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Abstract - While the challenges of the next pandemic 

outbreak are overwhelming, either from swine flu, other 

infectious disease, bioterrorism, timely detection of 

disease outbreaks is most important for public health 

surveillance and society safety and stability. In public 

health surveillance, the objective is to systematically 

collect, analyze, and interpret public health data 

(chronic or infectious diseases) in order to understand 

trends, to detect changes in disease incidence and death 

rates, and to plan, implement, and evaluate public 

health practice. Recently much research has been 

conducted to develop methods and algorithms for health 

surveillance and disease detection. This paper presents 

an overview and reviews the recent research methods on 

temporal and spatiotemporal surveillance. Specific 

research challenges and future research directions are 

discussed. A real life example is used to compare the 

performance of three currently used surveillance 

methods, scan, EWMA, and CUSUM. 

I. HEALTHCARE AND PUBLIC HEALTH

SURVEILLANCE 

The Institute of Medicine [1] reported that the number of 
deaths due to medical errors in U.S. hospitals may have 
excee�ed 100,000 per year; and the numbers of unnecessary 
surgenes and hospital infections have topped 12,000 and 
80,000, respectively. It is well recognized in the research 
com�unity that many of these events can be avoided by the 
effective use of healthcare standardization, improvement 
and surveillance methods. On the other hand, in light of the 
l�test o�tbreaks of HSN 1 influenza and the continuing
b10terronsm threat, there is an urgent need for specific
research on the design and modelling of disease 
transmission and public health surveillance. 

Many methods and algorithms for disease detection 
have been evaluated, but only on a rather small scale. For 
example, certain methods might be tested on just a few or 
even only one specific disease, in most cases influenza. This 
causes various problems. First, influenza is a periodically 
recurring disease resulting in numerous infections. Thus, it 
is relatively easy to detect, and many methods based on 
extensive historic data can be applied. In the case of 
bioterrorism defense, a possible attack would cause 
c?mp�rably few cases in comparison to an epidemic, and 
h1stoncal data on such events simply do not exist. When 
implementing approaches in disease surveillance this 
paucity of data has to be taken into account. 

The most common existing disease spread monitoring 
methods can be categorized into temporal, spatial, and 
spatiotemporal surveillance techniques. Most basic methods 
such as SPC, regression, time series, and forecast-based 
methods were originally developed as temporal approaches. 
On the other hand, popular health surveillance methods 
such as scan statistics were originally developed as spatial 
approaches [2] and later extended as temporal and 
spatiotemporal approaches [3]. Most spatial surveillance 

techniques rely on existing statistical clustering methods. 
Many techniques have been developed to expand those 
models to spatiotemporal methods that also search for 
clusters in time. For healthcare surveillance, sets-based 
methods [4] and risk adjustment methods [5] were 
developed for monitoring patient disease conditions. 
Woodall [ 6) provides detailed discussions of these methods 
for healthcare applications. Tsui et al. [7] provides detailed 
reviews on public health surveillance. 

In public health applications, temporal surveillance 
refer� to monitoring event occurrence at a single region or 
locat10n and the objective is to detect accurately the time of 
change in occurrence rate as soon as possible. 
Spatiotemporal surveillance refers to monitoring event 
occurrences at multiple regions or locations simultaneously 
and the objective is to detect accurately the time and 
loc_ation(s) of change in occurrence rate as soon as possible.
This paper focuses on the recent research in methodologies 
for temporal surveillance and spatiotemporal surveillance. 
Then, we will discuss the specific challenges and future 
research in temporal and spatiotemporal surveillance. 

II. TEMPORAL SURVEILLANCE

• Scan and CUSUM methods

Three temporal cases in scan statistics are defined by Naus 
and Wallenstein [8]. Three different scenarios are 
addressed: (1) a window of pre-defined length scans for 
time intervals with an increased incidence rate where events 
are distributed over a continuous time frame, (2) time is 
split into intervals, so that a scan is performed for the 
maximum number of cases within a certain set of 
contiguous time intervals, and (3) Bernoulli case where a 
scan is performed on the occurrence of an event. Woodall et 
al. [9) point out that CUSUM statistics may be able to 
outperform scan statistics because of their optimality 
property. Joner et al. [10) evaluate the CUSUM's and scan 
statistic's performance under various rate increases of 
Bernoulli trials and show that the CUSUM outperforms the 
scan statistics in many situations. They considered both 
initial expected delay (out-of-control average run length 
(ARL)) and steady-state expected delay as performance 
meas1:'1"es. Kulldorff [2] proposes scan statistics for spatial 
surveillance, where the region diameter (window) of the 
scan statistic is chosen to maximize an unconditional 
likelihood function. As a result, Kulldorffs spatial scan 
statistic uses a variable window, unlike the traditional scan 
statistic which uses a fixed window [11). Further, Kulldorff 
[3] extends the spatial scan statistics to spatiotemporal
surveillance. Kulldorffs scan statistic for pure temporal
surveillance has never been formally defined. However,
Sonesson [12) points out that Kulldorffs scan statistics for
spatiotemporal surveillance are similar to CUSUM statistics
if c?nditional likelihood is considered. By removing the 
spatial component of Kulldorffs spatiotemporal scan 
statistics, one can interpret Kulldorffs scan statistics for 
temporal surveillance as CUSUM statistics. We shall 
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continue our discussion regarding this topic in the section of 
spatiotemporal surveiJlance. 

Tsui et al., [7] highlight the importance of investigating 
and comparing the performance measures of surveillance 
methods under various scenarios. Recent research has been 
undertaken to fill in the existing research gap. Mei, Han, 
and Tsui [13] compare the effect of detecting a change in 
the mean of Poisson distribution from three classes of 
detection schemes. Taking into account the effect of 
population size, the study investigates the performance of 
three methods: (1) generalized likelihood ratio statistics, (2) 
weighted likelihood ratios, and (3) adaptive threshold 
method by simulation studies and asymptotic analysis. The 
results point out that the weighted likelihood ratio based 
detection schemes are the best when the population sizes 
increase. Contrary, when the population sizes decrease, the 
generalized likelihood ratio based detection schemes are the 
best. In the sense of small detection delays under Lorden's 
worst-case detection delay criterion, the detection schemes 
based on the adaptive threshold method seem to be robust 
regardless the change in population size. Han et al. [14] 
compare the performance of temporal scan statistics, 
CUSUM, and exponential weighted moving average 
(EWMA) under Poisson distribution. The study shows that 
the Poisson CUSUM and EWMA charts genera11y 
outperformed the Poisson scan statistic methods and the 
EWMA charts outperformed the CUSUM charts in 
situations with a sma11 shift and an early change in time. 

• Forecast-based surveillance methods

Due to the non-stationary nature of disease data, it is often 
appealing to model the baseline pattern before applying 
monitoring methods. Regression and time series models are 
the most popular methods for modelling baseline patterns. 
Alternatively, adaptive forecasting methods and 
nonparametric regression can be effective tools for 
capturing complex seasonal patterns. Forecast-based 
methods have been developed in manufacturing SPC 
applications for a long time. Alwan and Roberts [15] 
propose monitoring residuals of fitted time-series models to 
the original process. Since then, many residual charts ( e.g., 
Jiang et al., [16]) have been proposed and investigated. 

Since count data are usua11y monitored in health 
applications, generalized linear models (GLMs) are popular 
tools for modelling in disease monitoring. The regression­
based approach has been widely implemented in ESSENCE 
for the Greater Washington DC area [17]. Daily ICD-9 
code data were co11ected and compared to baseline values 
for the occurrence of certain diseases, for instance, the cases 
of diarrhea in three different regions of the U.S. were 
identified using this method in 2002. Burkom et al. [ 18] 
have applied non-adaptive and adaptive regression models 
for quickly picking up short-term trends and compared them 
to a Holt-Winters model. They took into account an 8-week 
sliding baseline and a holiday indicator to enhance forecast 
accuracy on holidays and prevent overly high forecasts on 
those days. Due to the fact that disease spread data is 
subject to many influence factors ranging from interventions 
through the healthcare system to changes in the weather, 
non-adaptive regression methods do not perform we11 in 
Burkom's evaluation on actual disease data. Although the 
adaptive regression methods have better performance, they 

still cannot entertain holiday problems for accurate 
forecasting. 

Box-Jenkins autoregressive integrated moving average 
(ARIMA) formulation is one of the most popular and we11-
established methods for time series analysis. In disease 
surveillance, it is often not feasible to assume stationarity of 
data. Lai [ 19] suggests stabilizing the variation by 
performing a Jog transformation of the time series that it 
might be useful to undertake curve fitting to improve the 
performance of time series approaches on quickly changing 
rates of disease cases. Instead of evaluating an ARIMA 
approach of automated time series forecasting methods, 
Burkom et al. [17] use pre-selected ARIMA models or a 
pre-selected set of smoothing variables in general. 

Tsui et al. [20] implement a forecasting approach to 
three data streams simulated from different types of real-life 
outbreaks: E. Coli, cryptosporidium, and influenza. It is 
found that the forecasting approach with EWMA residual 
charts can be extremely effective for detecting outbreaks if 
the baseline can be modelled accurately. A two-step 
approach is proposed for a surveillance system to estimate 
baseline pattern and detect outbreaks. To improve the model 
fit, a nonparametric regression approach is chosen to model 
the baseline pattern. For outbreak detection, a modified 
EWMA method with simulation-based fine-tuning approach 
is proposed. Three outbreak types of diseases with three 
variables ED (visits to the emergency department), OTC 
(over-the-counter drug sales), and TH (number of nurse 
hotline telephone calls) are being considered. The authors 
apply different algorithm scoring methods as the outbreak 
patterns for the three diseases are different. The E. Coli

outbreak, which is evaluated based on the average length of 
the delay until detection, shows a sudden increasing profile 
and is easy to detect from monitoring, whereas the 
cryptosporidium and influenza outbreaks are hard to detect 
and are evaluated by the correct number of outbreaks 
detected. The study shows that the average delay time is 
around six days and the correct rates of outbreak detection 
are around 95 to 99%. 

• Research Challenge in Temporal Surveillance

The main advantage of the residual charts is that many 
existing monitoring charts can be applied to the residuals ( or 
forecast errors) of the fitted model. The main disadvantage 
is that the charting performance critically depends on how 
well the forecast model fits the process. In addition, even if 
the forecast model fits we11 with the historical data, there is 
no guarantee that the selected model wi11 remain unchanged 
in the future. As a result, adaptive forecasting methods, 
such as exponential smoothing [21, 22] may be good 
alternatives for monitoring dynamic processes. Jiang et al. 
[16] propose a robust class of forecasting methods (PID
charts) for SPC applications. Jiang, Au, and Tsui [23]
propose a robust adaptive forecasting approach for
monitoring the forecast errors of multiple customer time
series in business activity monitoring. As pointed out in
these papers, while it is possible to develop robust
forecasting methods for the baseline data, it is challenging
to distinguish the anticipated change patterns in the baseline
(e.g., growth or seasonal patterns) from the unanticipated
changes (e.g., customer fraud, outbreaks, etc.). It will be of
great interest to investigate the two conflicting objectives of
(i) being robust to various patterns in fitting baseline
processes and at the same time (ii) being sensitive in
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detecting process shifts (outbreaks). We discuss various 
specific future research ideas below. 

Traditional SPC monitoring methods often focus on 
detection of step shifts in mean performance. Tsung and 
Tsui [24] show that standard control charts may not be 
efficient in detecting special types of mean shifts, especially 
when the shift only lasts for a short period of time (i.e., the 
window of opportunity). Shu, Jiang, and Tsui [25] develop 
a weighted CUSUM chart for detecting patterned mean 
shifts resulting from forecasting or feedback control. The 
new approach is efficient when the stream of data to be 
monitored experiences a dynamic pattern of mean shift, i.e., 
the mean shift in the sequence of data is not constant but 
varies over time. In disease surveillance, we often encounter 
a dynamic patterned mean shift. Therefore, the weighted 
CUSUM approach may be useful for detecting disease 
outbreak patterns. 

To detect changes in time series data, Alwan and 
Roberts [15] propose to monitor the forecasting residuals of 
fitted ARIMA models. A major challenge of the approach 
is the difficulty of finding the correct model and the impact 
of model misspecification. Due to their simplicity, 
adaptability, and computational convenience, EWMA 
models have been widely used and considered a strong 
competitor to ARIMA models. They are particularly useful 
when ARIMA models cannot be easily characterized. There 
are three popular exponential smoothing techniques for 
different forecasting problems: single exponential 
smoothing for stationary time series, double exponential 
smoothing [21] for time series with a trend, and triple 
exponential smoothing [22] for seasonal time series. In 
addition, Montgomery and Mastrangelo [26] propose 
monitoring the residuals of EWMA forecasting. While 
EWMA has been recognized as a powerful forecasting tool, 
very little research has been conducted to investigate the 
performance of residual charts from EWMA forecasting. In 
disease surveillance, the background patient count trends 
can be very different for different diseases. As shown in 
Jiang et al. [16], the EWMA statistic may be quite useful for 
forecasting highly varying time series. Burkom et al. [ 18] 
apply EWMA smoothing to a temporal surveillance 
problem. While the forecast-based monitoring approach has 
great potential in disease surveillance applications, much 
research is needed to identify specific forecasting strategies 
and to determine optimal parameters in various applications. 

To better facilitate the detection of an increase in 
occurrence rates, research can be conducted in one-sided 
Poisson EWMA charts. Some foundational works have been 
already done to discuss one-sided EWMA charts for 
monitoring continuous data, and one-sided multivariate 
EWMA charts [27]. To study other types of outbreak 
patterns, especially transient outbreaks, conventional 
detection methods have focused on detection of step shifts 
in mean. In health surveillance, many types of the change 
may occur. The research direction could be pointed to more 
sophisticate methods to investigate the baseline parameter 
under an in-control process that shifts and drifts over time 
because of changes in population or seasonal effects, for 
instance, the application of a risk adjustment method. Also, 
more efficient detection methods that can handle 
unexplained noises spikes should be developed [14]. 

III. SPA TIOTEMPORAL SURVEILLANCE

• Scan and CUSUM statistics

Kulldorff et al. [2] and Kulldorff [3] propose retrospective 
and prospective scan statistics, respectively, based on the 
basic theory for the spatial case explained above. Woodall 
et al. [9] review and examine the various scan statistics 
used for spatiotemporal surveillance. They point out that 
this method can only work if a cluster contains at least two 
incidence counts because otherwise the likelihood function 
could be maximized by decreasing the size of the cycle 
while centered on a single data point. By extending the scan 
statistics in Kulldorff [3], Sonesson [12] proposes a 
CUSUM method for timely detection of emerging clusters 
of diseases. Based on a general likelihood function, he 
defines a general CUSUM statistic as the maximum over all 
individual CUSUM likelihoods over all possible subsets of 
regions (variables). 

By considering the CUSUM and other LR-based 
approaches in temporal surveillance for industrial quality 
control, Tsui, Han, Jiang, Woodall [28] develop a generic 
framework based on likelihood ratio statistics over windows 
of test for both the spatial surveillance and spatiotemporal 
surveillance problems. The LR-based framework includes 
many existing methods as special cases by taking different 
operators over the LR statistics in variable windows. The 
study demonstrates the use of the summation of likelihood 
ratios over all possible windows is often more powerful 
than the use of the maximum of the same set of likelihood 
ratios. Taking summation for spatial and spatiotemporal 
surveillance, the framework outperforms the common 
procedure that takes the maximum over all windows of the 
LR statistics. It is also found that when the outbreak 
coverage is known, scan statistics with an appropriate radius 
that matches the actual outbreak coverage often perform 
better than the statistics under- or over-scanned. 

Most existing health surveillance research is based on 
the assumption that observations from different regions are 
independent. Recently, Jiang, Han, Tsui, Woodall [29] 
propose a set of multivariate surveillance schemes 
generalized from well-known detection methods in 
multivariate statistical process control based on likelihood 
ratio tests. A multivariate CUSUM method using 
regression-adjusted clusters for spatiotemporal surveillance 
in the presence of spatial correlation is proposed. It shows 
that the proposed schemes outperform the existing 
surveillance methods and provide faster and more accurate 
detection of outbreaks. It also points out that estimating the 
outbreak magnitude may help the detection of outbreaks 
when there are medium-sized spatial correlations. 

• Multivariate Surveillance Methods

In disease surveillance, the SPC-based spatiotemporal 
surveillance problem has been studied by just a few 
researchers. Rogerson [30] presents some control chart­
based work on the spatiotemporal regional case. He extends 
the retrospective method of Tango [31] to a prospective 
application using a CUSUM method. Rogerson and 
Yamada [32] consider the spatiotemporal problem for which 
the counts in the sub-regions are correlated at each 
particular time, with the correlation decreasing as the 
distance between the sub-regions increases. They compare 
the performance of the use of multiple CUSUM charts [33] 
for each region against a multivariate CUSUM method [34]. 
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Joner et al. (35] show that the use of a one-sided version of 
the multivariate EWMA chart of Lowry et al. (36] is a better 
approach to use in this case. 

• Research Challenge in Spatiotemporal 

Surveillance 
We discuss specific challenges and future research in 
spatiotemporal surveillance methods in public health 
applications. As mentioned earlier, there are close 
relationships among the scan/CUSUM statistics, the 
multivariate methods for disease surveillance, as well as the 
traditional methods proposed in the multivariate SPC 
literature for normal data. 
Under various applications, different CUSUM statistics 
have been proposed for monitoring multi-streams (regions) 
data. Tartakovsky et al. (37] study a simpler CUSUM 
statistic similar to the one proposed in Sonesson [12]. Their 
idea is to first compute the temporal CUSUM statistic for 
each region, then to define the overall test statistic as the 
maximum over the individual CUSUM statistics over the 
multiple streams. Mei (38] considers a similar idea to 
Tartakovsky et al. (37] but defines the test statistic as the 
sum of the individual CUSUM statistics over multiple 
streams. Raubertas (39] develops another CUSUM statistic: 
Instead of computing the temporal CUSUM statistic for 
each region, he proposes to compute the simultaneous 
CUSUM statistic for the center and four (or fewer) adjacent 
regions for each region center, and then define the overall 
testing statistic as the maximum over these simultaneous 
CUSUM statistics. 

Note that the difference between Tartakovsky et al. (37] 
and Mei (38] is similar to the difference between the M-

statistic (the maximum of standardized X statistics of 
individual responses) defined in Hayter and Tsui (40] and 
the T2 statistic defined in Hotelling [ 41 ], where the 

Shewhart X statistics from individual variables are 
considered instead of the CUSUM statistics. As pointed out 
in Hayter and Tsui, the advantage of the M-statistic (or 
equivalently the maximum statistic in Tartakovsky et al. 
(3 7]) is that, once the test statistic triggers the alarm, it 
immediately provides information on which variables are 
responsible for the alarm. In disease surveillance, this 
implies that, once the test statistic signals, it immediately 
provides information on which regions are the locations 
where the outbreak occurs. The problem of identifying 
which variables (or regions) are responsible after the alarm 
is triggered is well-known - the identification problem -
in the multivariate SPC literature (see Mason et al. [42]; 
Mason and Young (43]). 

While the identification problem has been investigated 
extensively for multivariate Shewhart charts with normal 
data, very little has been done for non-normal data and/or 
for multivariate CUSUM or EWMA methods. In addition, 
most research has been focused on how to perform 
diagnosis to identify the variables that are responsible for 
the alarm; however, a more important and fundamental 
problem in variables (regions) identification has been 
overlooked - that is the lack of performance measures for 
identification correctness. Note that after the alarm is 
signaled, certain variables (regions) based on the diagnosis 
procedure will be identified as the variables where changes 
have taken place. In reality, it is possible that only some 
(but not all) of these regions have changed. When none of 

the identified regions have actually changed, the 
performance is measured by the false alarm rate ( or in­
control ARL). When all of the identified regions have 
changed, the performance is measured by the out-of-control 
ARL (or expected delay). However, when only some (but 
not all) of the identified regions have changed, the 
performance needs to be measured by simultaneous 
measures of the out-of-control ARL as well as the correct 
rate of identification. This creates a research challenge on 
the choice of appropriate performance measures as well as 
on understanding the conflicting behavior of the expected 
delay and the correct identification rate. 

For CUSUM charting, Woodall and Ncube (33] define 
a multiple CUSUM method under multivariate normal 
distributions. The idea is similar to considering the 
maximum over the CUSUM statistics of individual 
responses. Similar to the T2 statistics, Crosier (34] proposes 
a multivariate CUSUM method as charting the T2 statistic 
over the CUSUM statistics of individual responses. An 
alternative multivariate CUSUM statistic is defined as the 
CUSUM statistic of the univariate T2 statistic from the 
multivariate vector of responses (see Pignatiello and 
Runger, (44]). While some simulations have been conducted 
for evaluation purposes, it is not clear which CUSUM 
statistic has better performance in general. Jiang and Tsui 
(45] relate the T2 chart, M-chart, and regression-adjusted 
chart (46] and show that the performance of a multivariate 
control chart may depend on correlation of the variables as 
well as the direction and magnitude of the process shift. 
They propose a hybrid method that combines the T2 chart 
and regression-adjusted chart for better performance. 

For EWMA charting, Lowry et al. (36] propose a 
multivariate EWMA method as charting the T2 statistic over 
the EWMA statistics of individual responses. Tsui and 
Wooodall (47] propose a multivariate EWMA method as 
charting the EWMA statistics of the loss function from the 
multivariate vector of responses. Similar to the research of 
MSPC charts for multivariate normal distributions, it is of 
great interest to investigate the various multivariate 
CUSUM and EWMA charting methods for public health 
surveillance of multivariate Bernoulli and Poisson data. 

Currently most spatiotemporal surveillance methods are 
based on the assumption of a known/given outbreak pattern. 
One of the critical research directions in spatiotemporal 
surveillance would be to estimate both outbreak coverage 
and magnitude while recent studies only have little 
knowledge about them and substitute the estimates into the 
corresponding scan statistic in practice (29]. 

IV. A TEMPORAL SURVEILLANCE EXAMPLE

Below we illustrate some standard methods described above 
(scan, EWMA, CUSUM) with an example from Han et al. 
[ 14]. Our dataset contains the incidence of male thyroid 
cancer in New Mexico, 1973-2005, which is available 
through data from the Surveillance, Epidemiology, and End 
Results (SEER) Program at the National Cancer Institute 
(www.seer.cancer.gov/data/). The SEER program collects 
cancer incidence and mortality from the cancer registries in 
the United States. Figure 4 plots the annual incidence of 
thyroid cancer per 100,000 men. The main goal of this 
application is to detect the change in rates as early as 
possible. It can be seen from Figure I that the rate increases 
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after 1989 or so, and therefore, it is assumed that there are 
no shifts between 1973 and 1988. We used this steady-state 
period to estimate the baseline incident rate, which is 
around 2. We targeted to detect a 25 % increase of the 
incident rate, which is equivalent to the targeted shift size of 
2.5. 
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Figure 1: The trend of male thyroid cancer incidence 
between 1973 and 2005. 

The parameters of the three detection methods were 
determined according to Section 4.1 of Han et al. [14]. The 
target in-control average run length (ARL0) was set to 
1,000. The parameters were J.o=2 and ).1

=2.5 for CUSUM, 
m=37 for scan statistics, and a=0.02 for EWMA. 
Consequently, the thresholds of the three methods for target 
ARL0 are 97 (scan statistics), 16.6 (CUSUM), and 2.33 
(EWMA). Figure 2 shows the statistics over time from the 
three detection methods. In order to ensure comparability of 
the different methods and use the same threshold, we 
adjusted the values of the statistics of the scan statistic 
method and CUSUM by dividing them by 41.63 and 7.124, 
respectively. It can be observed that the scan statistic, 
EWMA, and CUSUM methods trigger an alarm in 2004, 
1999, and 2000, respectively. Assuming that early detection 
is desirable, EWMA and CUSUM triggered an alarm faster 
than the scan statistic method, which is consistent with the 
simulation results reported in Han et al. [14]. Nevertheless,
it is difficult to argue that EWMA and CUSUM were better 
methods in this particular example as the true outbreak time 
is unknown for this specific example. More importantly,
the message here is that different survei11ance methods 
based on the same data set can result into different outbreak 
alarm time. Hence, one should be careful about selecting 
survei11ance methods in real life applications. More 
investigations and simulation studies in comparing the three 
methods can be found in [14] and [28]. 
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Figure 2: Plots of scaled scan statistic, CUSUM statistic, 
and EWMA statistic. The circle indicates the first time point 
when each method triggers an alarm. 

Conclusions 

With the urgent needs of healthcare performance 
improvement, the latest outbreaks of avian influenza, and 
the continuing bioterrorism threat, timely detection of 
increases in the rate of unusual events is an important 
objective in public health surveillance and health 
management [6, 48]. Also, due to the advancement of health 
information technology, medical information systems, and 
public health and syndromic data co11ection systems, there 
are great opportunities as well as cha11enges for research in 
public health and disease surveillance. The quality of the 
baseline data can be readily contaminated by unexplained 
noise spikes. These noises may adversely affect the 
performance of detection methods. Further, the baseline 
(phase I) data are generally non-stationary and correlated. 
There are many types of outbreak patterns related to 
diseases to be detected. Research effort should be devoted 
to develop robust surveillance methods detecting these 
various outbreak patterns. Sophisticate surveillance 
methods aiming to investigate the baseline parameter under 
an in-control process that shifts and drifts over time because 
of changes in population or seasonal effects may be required 
[14]. 

Finally, the current performance measures for 
temporal survei11ance are not satisfactory for comparing 
spatiotemporal surveillance methods [7]. Although some 

recent research has been undertaken to fi]I in the existing 
research gap, we believe more research is needed to 
comprehensively consider the underlying assumptions and 
scenarios under real life healthcare and public health 
survei11ance applications. 
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