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ABSTRACT 

Pandemic influenza continues to be a national and international public health concern that has received significant attention 
recently with the recent swine flu outbreak worldwide. Many countries have developed and updated their preparedness plans 
for pandemic influenza. School closure has been recommended as one of the best ways to protect children and indeed all 
susceptible individuals in a community during a possible disease outbreak. In this paper, we present a geospatial and 
temporal disease spread model for pandemic influenza affecting multiple communities. School closure, one of the social 
distancing policies, is investigated in this paper with several questions such as: at what level should schools be closed, for 
how long should they be kept closed, and how should be the re-opening decisions made. These questions are considered in 
terms of minimizing: the total infection cases, total mortalities, and the impact on educational services to school children.  

1 INTRODUCTION 

The World Health Organization (WHO) has reported that the avian influenza (H5N1) virus is threatening human life 
worldwide, as it may soon have the ability to efficiently transmit from person to person which would likely cause a pandemic 
(WHO 2005).  Preparedness plans for pandemic influenza generally focus on establishing efficient mitigation strategies for 
inter-related communities and providing adequate medical services. Several decisions need to be made before, during, and 
after the pandemic outbreak to manage the impacts of the disease successfully, minimize loss of life, and minimize the effect 
on daily business operations. However, because the population that will be potentially affected by pandemic influenza is very 
large and diverse, different strategies, including non-pharmaceutical and pharmaceutical interventions, will inevitably need to 
be employed in different communities.  
 In this paper, we develop an age structured geospatial disease spread model to estimate the spread pattern of the disease 
geographically in Arizona, U.S. over time. The simulation model divides the state into multiple communities, which are the 
counties of the state.   

 Our objective in this paper is to study one of the non-pharmaceutical mitigation policies, school closure, during an 
outbreak of pandemic influenza. The presented simulation model of this paper allows decision makers to test various school 
closure strategies in terms of limiting activities in schools in each county separately at different times or in all schools in the 
state at once, closing schools at each county separately at different times or closing all schools at once by a state-wide 
declaration. We also quantify the effects of the reopening decision for school closures without using any pharmaceutical 
interventions. 
 In the rest of the paper, we first present a literature review and then state the major contribution of this paper to pandemic 
flu modeling. Next we give the mathematical details of the simulation model with its structure. After presenting the analysis 
for different scenarios we present our conclusions in the last section. 
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2 LITERATURE REVIEW 

Increasing concerns on the possibility of an influenza pandemic caused by the avian flu virus (H5N1), have led many 
researchers to study this possible catastrophic event from different viewpoints and with different methodologies. Research on 
pandemic influenza has mostly focused on: 1) modeling the disease spread and building geospatial and temporal simulation 
models to estimate the global path of the pandemic spread 2) evaluating possible non-pharmaceutical and pharmaceutical 
interventions at the global and local levels and recently 3) the logistical issues related the community response and 
preparedness activities with exercising the preparedness plans (Grais et al. 2004; Ferguson et al. 2005; Germann et al. 2006; 
Wu et al. 2006; Cauchemez et al. 2008; Davey et al. 2008; Ekici, Keskinocak and Swann 2008). Ekici, Keskinocak and 
Swann (2008), classified the common ways of modeling infectious disease spread into four groups: using differential 
equations, simulation modeling (Ferguson et al. 2006; Germann et al. 2006; Wu et al. 2006), random graphs and lastly 
difference equations (Rvachev and Longini 1985; Grais, Ellis and Glass 2003).  
 Community preparedness and policy making to mitigate the effects of the disease to social life is of great interest to 
governments at local, state and federal levels. It is also of interest to profit making companies and non-governmental 
organizations in order to sustain continuity of their regular activities. In this paper, we use a differential equation based 
disease model to simulate the spread of disease in communities to answer several questions about the timing and methods of 
school closure.  

As it was the case in the 1918 flu pandemic, it is very likely that there will be multiple waves of pandemic hitting people 
in the next pandemic influenza caused by avian flu virus H5N1 (Castillo-Chavez et al. 1989; Chowell et al. 2006; Ferguson et 
al. 2005). The intervals between the waves of previous pandemics were several months apart in some instances (Merler et al. 
2008). Estimating the time differences between the peaks of multiple waves of pandemic infections is also of great interest to 
policy makers, in terms of allocating critical resources to mitigate community impacts. Merler et al. (2008), indicate that 
natural and political barriers can change the structure of the contact network, possibly reducing the interactions among the 
individuals who are infected and susceptible and as a result delay the course of epidemics. They also indicate that social 
distancing policies (such as school) closure affecting the contact rate of individuals are some of the important strategies that 
affect the timing of the multiple waves of pandemic. Thus, policy makers should consider this fact when making closure 
decisions. In addition to this, the genetic drift (i.e. mutation) of the influenza virus is another important factor affecting the 
time period of the waves, since the appearance of new strains can reduce the immunity of the population. Bootsma and 
Ferguson (2007) also indicated that the timing of the containment and mitigation policies will determine the time between the 
peaks of pandemic waves. Thus, while the time period between the waves does not have a completely predictable pattern, it is 
at least partially controllable with social distancing policies. In this paper, our model generates multiple waves of epidemic 
based on the timing of social distancing interventions and application of non-pharmaceutical mitigation measures. As a result, 
the immunity of the population to the virus strain that causes the pandemic is one important factor determining the 
characteristics of the waves of pandemic. Because we do not consider any pharmaceutical intervention and any immunity 
given to people through vaccination, policies related to implementation of social distancing strategies can determine the time 
period between the waves. Seasonality in transmission, changes in the contact rates and antigenic evolution of the virus are 
possible reasons for multiple wave patterns of epidemic and may not have predictable patterns. The change in the 
transmission rate with the ability of the virus to increase its transmissibility through several mutations is one of the 
characteristics of the virus that helps predict the timing and size of the second and third waves of pandemic.  
 Because there exists a lot of uncertainty on the characteristics of the virus that will cause the pandemic, during the early 
stages non-pharmaceutical interventions such as social distancing and preventive sequestration will play a significant role. 
Our simulations and earlier studies (Lofgren et al. 2008; Germann et al. 2006; Ferguson et al. 2005; Ciofi degli Atti et al. 
2008) showed that without using any pharmaceutical intervention to mitigate disease spread such as antiviral distribution or 
vaccination the population will still remain vulnerable to the disease and when social restrictions are removed, individuals 
who did not initially catch the virus will a have high probability to get infected in a later wave. The primary gain from social 
distancing is the time between the waves which presents good opportunities to implement pharmaceutical based policies 
during the time between pandemic waves. School closure, a community mitigation policy is controversial regarding how 
effective it is in terms of reducing the impacts of a pandemic. For example Lofgren et al. (2008) claimed that is not an 
effective strategy itself unless accompanied by other mitigation strategies. On the other hand, Ekici, Keskinocak and Swann 
(2008) indicate that the transmission of the disease can also be reduced by institutional and household quarantine. By using 
the time that is gained with social distancing interventions, it is likely that appropriate vaccines can be developed to vaccinate 
unimmunized individuals and distribute antiviral prophylaxis for possible exposures. 
 In the literature there are two performance measures commonly used to evaluate the effectiveness of intervention 
policies: peak infectivity and infection attack rate (IAR) (Ekici, Keskinocak and Swann 2008). Peak infectivity is the 
percentage of the population infected at the peak and IAR is the cumulative percentage of people who have been infected 
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(can be symptomatic or asymptomatic) during the course of a pandemic. School or workplace closure and social distancing 
measures such as travel restrictions and quarantine during the peak can reduce the peak infectivity but may not significantly 
reduce IAR (Ferguson et al. 2005; Germann et al. 2006). Social distancing measures delayed the spread in the 1918 and 1957 
pandemics (WHO, 2005) but had little impact on IAR. However, delaying the spread and the peak is desirable for planning 
purposes, since it provides more time to get prepared and can lead to a smaller peak. In this paper, we also evaluate different 
strategies of implementing school closures based on these performance measures.  In the next section we present the details 
of the simulation model that we used to evaluate different school closure strategies.  

3 SIMULATION MODEL 

The primary purpose of our model was to simulate multiple communities with individuals traveling from one county to 
another county on a daily basis. These travels are the main reason for the spread of the disease in the state. The populations of 
the counties are divided into five age groups: Pre-School children, Elementary School age, Middle School age, High School 
age students and Adults. The daily travel data that we used in the model is from US Census Data (2000) on the daily numbers 
of people commuting from one county to another in the state. The population structure and the travel network of the model is 
presented in Figure 1. This type of network is called a “fully connected community” in Nigmatulina and Larson (2009), since 
it allows travels from one location to any other location without considering only immediate neighboring locations. We also 
assume that only the individuals who are in the Adults age group are traveling on a daily basis, since the school age children 
will be in their schools during the day.  

Figure 1: Structure of the multiple community models with age groups 

However, we also assume there is a mixing of each age group with lower proportions with their households at home with 
the average household size of five people. The mixing structure of the model is presented with Figure 3. 

Figure 2: Mixing structure of age groups in a county and transfer of the disease to other counties 

The age structure of the model captures different susceptibility of individuals to the disease at different ages with their 
activity levels and activity level of individuals are determined based on average number of their contacts. The transmission 
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rates for the individuals at different age groups are presented in Table 1 (Longini et al. 2004) which shows that the 
susceptibility of individuals decreases slightly with an increase in their age. Thus, the model captures the age immunity and 
age related differences with average contacts and infection transmission rates.  

Table 1: Transmission rates at each age group 
Transmission Rates Elementary Schools Middle Schools High Schools 
Elementary Schools 0.0145 

Middle Schools 0.0125 
High Schools 0.0105 

The disease spread dynamics is formulated as a compartmental flu model with the transport operator that was first 
introduced by Rvachev and Longini (1989). The natural history of the disease in individuals is shown in Figure 3 (Castillo-
Chevaz et al. 1989; Ekici, Keskinocak and Swann 2008).   

Figure 3: Natural history of influenza 

3.1 Mathematical Model 

We formulate a compartmental disease spread model in which the whole population in each age group of a county is divided 
into compartments of susceptible, exposed, infected, recovered and dead. In addition, we also assume the entire population is 
susceptible to the disease at the beginning and transmission dynamics start with an introduction of an infectious individual to 
one of the age groups in a community.  
      Let I be the set of counties in the state and let K be the set of links in the transportation network connecting the counties 
with daily commuting as the flow in the network. That is Kli ∈),(  if and only if county i is connected through direct travel 
and Ili ∈,  . Let  )( ,litT =  be an arbitrary symmetric transport matrix where lit ,  equals to total number of individuals in 
county i having contacts with individuals from county l ( lit , is equal to zero for all age groups other than adults). Let 

II RR →Ω :  be the transport operator defined on the susceptible and exposed compartments as given in (1) and (2): 
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Because II RR →Ω :  is a linear operator we can use it in our differential equation based SEIR model given with equations 
(3)-(7). Each county, i has the model variables for susceptible, Si (t), exposed, Ei (t), infected, Ii (t) and recovered, Ri (t); we 
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also define the variable Di (t) which represents those who do not recover (i.e. die). The model dynamics can be written as the 
following system of equations with the defined parameters:  

 
α :   Infection rate 

ijβ : Contact rate of age group j in county i . 
µ :   Infectious mortality rate. 

σ :   Rate of progression from exposed to infected ( 1−σ is latent period) 
γ :    Recovery rate for infected people 

ijN : Total number of people in county i age group j. 
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 We also assumed that only the exposed individuals are travelling to neighboring communities and causing the spread of 
the disease, since symptomatic infectious individuals are more likely to either be hospitalized or prefer to stay at home (self 
quarantined). Because the transport matrix that we used is symmetric, we do not allow any migration from one location to 
another in the dynamics of the model. 

3.2 Other Model Parameters  

The simulation model is also functionalized with the changes in the average contact rates of individuals in each school age 
groups with an associated policy. The model allows decision makers to limit the school activities in each county separately, 
limit the activities in the all state schools at the same time and close schools separately at different times or close them all 
once. Without considering any pharmaceutical interventions in the community mitigation strategies, the decisions for schools 
to mitigate the effects of the pandemic are listed as limitation of general activities such as sport gatherings and group 
workings and also the closure of the schools. Thus, the average number of contacts of school aged each individual changes 
with the implementation of these policies. The average numbers of contacts of individuals within each school age group 
under normal conditions is presented in Table 2. We assume that each school age children will have a higher mixing rate 
within his/her age group and individuals will have fewer contacts with the individuals from other age groups.  

 
Table 2: Mixing Rates of Age Groups with Different Policies 

Contacts (People/day) Elementary School Middle School  High School  

Elementary School 20 5 5 
Middle School  5 30 5 
High School  5 5 40 
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 The school closure policy is implemented in the model as a factor changing the number of daily contacts of individuals. 
For example when the schools are closed we assume school children will have contacts only with their households and when 
the activities are limited at schools their contact rate will be significantly decreased. The changes in mixing rates with policy 
implementation are presented in Table 3. Note that elements in row one in this table are the diagonal elements of Table 2. 
The off diagonal elements when activities are limited or schools are closed are equal to zero.  

 
Table 3: Changes in Mixing Rates with School Closure Policies 

 Policy Implemented Elementary School Middle School  High School  

Normal  20 30 40 
Activities Limited 10 15 20 

Schools Closed 5 5 5 
  
 For simulating disease transmission, several parameters should be also estimated a priori because of the existing 
uncertainty about the biological characteristics of avian flu virus after mutation to be able to transmit from human to human. 
These parameters are estimated in the literature based on the previous pandemic influenza outbreaks in history (Keeling and 
Rohani 2008; Chowell and Nishiura 2008). We used 2% infected mortality rate in our model and it is an expected rate of 
mortality for individuals who get infected in the next pandemic (Mniszewski et al. 2008).  Other disease parameters that we 
used in our model from the literature are incubation period as 2 days and the infectious period as 4 days (Mniszewski et al. 
2008; Chowell et al. 2006).  

4 DECISION ANALYSIS AND RESULTS  

The presented simulation model in this paper was used by the Arizona Department of Health and Human Services with the 
Arizona Department of Education to test their pandemic preparedness activities. The exercise took place at the Decision 
Theater of Arizona State University with two different sessions, one on February 12th, 2009 and the other on Feb 18th, 2009.  
Officials from different counties in the state attended the sessions. In this section we present results to compare several school 
closure and reopening strategies applied during these exercises by using the presented simulation model. We first run the 
simulation model without any interventions as the base run, with having an index case (first infectious individual) in an 
elementary school in Yuma County. Figure 4 shows the infections of Maricopa County and Pinal County (which are the first 
two highly populated counties in the state), Yuma County (has the index case) and the total student infections in the state 
without any intervention policy applied.     

 

 
Figure 4:  Estimated Total Number of Infections by County and Month without Interventions 

 
 We also present results for two additional scenarios which actually display results of the actions that were taken during 
the actual school closure exercise for Arizona. In the next section we compare these different strategies with the base run in 
terms of IAR, peak infectivity and peak time of infections.  
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4.1. Results for Two Additional Scenarios  
We present the results from the two school closure exercises described above. These exercises resulted in two different 
decisions. Based on the results of key decisions made during the first exercise, the simulation results of infections in the state 
are shown below.  The actions in this exercise include closing schools in Yuma early with the first case in the state at the end 
of February, and all state school closure with the first mortality case confirmation in early March. After 8 weeks of school 
closure all schools in the state were reopened with limitation on the activities such as sport gatherings and group workings. 
These decisions resulted in an overall statewide infection rate of 45.12%, student infection rate of 20.5% and a total of 0.59 
% of student deaths.  Figure 5 presents the infections of students in the state.  

 

 
Figure 5:  Exercise 1- Estimated Infections by County and Month 

 
 As shown in Figures 5, the majority of these infections and the resulting mortalities were concentrated in Maricopa due 
to the large population in this county.  Also of note is that, the decision to reopen schools resulted in an increment in student 
infections and deaths during the second wave of the pandemic which began in late July. That is because the school reopening 
decision increased the contact rate of students which resulted into a high number of infections.  

The second exercise has the actions of closing schools in the whole state after the first death in Yuma in early March (as 
opposed to the first case as in first exercise) and not reopening again until the end of December. These decisions resulted in 
an overall statewide infection rate of 42.08%, student infection rate of 3.35% and a total of 0.10% student deaths.  Similar to 
the first exercise, the majority of these infections and deaths were concentrated in Maricopa County.  From an epidemiologic 
perspective, an interesting result from this exercise was the apparent elimination of a second pandemic wave.  As shown in 
Figure 6, the pandemic peaked in March; however, prolonged school closure decreased contact rates and resulted in a much 
shorter pandemic duration. We note that that, schools had to be closed for more than 8 months which may not actually be an 
acceptable decision. 

 
4.2. Comparison of Results from Scenarios  
In Table 4, we demonstrate a comparative analysis of several different hypothetical decisions as compared to the results 
based on the actual group decisions in the first and the second exercises. In a no intervention scenario we assumed that the 
pandemic would run its course with no school closure or restricted activity.  For the first exercise, the results from the group 
decisions fell somewhere between these two hypothetical scenarios. Delaying statewide school closure until the first death in 
Arizona (or approximately three weeks following the first case) resulted in a higher number of student deaths during the 
pandemic.  Delaying school closure did not appear to substantially increase the percentage of the total population that became 
infected. For the second exercise, the group results were significantly better than no intervention scenario. The decision not to 
reopen schools significantly reduced total infection rates and total mortality rates. 
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Figure 6:  Exercise 2- Estimated Infections by County and Month 

 
The Arizona Pandemic Influenza School Closure Exercises provided a valuable forum for schools and health officials to 

collaborate on a comprehensive strategy for closing schools in the event of an influenza pandemic.  As with any sector, the 
education system will be severely strained during such an outbreak.  A comprehensive response from the federal level all the 
way down to individual schools is required to meet the challenges. Additionally, roles and responsibilities for all responders 
and stakeholders must be clearly delineated in response plans, and coordinated exercises must be conducted to prepare our 
communities, schools, and children for a prolonged school closure. 

The findings in this paper can be useful to guide schools, community partners, local and state governments, and other 
stakeholders in developing a comprehensive strategy for school closure integrated this strategy into state-wide response 
plans. 

 
Table 4: Comparison of Different Scenarios 

Comparison Metrics No Intervention Case Exercise Result 1 Exercise Result 2 

Total Infected Population 3,073,305 2,681,579 2,501,459 

Infected Population (%) 51.70 45.12 42.08 

Total Students Infected 653,752 232,087 37,917 

Students Infected 55.03 20.50 3.35 

Total Deaths in Population 81,017 68,969 63,427 

Deaths in Population (%) 1.36 1.16 1.07 

Total Student Deaths 18,672 6,623 1,083 

Student Deaths (%) 1.65 0.59 0.10 

Peak Student Infections (%) 10.00 1.33 1.57 

Peak Day 57 174 27 
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5 CONCLUSIONS  

This paper presented a geospatial-temporal disease model which can be used to simulate several school closure and reopening 
policies in the course of an influenza pandemic. The simulation model has the capability of testing policies such as limiting 
activities in each county separately and in the whole state simultaneously; and closing the schools in each county separately 
and in the whole state simultaneously. This capability gives the opportunity for decision makers to test several school closure 
policies to identify the best strategy in terms of minimizing the number of infections in schools with minimum discontinuity 
in education. The results show that school closures can reduce the number of infections at the early stages of pandemic but 
because it does not change anything about the immunity of the community and most of the population will still remain 
susceptible to pandemic influenza; it is very likely to have multiple waves of infections. However, the delays give an 
opportunity for medical authorities to deliver vaccines if an appropriate one becomes available. In addition, it also reduces 
the peak of infections significantly during the pandemic and this avoids hospitals and other medical agencies becoming 
overwhelmed with a tremendous amount of demand for treatment and gives time for them to get better prepared.  
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