

[3] V. R. Basili, R. W. Selby, and T.-Y. Phillips, ‘‘Metric analysis and
data validation across Fortran projections,”” /EEE Trans. Software
Eng., vol. SE-9, no. 6, pp. 652-663, Nov. 1983.

[4] J. M. Bieman and W. R. Edwards, ‘‘Measuring data dependency
complexity,”” Dep. Comput. Sci., Univ. Southwestern Louisiana,
Tech. Rep. 83-5-3, July 1983.

{5] M. Blum, “‘On the size of machines,’” Inform. Contr., vol. 11, pp.
257-265, 1967.

[6] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love,
‘‘Measuring the psychological complexity of software maintenance
tasks with the Halstead and McCabe metrics,”’” JEEE Trans. Sofiware
Eng., vol. SE-5, no. 2, pp. 96-104, Mar. 1979.

[71 M. D. Davis and E. J. Weyuker, Computability, Complexity, and
Language. New York: Academic, 1983.

[8] W. M. Evangelist, ‘‘Software complexity metric sensitivity to pro-
gram structuring rules,”” J. Syst. Software, vol. 3, pp. 231-243, 1983.

[9] R. D. Gordon, ‘‘Measuring improvements in program clarity,’” IEEE
Trans. Software Eng., vol. SE-5, no. 2, pp. 79-90, Mar. 1979,

[10] M. H. Halstead, Elements of Software Science. New York: Elsevier
North-Holland, 1977.

[11] W.]. Hansen, ‘‘Measurement of program complexity by the pair (cy-
clomatic number, operator count),”” SIGPLAN Notices, vol. 13, no.
3, pp. 29-33, Mar. 1978.

[12] M. S. Hecht, Flow Analysis of Computer Programs.
The Netherlands: North-Holland, 1977.

[13] P. M. Herman, ‘‘A data flow analysis approach to program testing,"’
Australian Comput. J., vol. 8, no. 3, pp. 92-96, Nov. 1976.

[14] A. Iannino, J. D. Musa, K. Okumoto, and B. Littlewood, ‘‘Criteria
for software reliability model comparisons,”” IEEE Trans. Software
Eng., vol. SE-10, no. 6, pp. 687-691, Nov. 1984.

[15] S.S. Iyengar, N. Parameswaran, and J. Fuller, ‘‘A measure of logical
complexity of programs,”” Comput. Lang., vol. 7, pp. 147-160, 1982.

[16] J. L. Knox and K. C. Tai, **An empirical evaluation of program com-

Amsterdam,

1365

plexity metrics,”” North Carolina State Univ., Tech. Rep. TR-84-06,
1984.

[t7] J. W. Laski and B. Korel, ‘A data flow oriented program testing
strategy.’” IEEE Trans. Software Eng., vol. SE-9, no. 3, pp. 347-
354, May 1983.

{18] T.J. McCabe, ‘*A complexity measure,”” [EEFE Trans. Software Eng.,
vol. SE-2, No. 4, pp. 308-320, Dec. 1976.

[19] G. J. Myers, ‘*An extension to the cyclomatic measure of program
complexity,”’ SIGPLAN Notices, vol. 12, no. 10, pp. 61-64, Oct.
1987.

[20] S. C. Ntafos, ‘On required element testing ' IEEE Trans. Software
Eng., vol. SE-10, no. 6, pp. 795-803, Nov 1984.

[21] E. I. Oviedo, ‘*Control flow, data flow and program complexity,”” in
Proc. IEEE COMPSAC, Chicago, IL, Nov. 1980, pp. 146-152.

[22] P. Piwowarski, ‘‘A nesting level complexity measure,”” SIGPLAN
Notices, vol. 17, no. 9, pp. 44-50, Sept. 1982.

[23] R. E. Prather, ‘‘An axiomatic theory of software complexity mea-
sure,”” Comput. J., vol. 27, no. 4, pp. 340-346, 1984.

[24] S. Rapps and E. J. Weyuker, ‘‘Data flow analysis techniques for test
data selection,”’ in Proc. 6th Int. Conf. Software Engineering, To-
kyo, Japan, Sept. 1982, pp. 272-278.

[25] —, **Selecting software test data using data flow information,” IEEE

Trans. Software Eng., vol. SE-11, no. 4, pp. 367-375, Apr. 1985.

M. Schaeffer, A Mathematical Theory of Global Program Optimiza-

tion. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[27] T. Sunohara, A. Takano, K. Uehara, and T. Ohkawa, ‘‘Program
complexity measure for software development management,’” in Proc.
5th Int. Conf. Software Engineering, San Diego, CA, Mar. 1981, pp.
100-106.

[28] K.-C. Tai, ‘*A program complexity metric based on data flow infor-
mation in control graphs,”” in Proc. 7th Int. Conf. Software Engi-
neering, Orlando, FL, Mar. 1984, pp. 239-248.

[29] E. J. Weyuker, ‘*The applicability of program schema results to pro-
grams,’” Int. J. Comput. Inform. Sci., vol. 8, no. 5, Nov. 1979.

[30] —, **Axiomatizing software test data adequacy,’’ JEEE Trans. Soft-
ware Eng., vol. SE-12, no. 12, pp. 1128-1138, Dec. 1986.

[31] S. N. Woodfield, V. Y. Shen, and H. E. Dunsmore, ‘‘A study of
several metrics for programming effort,”” J. Syst. Software., vol. 2,
pp. 97-103, 1981.

[32] M. R. Woodward, M. A. Hennell, and D. Hedley, ‘A measure of
control flow complexity in program text,”” IEEE Trans. Software Eng.,
vol. SE-5, no. 1, pp. 45-50, Jan. 1979.

[33] S. H. Zweben and K-C. Fung, *‘Exploring software science relations
in COBOL and APL,"" in Proc. IEEE COMPSAC, Chicago, IL, Nov.
1979, pp. 702-207.

126

Elaine J. Weyuker received the Ph.D. degree in
computer science from Rutgers University, New
Brunswick, NJ, in 1977.

She has been on the faculty of the Courant In-
stitute of Mathematical Sciences of New York
University since 1977, and is currently an Asso-
ciate Professor of Computer Science. Before com-
ing to NYU, she was a Systems Engineer for IBM
and was on the faculty of the City University of
New York from 1969 to 1975. Her research inter-
ests are in software engineering, particularly soft-
ware testing and reliability and software complexity measures, and in the
theory of computation. She is the author of a book (with Martin Davis),
Computability, Complexity, and Languages, published by Academic Press.

Prof. Weyuker is a member of the IEEE Computer Society and the As-
sociation for Computing Machinery. She has been an ACM National Lec-
turer and was formerly a member of the Executive Committee of the IEEE
Computer Society Technical Committee on Software Engineering.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2025 at 22:51:19 UTC from IEEE Xplore. Restrictions apply.

