
Eight-move opening utilizing generalization
learning. (See Appendix B, Game G-43.1

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

A. L. Samuel

Some Studies in Machine Learning

Using the Game of Checkers

Abstract: Two machine-learning procedures have been investigated in some detail using the game of

checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will

learn to playa better game of checkers than can be played by the person who wrote the program. Further

more, it can learn to do this in a remarkably short period of time 18 or 10 hours of machine-playing time)

when given only the rules of the game, a sense of direction, and a redundant and incomplete Jist of

parameters which are thought to have something to do with the game, but whose correct signs and relative

weights are unknown and unspecified. The principles of machine learning verified by these experiments

are, of course, applicable to many other situations.

Introduction

The studies reported here have been concerned with the
programming of a digital computer to behave in a way
which, if done by human beings or animals, would be
described as involving the process of learning. While
this is not the place to dwell on the importance of ma
chine-learning procedures, or to discourse on the philo
sophical aspects," there is obviously a very large amount
of work, now done by people, which is quite trivial in its
demands on the intellect but does, nevertheless, involve
some learning. We have at our command computers with
adequate data-handling ability and with sufficient com
putational speed to make use of machine-learning tech
niques, but our knowledge of the basic principles of these
techniques is still rudimentary. Lacking such knowledge,
it is necessary to specify methods of problem solution in
minute and exact detail, a time-consuming and costly
procedure. Programming computers to learn from ex
perience should eventually eliminate the need for much
of this detailed programming effort.

• General methods of approach

At the outset it might be well to distinguish sharply be
tween two general approaches to the problem of machine
learning. One method, which might be called the Neural
Net Approach, deals with the possibility of inducing
learned behavior into a randomly connected switching
net (or its simulation on a digital computer) as a result
of a reward-and-punishment routine. A second, and
much more efficient approach, is to produce the equiva
lent of a highly organized network which has been de
signed to learn only certain specific things. The first

method should lead to the development of general-pur
pose learning machines. A comparison between the size
of the switching nets that can be reasonably constructed
or simulated at the present time and the size of the neural
nets used by animals, suggests that we have a long way
to go before we obtain practical devices.f The second
procedure requires reprogramming for each new applica
tion, but it is capable of realization at the present time.
The experiments to be described here were based on this
second approach.

• Choice of problem

For some years the writer has devoted his spare time to
the subject of machine learning and has concentrated on
the development of learning procedures as applied to
games." A game provides a convenient vehicle for such
study as contrasted with a problem taken from life, since
many of the complications of detail are removed.
Checkers, rather than chess,4-7 was chosen because the
simplicity of its rules permits greater emphasis to be
placed on learning techniques. Regardless of the relative
merits of the two games as intellectual pastimes, it is fair
to state that checkers contains all of the basic characteris
tics of an intellectual activity in which heuristic proce
dures and learning processes can playa major role and
in which these processes can be evaluated.

Some of these characteristics might well be enumer
ated. They are:

(1) The activity must not be deterministic in the prac
tical sense. There exists no known algorithm which will
guarantee a win or a draw in checkers, and the complete 211

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

212

explorations of every possible path through a checker
game would involve perhaps 1040 choices of moves
which, at 3 choices per millimicrosecond, would still take
1021 centuries to consider.

(2) A definite goal must exist-the winning of the
game-and at least one criterion or intermediate goal
must exist which has a bearing on the achievement of the
final goal and for which the sign should be known. In
checkers the goal is to deprive the opponent of the pos
sibility of moving, and the dominant criterion is the
number of pieces of each color on the board. The im
portance of having a known criterion will be discussed
later.

(3) The rules of the activity must be definite and they
should be known. Games satisfy this requirement. Un
fortunately, many problems of economic importance do
not. While in principle the determination of the rules can
be a part of the learning process, this is a complication
which might well be left until later.

(4) There should be a background of knowledge con
cerning the activity against which the learning progress
can be tested.

(5) The activity should be one that is familiar to a
substantial body of people so that the behavior of the
program can be made understandable to them. The
ability to have the program play against human oppo
nents (or antagonists) adds spice to the study and, inci
dentally, provides a convincing demonstration for those
who do not believe that machines can learn.

Having settled on the game of checkers for our learn
ing studies, we must, of course, first program the com
puter to play legal checkers; that is, we must express the
rules of the game in machine language and we must ar
range for the mechanics of accepting an opponent's
moves and of reporting the computer's moves, together
with all pertinent data desired by the experimenter. The
general methods for doing this were described by
Shannon'' in 1950 as applied to chess rather than check
ers. The basic program used in these experiments is quite
similar to the program described by Strachey? in 1952.
The availability of a larger and faster machine (the
IBM 704), coupled with many detailed changes in the
programming procedure, leads to a fairly interesting
game being played, even without any learning. The basic
forms of the program will now be described.

The basic checker-playing program

The computer plays by looking ahead a few moves and
by evaluating the resulting board positions much as a
human player might do. Board positions are stored by
sets of machine words, four words normally being used
to represent any particular board position. Thirty-two bit
positions (of the 36 available in an IBM 704 word) are,
by convention, assigned to the 32 playing squares on the
checkerboard, and pieces appearing on these squares are
represented by l's appearing in the assigned bit positions
of the corresponding word. "Looking-ahead" is prepared
for by computing all possible next moves, starting with a

given board position. The indicated moves are explored
in turn by producing new board-position records cor
responding to the conditions after the move in question
(the old board positions being saved to facilitate a return
to the starting point) and the process can be repeated.
This look-ahead procedure is carried several moves in
advance, as illustrated in Fig. 1. The resulting board po
sitions are then scored in terms of their relative value to
the machine.

The standard method of scoring the resulting board
positions has been in terms of a linear polynomial. A
number of schemes of an abstract sort were tried for
evaluating board positions without regard to the usual
checker concepts, but none of these was successful.t?
One way of looking at the various terms in the scoring
polynomial is that those terms with numerically small
coefficients should measure criteria related as intermedi
ate goals to the criteria measured by the larger terms.
The achievement of these intermediate goals indicates
that the machine is going in the right direction, such that
the larger terms will eventually increase. If the program
could look far enough ahead we need only ask, "Is the
machine still in the game?"l1 Since it cannot look this
far ahead in the usual situation, we must substitute some
thing else, say the piece ratio, and let the machine con
tinue the look-ahead until one side has gained a piece
advantage. But even this is not always possible, so we
have the program test to see if the machine has gained a
positional advantage, et cetera. Numerical measures of
these various properties of the board positions are then
added together (each with an appropriate coefficient
which defines its relative importance) to form the evalu
ation polynomial.

More specifically, as defined by the rules for checkers,
the dominant scoring parameter is the inability for one
side or the other to move.P Since this can occur but once
in any game, it is tested for separately and is not included
in the scoring polynomial as tabulated by the computer
during play. The next parameter to be considered is the
relative piece advantage. It is always assumed that it is
to the machine's advantage to reduce the number of the
opponent's pieces as compared to its own. A reversal of
the sign of this term will, in fact, cause the program to
play "give-away" checkers, and with learning it can only
learn to playa better and better give-away game. Were
the sign of this term not known by the programmer it
could, of course, be determined by tests, but it must be
fixed by the experimenter and, in effect, it is one of the
instructions to the machine defining its task. The nu
merical computation of the piece advantage has been ar
ranged in such a way as to account for the well-known
property that it is usually to one's advantage to trade
pieces when one is ahead and to avoid trades when
behind. Furthermore, it is assumed that kings are more
valuable than pieces, the relative weights assigned to
them being three to two.I3 This ratio means that the
program will trade three men for two kings, or two
kings for three men, if by so doing it can obtain some
positional advantage.

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

INITIAL BOARD POSITION

f

Pl Y NUMBER 1

2

3

4

5

6

7

8

9

10

11

Figure 1 A "tree" of moves which might be investigated during the look-ahead procedure. The actual
branchings are much more numerous than those shown, and the "tree" is apt to extend to as many
as 20 levels. 213

IBM JOURNAL· JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

214

The choice for the parameters to follow this first term
of the scoring polynomial and their coefficients then be
comes a matter of concern. Two courses are open
either the experimenter can decide what these subse
quent terms are to be, or he can arrange for the program
to make the selection. We will discuss the first case in
some detail in connection with the rote-learning studies
and leave for a later section the discussion of various
program methods of selecting parameters and adjusting
their coefficients.

It is not satisfactory to select the initial move which
leads to the board position with the highest score, since
to reach this position would require the cooperation of
the opponent. Instead, an analysis must be made pro
ceeding backward from the evaluated board positions
through the "tree" of possible moves, each time with
consideration of the intent of the side whose move is
being examined, assuming that the opponent would
always attempt to minimize the machine's score while
the machine acts to maximize its score. At each branch
point, then, the corresponding board position is given
the score of the board position which would result from
the most favorable move. Carrying this "minimax" pro
cedure back to the starting point results in the selection
of a "best move." The score of the board position at the
end of the most likely chain is also brought back, and for
learning purposes this score is now assigned to the pres
ent board position. This process is shown in Fig. 2. The
best move is executed, reported on the console lights,
and tabulated by the printer.

The opponent is then permitted to make his move,
which can be communicated to the machine either by
means of console switches or by means of punched
cards. The computer verifies the legality of the oppo
nent's move, rejectingv' or accepting it, and the process
is repeated. When the program can look ahead and pre
dict a win, this fact is reported on the printer. Similarly,
the program concedes when it sees that it is going to
lose.

• Ply limitations

Playing-time considerations make it necessary to limit
the look-ahead distance to some fairly small value. This
distance is defined as the ply (a ply of 2 consisting of
one proposed move by the machine and the anticipated
reply by the opponent). The ply is not fixed but depends
upon the dynamics of the situation, and it varies from
move to move and from branch to branch during the
move analysis. A great many schemes of adjusting the
look-ahead distance have been tried at various times,
some of them quite complicated. The most effective one,
although quite detailed, is simple in concept and is as
follows. The program always looks ahead a minimum
distance, which for the opening game and without learn
ing is usually set at three moves. At this minimum ply
the program will evaluate the board position if none of
the following conditions occurs: (1) the next move is a
jump, (2) the last move was a jump, or (3) an exchange
offer is possible. If anyone of these conditions exists, the

program continues looking ahead. At a ply of 4 the
program will stop and evaluate the resulting board posi
tion if conditions (1) and (3) above are not met. At a ply
of 5 or greater, the program stops the look-ahead when
ever the next ply level does not offer a jump. At a ply
of 11 or greater, the program will terminate the look
ahead, even if the next move is to be a jump, should one
side at this time be ahead by more than two kings (to
prevent the needless exploration of obviously losing or
winning sequences). The program stops at a ply of 20
regardless of all conditions (since the memory space for
the look-ahead moves is then exhausted) and an adjust
ment in score is made to allow for the pending jump.
Finally, an adjustment is made in the levels of the break
points between the different conditions when time is
saved through rote learning (see below) and when the
total number of pieces on the board falls below an arbi
trary number. All break points are determined by single
data words which can be changed at any time by manual
intervention.

This tying of the ply with board conditions achieves
three desired results. In the first place, it permits board
evaluations to be made under conditions of relative sta
bility for so-called dead positions, as defined by Turing.t"
Secondly, it causes greater surveillance of those paths
which offer better opportunities for gaining or losing an
advantage. Finally, since branching is usually seriously
restricted by a jump situation, the total number of board
positions and moves to be considered is still held down
to a reasonable number and is more equitably distributed
between the various possible initial moves.

As a practical matter, machine-playing time usually
has been limited to approximately 30 seconds per move.
Elaborate table-lookup procedures, fast sorting and
searching procedures, and a variety of new programming
tricks were developed, and full use was made of all of the
resources of the IBM 704 to increase the operating speed
as much as possible. One can, of course, set the playing
time at any desired value by adjustments of the permitted
ply; too small a ply results in a had game and too large
a ply makes the game unduly costly in terms of machine
time.

• Other modes of play

For study purposes the program was written to accom
modate several variations of this basic plan. One of these
permits the program to play against itself, that is, to play
both sides of the game. This mode of play has been
found to be especially good during the early stages of
learning.

The program can also follow book games presented to
it either on cards or on magnetic tape. When operating
in this mode, the program decides at each point in the
game on its next move in the usual way and reports this
proposed move. Instead of actually making this move,
the program refers to the stored record of a book game
and makes the book move. The program records its
evaluation of the two moves, and it also counts and re
ports the number of possible moves which the program

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

-70

CD

o
CD

+7

MACHINE CHOOSES BRANCH
WITH LARGEST SCORE

OPPONENT EXPECTED
TO CHOOSE BRANCH
WITH SMALLEST SCORE

MACHINE CHOOSES BRANCH
WITH MOST POSITIVE SCORE

+100 +50 +20 -7 +4 -3 o +3 -10 -20 -70 -100 +3 +7 +15 -5

Figure 2 Simplified diagram showing how the evaluations are backed-up through the "tree" of possible
moves to arrive at the best next move. The evaluation process starts at 0.

rates as being better than the book move and the number
it rates as being poorer. The sides are then reversed and
the process is repeated. At the end of a book game a cor
relation coefficient is computed, relating the machine's
indicated moves to those moves adjudged best by the
checker masters.l"

It should be noted that the emphasis throughout all of
these studies has been on learning techniques. The
temptation to improve the machine's game by giving it
standard openings or other man-generated knowledge of
playing techniques has been consistently resisted. Even
when book games are played, no weight is given to the
fact that the moves as listed are presumably the best pos
sible moves under the circumstances.

For demonstration purposes, and also as a means of
avoiding lost machine time while an opponent is think
ing, it is sometimes convenient to play several simul
taneous games against different opponents. With the
program in its present form the most convenient num
ber for this purpose has been found to be six, although
eight have been played on a number of occasions.

Games may be started with any initial configuration
for the board position so that the program may be tested
on end games, checker puzzles, et cetera. For nonstand
ard starting conditions, the program lists the initial piece
arrangement. From time to time, and at the end of each
game, the program also tabulates various bits of statisti-

cal information which assist in the evaluation of playing
performance.

Numerous other features have also been added to
make the program convenient to operate (for details see
Appendix A), but these have no direct bearing on the
problem of learning, to which we will now turn our
attention.

Rote learning and its variants

Perhaps the most elementary type of learning worth dis
cussing would be a form of rote learning in which the
program simply saved all of the board positions en
countered during play, together with their computed
scores. Reference could then be made to this memory
record and a certain amount of computing time might
be saved. This can hardly be called a very advanced
form of learning; nevertheless, if the program then util
izes the saved time to compute further in depth it will
improve with time.

Fortunately, the ability to store board information at
a ply of 0 and to look up boards at a larger ply provides
the possibility of looking much farther in advance than
might otherwise be possible. To understand this, con
sider a very simple case where the look-ahead is always
terminated at a fixed ply, say 3. Assume further that the
program saves only the board positions encountered
during the actual play with their associated backed-up 215

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

216

scores. Now it is this list of previous board positions that
is used to look up board positions while at a ply level of
3 in the subsequent games. If a board position is found,
its score has, in effect, already been backed up by three
levels, and if it becomes effective in determining the
move to be made, it is a 6-ply score rather than a simple
3-ply score. This new initial board position with its 6-ply
score is, in turn, saved and it may be encountered in a
future game and the score backed up by an additional
set of three levels, et cetera. This procedure is illustrated
in Fig. 3. The incorporation of this variation, together
with the simpler rote-learning feature, results in a fairly
powerful learning technique which has been studied in
some detail.

Several additional features had to be incorporated into
the program before it was practical to embark on learn
ing studies using this storage scheme. In the first place,
it was necessary to impart a sense of direction to the pro
gram in order to force it to press on toward a win. To
illustrate this, consider the situation of two kings against
one king, which is a winning combination for practically
all variations in board positions. In time, the program
can be assumed to have stored all of these variations,
each associated with a winning score. Now, if such a
situation is encountered, the program will look ahead
along all possible paths and each path will lead to a win
ning combination, in spite of the fact that only one of
the possible initial moves may be along the direct path
toward the win while all of the rest may be wasting time.
How is the program to differentiate between these?

A good solution is to keep a record of the ply value of
the different board positions at all times and to make a
further choice between board positions on this basis. If
ahead, the program can be arranged to push directly
toward the win while, if behind, it can be arranged to
adopt delaying tactics. The most recent method used is
to carry the effective ply along with the score by simply
decreasing the magnitude of the score a smaU amount
each time it is backed-up a ply level during the analyses.
If the program is now faced with a choice of board posi
tions whose scores differ only by the ply number, it will
automatically make the most advantageous choice,
choosing a low-ply alternative if winning and a high-ply
alternative if losing. The significance of this concept of a
direction sense should not be overlooked. Even without
"learning," it is very important. Several of the early at
tempts at learning failed because the direction sense was
not properly taken into account.

• Cataloging and culling stored information

Since practical considerations limit the number of board
positions which can be saved, and since the time to
search through those that are saved can easily become
unduly long, one must devise systems (1) to catalog
boards that are saved, (2) to delete redundancies, and
(3) to discard board positions which are not believed to
be of much value. The most effective cataloging system
found to date starts by standardizing all board positions,
first by reversing the pieces and piece positions if it is a

board position in which White is to move, so that all
boards are reported as if it were Black's turn to move.
This reduces by nearly a factor of two the number of
boards which must be saved. Board positions, in which
all of the pieces are kings, can be reflected about the
diagonals with a possible fourfold reduction in the num
ber which must be saved. A more compact board repre
sentation than the one employed during play is also used
so as to minimize the storage requirements.

After the board positions are standardized, they are
grouped into records on the basis of (1) the number of
pieces on the board, (2) the presence or absence of a
piece advantage, (3) the side possessing this advantage,
(4) the presence or absence of kings on the board, (5) the
side having the so-called "move," or opposition advan
tage, and finally (6) the first moments of the pieces about
normal and diagonal axes through the board. During
play, newly acquired board positions are saved in the
memory until a reasonable number have been accumu
lated, and they are then merged with those on the "mem
ory tape" and a new memory tape is produced. Board
positions within a record are listed in a serial fashion,
being sorted with respect to the words which define them.
The records are arranged on the tape in the order that
they are most likely to be needed during the course of a
game; board positions with 12 pieces to a side coming
first, et cetera. This method of cataloging is very impor
tant because it cuts tape-searching time to a minimum.

Reference must be made, of course, to the board posi
tions already saved, and this is done by reading the cor
rect record into the memory and searching through it by
a dichotomous search procedure. Usually five or more
records are held in memory at one time, the exact num
ber at any time depending upon the lengths of the par
ticular records in question. Normally, the program calls
three or four new records into memory during each new
move, making room for them as needed, by discarding
the records which have been held the longest.

Two different procedures have been found to be of
value in limiting the number of board positions that are
saved; one based on the frequency of use, and the sec
ond on the ply. To keep track of the frequency of use,
an age term is carried along with the score. Each new
board position to be saved is arbitrarily assigned an age.
When reference is made to a stored board position,
either to update its score or to utilize it in the look
ahead procedure, the age recorded for this board position
is divided by two. This is called refreshing. Offsetting
this, each board position is automatically aged by one
unit at the memory merge times (normally occurring
about once every 20 moves). When the age of anyone
board position reaches an arbitrary maximum value this
board position is expunged from the record. This is a
form of forgetting. New board positions which remain
unused are soon forgotten, while board positions which
are used several times in succession will be refreshed to
such an extent that they will be remembered even if not
used thereafter for a fairly long period of time. This form
of refreshing and forgetting was adopted on the basis of

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

EVALUATIONS WOULD NORMALLY BE MADE AT THIS LEVEL
3

2

PLY NUMBER 1

PREVIOUS EVALUATION LEVEL

Figure 3 Simplified representation of the rote-learning process, in which information saved from a pre
vious game is used to increase the effective ply of the .backed-up score.

reflections as to the frailty of human memories. It has
proven to be very effective.

In addition to the limitations imposed by forgetting, it
seemed desirable to place a restriction on the maximum
size of anyone record. Whenever an arbitrary limit is
reached, enough of the lowest-ply board positions are
automatically culled from the record to bring the size
well below the maximum.

Before embarking on a study of the learning capa
bilities of the system as just described, it was, of course,
first necessary to fix the terms and coefficients in the
evaluation polynomial. To do this, a number of different
sets of values were tested by playing through a series
of book games and computing the move correlation co-

efficients. These values varied from 0.2 for the poorest
polynomial tested, to approximately 0.6 for the one
finally adopted. The selected polynomial contained four
terms (as contrasted with the use of 16 terms in later
experiments). In decreasing order of importance these
were: (l) piece advantage, (2) denial of occupancy,
(3) mobility, and (4) a hybrid term which combined con
trol of the center and piece advancement.

• Rote-learning tests

After a scoring polynomial was arbitrarily picked, a series
of games was played, both self-play and play against
many different individuals (several of these being check
er masters). Many book games were also followed, some 217

IBM JOURNAL· JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

218

of these being end games. The program learned to play
a very good opening game and to recognize most win
ning and losing end positions many moves in advance,
although its midgame play was not greatly improved.
This program now qualifies as a rather better-than
average novice, but definitely not as an expert.

At the present time the memory tape contains some
thing over 53,000 board positions (averaging 3.8 words
each) which have been selected from a much larger
number of positions by means of the culling techniques
described. While this is still far from the number which
would tax the listing and searching procedures used in
the program, rough estimates, based on the frequency
with which the saved boards are utilized during normal
play (these figures being tabulated automatically), indi
cate that a library tape containing at least 20 times the
present number of board positions would be needed to
improve the midgame play significantly. At the present
rate of acquisition of new positions this would require
an inordinate amount of play and, consequently, of
machine time.F

The general conclusions which can be drawn from
these tests are that:

(1) An effective rote-learning technique must include
a procedure to give the program a sense of direction,
and it must contain a refined system for cataloging and
storing information.

(2) Rote-learning procedures can be used effectively
on machines with the data-handling capacity of the
IBM 704 if the information which must be saved and
searched does not occupy more than, roughly, one mil
lion words, and if not more than one hundred or so ref
erences need to be made to this information per minute.
These figures are, of course, highly dependent upon the
exact efficiency of cataloging which can be achieved.

(3) The game of checkers, when played with a simple
scoring scheme and with rote learning only, requires
more than this number of words for master caliber of
play and, as a consequence, is not completely amenable
to this treatment on the IBM 704.

(4) A game, such as checkers, is a suitable vehicle for
use during the development of learning techniques, and
it is a very satisfactory device for demonstrating ma
chine-learning procedures to the unbelieving.

Learning procedure involving generalizations

An obvious way to decrease the amount of storage
needed to utilize past experience is to generalize on the
basis of experience and to save only the generalizations.
This should, of course, be a continuous process if it is to
be truly effective, and it should involve several levels of
abstraction. A start has been made in this direction by
having the program select a subset of possible terms for
use in the evaluation polynomial and by having the pro
gram determine the sign and magnitude of the coeffi
cients which multiply these parameters. At the present
time this subset consists of 16 terms chosen from a list
of 38 parameters. The piece-advantage term needed to

define the task is computed separately and, of course, is
not altered by the program.

After a number of relatively unsuccessful attempts to
have the program generalize while playing both sides of
the game, the program was arranged to act as two dif
ferent players, for convenience called Alpha and Beta.
Alpha generalizes on its experience after each move by
adjusting the coefficients in its evaluation polynomial and
by replacing terms which appear to be unimportant by
new parameters drawn from a reserve list. Beta, on the
contrary, uses the same evaluation polynomial for the
duration of anyone game. Program Alpha is used to
play against human opponents, and during self-play
Alpha and Beta play each other.

At the end of each self-play game a determination is
made of the relative playing ability of Alpha, as com
pared with Beta, by a neutral portion of the program. If
Alpha wins-or is adjudged to be ahead when a game is
otherwise terminated-the then current scoring system
used by Alpha is given to Beta. If, on the other hand,
Beta wins or is ahead, this fact is recorded as a black
mark for Alpha. Whenever Alpha receives an arbitrary
number of black marks (usually set at three) it is as
sumed to be on the wrong track, and a fairly drastic and
arbitrary change is made in its scoring polynomial (by
reducing the coefficient of the leading term to zero).
This action is necessary on occasion, since the entire
learning process is an attempt to find the highest point
in multidimensional scoring space in the presence of
many secondary maxima on which the program can
become trapped. By manual intervention it is possible to
return to some previous condition or make some other
change if it becomes apparent that the learning process
is not functioning properly. In general, however, the
program seeks to extricate itself from traps and to im
prove more or less continuously.

The capability of the program can be tested at any
time by having Alpha play one or more book games
(with the learning procedure temporarily immobilized)
and by correlating its play with the recommendations of
the masters or, more interestingly, by pitting it against
a human player.

• Polynomial modification procedure

If Alpha is to make changes in its scoring polynomial,
it must be given some trustworthy criteria for measuring
performance. A logical difficulty presents itself, since
the only measuring parameter available is this same
scoring polynomial that the process is designed to im
prove. Recourse is had to the peculiar property of the
look-ahead procedure, which makes it less important for
the scoring polynomial to be particularly good the
further ahead the process is continued. This means that
one can evaluate the relative change in the positions of
two players, when this evaluation is made over a fairly
large number of moves, by using a scoring system which
is much too gross to be significant on a move-by-move
basis.

Perhaps an even better way of looking at the matter

TRM TOTTRNAT.· .1IILV 1959

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

is that we are attempting to make the score, calculated
for the current board position, look like that calculated
for the terminal board position of the chain of moves
which most probably will occur during actual play. Of
course, if one could develop a perfect system of this sort
it would be the equivalent of always looking ahead to
the end of the game. The nearer this ideal is approached,
the better would be the play.IS

In order to obtain a sufficiently large span to make use
of this characteristic, Alpha keeps a record of the ap
parent goodness of its board positions as the game pro
gresses. This record is kept by computing the scoring
polynomial for each board position encountered in actual
play and by saving this polynomial in its entirety. At the
same time, Alpha also computes the backed-up score for
all board positions, using the look-ahead procedure de
scribed earlier. At each play by Alpha the initial board
score, as saved from the previous Alpha move, is com
pared with the backed-up score for the current position.
The difference between these scores, defined as delta, is
used to check the scoring polynomial. If delta is positive
it is reasonable to assume that the initial board evalua
tion was in error and terms which contributed positively
should have been given more weight, while those that
contributed negatively should have been given less
weight. A converse statement can be made for the case
where delta is negative. Presumably, in this case, either
the initial board evaluation was incorrect, or a wrong
choice of moves was made, and greater weight should
have been given to terms making negative contributions,
with less weight to positive terms. These changes are
not made directly but are brought about in an involved
way which will now be described.

A record is kept of the correlation existing between
the signs of the individual term contributions in the ini
tial scoring polynomial and the sign of delta. After each
play an adjustment is made in the values of the correla
tion coefficients, due account being taken of the number
of times that each particular term has been used and has
had a nonzero value. The coefficient for the polynomial
term (other than the piece-advantage term) with the then
largest correlation coefficient is set at a prescribed maxi
mum value with proportionate values determined for all
of the remaining coefficients. Actually, the term coeffi
cients are fixed at integral powers of 2, this power being
defined by the ratio of the correlation coefficients. More
precisely, if the ratio of two correlation coefficients is
equal to or larger than n but less than n+I, where n is
an integer, then the ratio of the two term coefficients is
set equal to z». This procedure was adopted in order to
increase the range in values of the term coefficients.
Whenever a correlation-coefficient calculation leads to a
negative sign, a corresponding reversal is made in the
sign associated with the term itself.

• Instabilities

It should be noted that the span of moves over which
delta is computed consists of a remembered part and an
anticipated portion. During the remembered play, use

had been made of Alpha's current scoring polynomial to
determine Alpha's moves but not to determine the oppo
nent's moves, while during the anticipation play the
moves for both sides are made using Alpha's scoring
polynomial. One is tempted to increase the sensitivity of
delta as an indicator of change by increasing the span of
the remembered portion. This has been found to be
dangerous since the coefficients in the evaluation poly
nomial and, indeed, the terms themselves, may change
between the time of the remembered evaluation and the
time at which the anticipation evaluation is made. As a
matter of fact, this difficulty is present even for a span
of one move-pair. It is necessary to recompute the scor
ing polynomial for a given initial board position after a
move has been determined and after the indicated cor
rections in the scoring polynomial have been made, and
to save this score for future comparisons, rather than to
save the score used to determine the move. This may
seem a trivial point, but its neglect in the initial stages
of these experiments led to oscillations quite analogous
to the instability induced in electrical circuits by long
delays in a feedback loop.

As a means of stabilizing against minor variations in
the delta values, an arbitrary minimum value was set,
and when delta fell below this minimum for any par
ticular move no change was made in the polynomial.
This same minimum value is used to set limits for the
initial board evaluation score to decide whether or not
it will be assumed to be zero. This minimum is recom
puted each time and, normally, has been fixed at the
average value of the coefficients for the terms in the cur
rently existing evaluation polynomial.

Still another type of instability can occur whenever
a new term is introduced into the scoring polynomial.
Obviously, after only a single move the correlation coeffi
cient of this new term will have a magnitude of 1, even
though it might go to 0 after the very next move. To
prevent violent fluctuations due to this cause, the corre
lation coefficients for newly introduced terms are com
puted as if these terms had already been used several
times and had been found to have a zero correlation co
efficient. This is done by replacing the times-used num
ber in the calculation by an arbitrary number (usually
set at 16) until the usage does, in fact, equal this number.

After a term has been in use for some time, quite the
opposite action is desired so that the more recent experi
ence can outweigh earlier results. This is achieved, to
gether with a substantial reduction in calculation time
by using powers of 2 in place of the actual times-used
and by limiting the maximum power that is used. To be
specific, at any stage of play defined as the Nth move,
corrections to the values of the correlation coefficients
CN are made using 16 for N until N equals 32, where
upon 32 is used until N equals 64, et cetera, using the
formula:

CN_1±1
CN=CN _ I N'

and a value for N larger than 256 is never used.
After a minimum was set for delta it seemed reasona- 219

IBM JOURNAL· JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

220

ble to attach greater weight to situations leading to large
values of delta. Accordingly, two additional categories
are defined. If a contribution to delta is made by the first
term, meaning that a change has occurred in the piece
ratio, the indicated changes in the correlation coefficients
are doubled, while if the value of delta is so large as to
indicate that an almost sure win or lose will result, the
effect on the correlation coefficients is quadrupled.

• Term replacement

Mention has been made several times of the procedure
for replacing terms in the scoring polynomial. The pro
gram, as it is currently running, contains 38 different
terms (in addition to the piece-advantage term), 16 of
these being included in the scoring polynomial at anyone
time and the remaining 22 being kept in reserve. After
each move a low-term tally is recorded against that active
term which has the lowest correlation coefficient and, at
the same time, a test is made to see if this brings its tally
count up to some arbitrary limit, usually set at 8. When
this limit is reached for any specific term, this term is
transferred to the bottom of the reserve list, and it is re
placed by a term from the head of the reserve list. This
new term enters the polynomial with zero values for
its correlation coefficient, times used, and low-tally
count. On the average, then, an active term is replaced
once each eight moves and the replaced terms are given
another chance after 176 moves. As a check on the ef
fectiveness of this procedure, the program reports on
the usage which has accrued against each discarded term.
Terms which are repeatedly rejected after a minimum
amount of usage can be removed and replaced with com
pletely new terms.

It might be argued that this procedure of having the
program select terms for the evaluation polynomial from
a supplied list is much too simple and that the program
should generate the terms for itself. Unfortunately, no
satisfactory scheme for doing this has yet been devised.
With a man-generated list one might at least ask that
the terms be members of an orthogonal set, assuming
that this has some meaning as applied to the evaluation
of a checker position. Apparently, no one knows enough
about checkers to define such a set. The only practical
solution seems to be that of including a relatively large
number of possible terms in the hope that all of the
contributing parameters get covered somehow, even
though in an involved and redundant way. This is not
an undesirable state of affairs, however, since it simulates
the situation which is likely to exist when an attempt is
made to apply similar learning techniques to real-life
situations.

Many of the terms in the existing list are related in
some vague way to the parameters used by checker ex
perts. Some of the concepts which checker experts
appear to use have eluded the writer's attempts at defi
nition, and he has been unable to program them. Some
of the terms are quite unrelated to the usual checker
lore and have been discovered more or less by accident.
The second moment about the diagonal axis through the

double corners is an example. Twenty-seven different
simple terms are now in use, the rest being combinational
terms, as will be described later.

A word might be said about these terms with respect
to the exact way in which they are defined and the
general procedures used for their evaluation. Each term
relates to the relative standings of the two sides, with
respect to the parameter in question, and it is numeri
cally equal to the difference between the ratings for the
individual sides. A reversal of the sign obviously cor
responds to a change of sides. As a further means of
insuring symmetry the individual ratings of the respec
tive sides are determined at corresponding times in the
playas viewed by the side in question. For example,
consider a parameter which relates to the board condi
tions as left after one side bas moved. The rating of
Black for such a parameter would be made after Black
had moved, and the rating of White would not be made
until after White had moved. During anticipation play,
these individual ratings are made after each move and
saved for future reference. When an evaluation is de
sired the program takes the differences between the most
recent ratings and those made a move earlier. In general,
an attempt has been made to define all parameters so
that the individual-side ratings are expressible as small
positive integers.

• Binary connective terms

In addition to the simple terms of the type just described,
a number of combinational terms have been introduced.
Without these terms the scoring polynomial would, of
course, be linear. A number of different ways of intro
ducing nonlinear terms have been devised but only one
of these has been tested in any detail. This scheme pro
vides terms which have some of the properties of binary
logical connectives. Four such terms are formed for
each pair of simple terms which are to be related. This
is done by making an arbitrary division of the range in
values for each of the simple terms and assigning the
binary values of °and 1 to these ranges. Since most of
the simple terms arc symmetrical about 0, this is easily
done on a sign basis. The new terms are then of the
form A·B, A·li, .Ii.B, and .Ii.B, yielding values either of
o or 1. These terms are introduced into the scoring
polynomial with adjustable coefficients and signs, and
are thereafter indistinguishable from the other terms.

As it would require some 1404 such combinational
terms to interrelate the 27 simple terms originally used,
it was found desirable to limit the actual number of
combinational terms used at anyone time to a small
fraction of these and to introduce new terms only as it
became possible to retire older ineffectual terms. The
terms actually used are given in Appendix C.

• Preliminary learning-by-generalization tests

An idea of the learning ability of this procedure can be
gained by analyzing an initial test series of 28 gamesw
played with the program just described. At the start an
arbitrary selection of 16 terms was chosen and all terms

IBM JOURNAL· JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

were assigned equal weights. During the first 14 games
Alpha was assigned the White side, with Beta con
strained as to its first move (two cycles of the seven
different initial moves). Thereafter, Alpha was assigned
Black and White alternately. During this time a total
of 29 different terms was discarded and replaced, the
majority of these on two different occasions.

Certain other figures obtained during these 28 games
are of interest. At frequent intervals the program lists
the 12 leading terms in Alpha's scoring polynomial with
their correlation coefficients and a running count of the
number of times these coefficients have been altered.
Based on these samplings, one observes that at least 20
different terms were assigned the largest coefficient at
some time or other, some of these alternating with other
terms a number of times, and two even reappearing at
the top of the list with their signs reversed. While these
variations were more violent at the start of the series
of games and decreased as time went on, their presence
indicated that the learning procedure was still not com
pletely stable. During the first seven games there were
at least 14 changes in occupancy at the top of the list
involving 10 different terms. Alpha won three of these
games and lost four. The quality of the play was ex
tremely poor. During the next seven games there were
at least eight changes made in the top listing involving
five different terms. Alpha lost the first of these games
and won the next six. Quality of play improved steadily
but the machine still played rather badly. During Games
15 through 21 there were eight changes in the top listing
involving five terms; Alpha winning five games and
losing two. Some fairly good amateur players who
played the machine during this period agreed that it
was "tricky but beatable", During Games 22 through 28
there were at least four changes involving three terms.
Alpha won two games and lost five. The program ap
peared to be approaching a quality of play which caused
it to be described as "a better-than-average player". A
detailed analysis of these results indicated that the learn
ing procedure did work and that the rate of learning
was surprisingly high, but that the learning was quite
erratic and none too stable.

• Second series of tests

Some of the more obvious reasons for this erratic
behavior in the first series of tests have been identified.
The program was modified in several respects to im
prove the situation, and additional tests were made. Four
of these modifications are important enough to justify a
detailed explanation.

In the first place, the program was frequently fooled
by bad play on the part of its opponent. A simple solu
tion was to change the correlation coefficients less dras
tically when delta was positive than when delta was
negative. The procedure finally adopted for the positive
delta case was to make corrections to selected terms in
the polynomial only. When the scoring polynomial was
positive, changes were made to coefficients associated
with the negatively contributing terms, and when the

polynomial was negative, changes were made to the co
efficients associated with positively contributing terms.
No changes were made to coefficients associated with
terms which happened to be zero. For the negative delta
case, changes were made to the coefficients of all con
tributing terms, just as before.

A second defect seemed to be connected with the
too frequent introduction of new terms into the scoring
polynomial and the tendency for these new terms to
assume dominant positions on the basis of insufficient
evidence. This was remedied by the simple expedient
of decreasing the rate of introduction of new terms
from one every eight moves to one every 32 moves.

The third defect had to do with the complete exclusion
from consideration of many of the board positions
encountered during play by reason of the minimum
limit on delta. This resulted in the misassignment of
credit to those board positions which permitted spec
tacular moves when the credit rightfully belonged to
earlier board positions which had permitted the neces
sary groundlaying moves. Although no precise way has
yet been devised to insure the correct assignment of
credit, a very simple expedient was found to be most
effective in minimizing the adverse effects of earlier
assignments. This expedient was to allow the span of
remembered moves, over which delta is computed, to
increase until delta exceeded the arbitrary minimum
value, and then to apply the corrections to the coeffi
cients as dictated by the terms in the retained poly
nomial for this earlier board position. In this case, the
difficulty which was mentioned in the section on In
stabilities in connection with an arbitrary increase in
span, does not occur after each correction, since no
changes are made in the coefficients of the scoring
polynomial as long as delta is below the minimum value.
Of course, whenever delta does exceed the minimum
value the program must then recompute the initial scor
ing polynomial for the then current board position and
so restart the procedure with a span of a single remem
bered move-pair. This over-all procedure rectifies the
defect of assigning credit to a board position that lies
too far along the move chain, but it introduces the
possibility of assigning credit to a board position that
is not far enough along.

As a partial expedient to compensate for this newly
introduced danger, a change was made in the initial
board evaluation. Instead of evaluating the initial board
positions directly, as was done before, a standard but
rudimentary tree-search (terminated after the first non
jump move) was used. Errors due to impending jump
situations were eliminated by this procedure, and be
cause of the greater accuracy of the evaluation it was
possible to reduce the minimum delta limit by a small
amount.

Finally, to avoid the danger of having Beta adopt
Alpha's polynomial as a result of a chance win on
Alpha's part (or perhaps a situation in which Alpha
had allowed its polynomial to degenerate after an early
or midgame advantage had been gained), it was decided 221

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

222

to require a majority of wins on Alpha's part before
Beta would adopt Alpha's scoring polynomial.

With these modifications, a new series of tests was
made. In order to reduce the learning time, the initial
selection of terms was made on the basis of the results
obtained during the earlier tests, but no attention was
paid to their previously assigned weights. In contrast
with the earlier erratic behavior, the revised program ap
peared to be extremely stable, perhaps at the expense of
a somewhat lower initial learning rate. The way in which
the character of the evaluation polynomial altered as
learning progressed is shown in Fig. 4.

The most obvious change in behavior was in regard
to the relative number of games won by Alpha and the
prevalence of draws. During the first 28 games of the
earlier series Alpha won 16 and lost 12. The corre
sponding figures for the first 28 games of the new series
were 18 won by Alpha, and four lost, with six draws.
In all cases the games were terminated, if not finished,
in 70 moves and a judgment made in terms of the final
positions. Unfortunately, these figures are not strictly
comparable because of the decreased frequency with
which Beta adopted Alpha's polynomial during the second
series, both by design and because a programming error
immobilized the adoption procedure during part of the
tests. Nevertheless, the great decrease in the number of
losses and the prevalence of draws seemed to indicate
that the learning process was much more stable. Some
typical games from this second series are given in Ap
pendix B.

As learning proceeds, it should become harder and
harder for Alpha to improve its game, and one would
expect the number of wins by Alpha to decrease with
time. If secondary maxima in scoring space are en
countered, one might even find situations in which Alpha
wins less than half of the games. With Beta at such a
maximum any minor change in Alpha's polynomial
would result in a degradation of its play, and several
oscillations about the maximum might occur before
Alpha landed at a point which would enable it to beat
Beta. Some evidence of this trend is discernible in the
play, although many more games will have to be played
before it can be observed with certainty.

The tentative conclusions which can be drawn from
these tests are:

(1) A simple generalization scheme of the type here
used can be an effective learning device for problems
amenable to tree-searching procedures.

(2) The memory requirements of such schemes are
quite modest and remain fixed with time.

(3) The operating times are also reasonable and re
main fixed, independent of the amount of accumulated
learning.

(4) Incipient forms of instability in the solution can
be expected but, at least for the checker program, these
can be dealt with by quite straightforward procedures.

(5) Even with the incomplete and redundant set of
parameters which have been used to date, it is possible
for the computer to learn to playa better-than-average

game of checkers in a relatively short period of time.
As a final precautionary note, it should be stated that

these experiments have not encompassed a sufficiently
large series of games to demonstrate unambiguously
that the learning procedure is completely stable or that
it will necessarily lead to the best possible choice of
parameters and coefficients.

Rote learning vs. generalization

Some interesting comparisons can be made between the
playing style developed by the learning-by-generalization
program and that developed by the earlier rote-learning
procedure. The program with rote learning soon learned
to imitate master play during the opening moves. It was
always quite poor during the middle game, but it easily
learned how to avoid most of the obvious traps during
end-game play and could usually drive on toward a win
when left with a piece advantage. The program with the
generalization procedure has never learned to play in
a conventional manner and its openings are apt to be
weak. On the other hand, it soon learned to play a
good middle game, and with a piece advantage it usually
polishes off its opponent in short order. Interestingly
enough, after 28 games it had still not learned how to
win an end game with two kings against one in a
double corner.

Apparently, rote learning is of the greatest help,
either under conditions when the results of any specific
action are long delayed, or in those situations where
highly specialized techniques are required. Contrasting
with this, the generalization procedure is most helpful
in situations in which the available permutations of con
ditions are large in number and when the consequences
of any specific action are not long delayed.

• Procedures involving both forms of learning

The next obvious step is to combine the better features
of the rote-learning procedure with a generalization
scheme. This must be done with some care, since it is
not practical to update the previously saved information
after every change in the evaluation polynomial. A com
promise solution might be to save only a very limited
amount of information during the early stages of learn
ing and to increase the amount as warranted by the
increasing stability of the evaluation coefficient with
learning. For example, the program could be arranged
to save only the piece-advantage term at the start. At
some stage in the learning process the next term could
be added, perhaps when no change had been made in
the parameter used for this term during some fairly
long period, say for three complete games. If and when
the program is able to play an additional period without
changes in the next parameter, this could also be added,
et cetera. Whenever a change does occur in a parameter
previously assumed to be stable the entire memory
tape could be reviewed, all terms involving the changed
parameter and those lower on the list could be ex
punged, and the program could drop back to the earlier
condition with respect to its term-saving schedule.

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

42

MOVE

NODE

MOC 4

DEMMO

MODE 3

• •
MOC 2

MODE 2

Moe 3

KCENT

OREO
THRET

MOVE

KCENT

MOC 4

•MOC 2

Figure 4 Second series of learning-by-generalization tests. Coefficients assigned by the
program to the more significant parameters of the evaluation polynomial
plotted as a function of the number of games played. Two regions of special
interest might be noted; (1) the situation after 13 ·or 14 games, when the pro
gram found that the initial signs of many of the terms had been set incor
rectly, and (2) the conditions of relative stability which are beginning to show
up after 31 or 32 games.

~_--+:-:-=-::-::+--__-----e- -_---+-- - __-----e__

2 18

2 16

2 14

2 12

2 10

...J

«
~

2 80
Z
>-
...J

0
2 6...

w
:r
~

Z 2 4

V1

'"W....
w 2 2
~
-c
'"«...
w 0
:r
~

C)
Z -22
;::
...J......

-2 4...J

:>
~

V1...
Z -2 6
w

U...... -2 8
w
0
U

-210

_2 12

-2 14

_2 16

_ 2 18

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

Another solution would be to utilize the generaliza
tion scheme alone until it had become fairly stable and
to introduce rote learning at this time. It is, of course,
perfectly feasible to salvage much of the learning which
has been accumulated by both of the programs studied
to date. This could be done by appending an abridged
form of the present memory tape to the generalization
scheme in its present stage of learning and by proceed
ing from there in accordance with the first solution
proposed above.

• Future development

While it is believed that these tests have reached the
stage of diminishing returns, some effort might well be
expended in an attempt to get the program to generate
its own parameters for the evaluation polynomial. Lack
ing a perfectly general procedure, it might still be
possible to generate terms based on theories as proposed
by students of the game. This procedure would be at
variance with the writer's previous philosophy, but it is

Footnotes and References

1. Some of these are quite profound and have a bearing on
the questions raised by Nelson Goodman in Fact, Fic
tion and Forecast, Harvard University Press, 1954.

2. Warren S. McCulloch C'The Brain as a Computing Ma
chine," Elec. Eng. 69, 492, 1949) has compared the
digital computer to the nervous system of a flatworm.
To extend this comparison to the situation under dis
cussion would be unfair to the worm, since its nervous
system is actually quite highly organized as compared
with the random-net studies by B. G. Farley and W. A.
Clarke ("Simulation of Self-Organizing Systems by
Digital Computers," IRE PGIT 4, 76, Sept. 1954),
N. Rochester, J. H. Holland, L. H. Haibt and W. L.
Duda ("Tests on a Cell Assembly Theory of the Action
of the Brain Using a Large Digital Computer," IRE
Transactions on Information Theory, IT.2, No.3, 80,
Sept. 1956), and by F. Rosenblatt ("The Perceptron;
A Probabilistic Model for Information Storage and Or
ganization in the Brain," Psych. Rev., 6, 65, November
1958).

3. The first operating checker program for the IBM 701
was written in 1952. This was recoded for the IBM 704
in 1954. The first program with learning was completed
in 1955 and demonstrated on television on February
24, 1956.

4. C. E. Shannon, "Programming a Computer for Playing
Chess," Phil. Mag. 41, 256 (March 1950).

5. A. Bernstein and M. deV. Roberts, "Computer vs. Chess
Player," Scient. Amer. 198, 6 (June 1958).

6. 1. Kister, P. Stein, S. Ulam, W. Walden, M. Wells, "Ex
periments in Chess," Journal of the ACM, 4, 174 (April
1957).

7. A. Newell, 1. C. Shaw and H. A. Simon, "Chess-Playing
Programs and the Problem of Complexity," IBM J. of
Res. & Devel. 2, 320 (October 1958).

8. Shannon, loc cit.
9. C. S. Strachey, "Logical or Non-Mathematical Pro

grammes," Proc. of ACM Meeting at Toronto, Ontario,
pp. 46-49, Sept. 8-10, 1952.

highly likely that similar compromises will have to be
made when one attempts to apply learning procedures
to problems of economic importance.

Conclusions

As a result of these experiments one can say with some
certainty that it is now possible to devise learning
schemes which will greatly outperform an average per
son and that such learning schemes may eventually be
economically feasible as applied to real-life problems.

Acknowledgments

Many different people have contributed to these studies
through stimulating discussions of the basic problems.
From time to time the writer was assisted by several
different programmers, although most of the detailed
work was his own. The forbearance of the machine room
operators and their willingness to play the machine at
a11 hours of the day and night are also greatly appreciated.

10. One of the more interesting of these was to express a
board position in terms of the first and higher moments
of the white and black pieces separately about two or
thogonal axes on the board. Two such sets of axes were
tried, one set being parallel to the sides of the board
and the second set being those through the diagonals.

11. This apt phraseology was suggested by John McCarthy.
12. Not the capture of all of the opponent's pieces, as popu

larly assumed, although nearly all games end in this
fashion.

13. The use of a weight ratio rather than this, conforming
more closely to the values assumed by many players,
can lead into certain logical complications, as found by
Strachey, loco cit.

14. The only departure from complete generality of the
game as programmed is that the program requires the
opponent to make a permissible move, including the
taking of a capture if one is offered. "Huffing" is not per
mitted.

15. B. V. Bowden, Faster Than Thought, Chapter 25,
Pitman, 1953.

16. This coefficient is defined as C=(L-H)/(L+H), where
L is the total number of different legal moves which the
machine judged to be poorer than the indicated book
moves, and H is the total number which it judged to be
better than the book moves.

17. This playing-time requirement, while large in terms of
cost, would be less than the time which the checker
master probably spends to acquire his proficiency.

18. There is a logical fallacy in this argument. The program
might save only invariant terms which have nothing to do
with goodness of play; for example, it might count the
squares on the checkerboard. The forced inclusion of
the piece-advantage term prevents this.

19. Each game averaged 68 moves (34 to a side), of which
approximately 20 caused changes to be made in the
scoring polynomial. 223

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

Appendix A: Programming details

• Approximate size of program

Basic checker-playing routine .
Input, move verification and output
Game starting and terminating routines
Loaders, table generators, dumping, et cetera
Statistical and analytical routines
Rote-learning routines
Generalization-learning routines
Tables and constants for basic play
Working space for basic play .
Working space for generalization learning
Working space for rote learning

1100 instructions
1400 instructions
600 instructions
850 instructions
700 instructions

1500 instructions
650 instructions
700 words

2000 words
500 words

balance of memory

• Approximate computation times

To find all available moves from given board position.
To make a single move and find resulting board position
To evaluate a board position (4 terms)
To find score for a saved board position (rote learning)
To evaluate position (with 16 terms for generalization learning)

2.6 milliseconds
1.5 milliseconds
2.4 milliseconds
2.3 milliseconds
7.5 milliseconds

• Board representations

The standard checkerboard numbering system (see Appendix B) is used in communicating with the machine. A modi
fied numbering system is used for internal computations, the numbers shown on the squares in Fig. A-I corresponding
to the bit positions in an IBM 704 word. Any given board position is represented by four such words; one word (FA)
containing 1's in those bit positions corresponding to squares containing pieces of the color whose turn it is to move
and which normally move in a forward direction. To be specific, if it is Black's turn to move (i.e., if Black is "active")
FA designates the location of all of Black's pieces, both men and kings. Conversely, if White is active, FA designates
the location of White's kings only, since White's men can only move in the direction arbitrarily called backward.
The other words designate, respectively: BA, backward active pieces; FP, forward passive pieces; and BP, backward
passive pieces.

To conserve space when writing on tape, three words are used to record board positions with kings, and only two
words are used for board positions without kings. These are saved in a standardized form, as explained in the text.

Possible moves are designated by five words; one word to indicate by its sign (with the word itself containing other
information) whether the moves are jumps or not. (If a jump is available, only jump moves are saved.) The other
four words designate the location of those pieces which can move in the four different diagonal directions: RF, for
right forward; LF, for left forward; LB, for left backward; and RB, for right backward, respectively.

By reference to Fig. A-I, it will be observed that a right-forward move results in an increase of 4 in the square
designation, while a left-forward move results in an increase of 5. Bit positions 9, 18 and 27 do not appear on the
board. This notation makes it possible to compute available moves for all pieces simultaneously. Having previously
computed a word called EMPTY, which contains 1's in locations corresponding to all unoccupied squares, one can
compute RF, for the normal move case, in four instructions, as listed below (in IBM 704 symbolic language):

CLA

ALS

ANA

STO

EMPTY

4

FA

RF

(puts word EMPTY into the accumulator);

(shifts word to left by 4 positions) ;

(forms logical AND between EMPTY and FA) ;

(stores word as newly computed RF) .

Jump moves are computed by a simple extension of this procedure. Multiple jumps are handled as a sequence of single
224 jumps separated by null-reply moves.

IBM JOURNAL· JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

WHITE

I
! I

@ ® ® @

,

® ® ® @

® ® ® @

® I ® ® ®

I
®

I
®

i
I ® ®
I

® ® ® I ,
®,

0 CD ® CD

CD CD CD , CD
1

BLACK

Figure A-I Checkerboard notation for internal computations.

, Additional time-saving expedients

Bit counting is done by a table-lookup procedure in a closed subroutine of 16 executed instructions (408 microseconds).
This requires a 256-word table which is generated at the start by a 13-word program. Similar table-lookup procedures
are used, to turn a word end-for-end, and to locate the l 's in a word for move reporting.

Multiplications are usually avoided. In several places where multiplication by small integers must be done, it is
programmed in terms of shifts and logical operations.

During the look-ahead procedure a complete record is kept of the sequence of board positions currently under
investigation. As a result, no computing is needed to retract moves. 225

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

Appendix B: Sample games from the second series with generalixotion learning

• Typical openings

The first eight moves of selected games in which Alpha played Black against Beta, showing the way in which different
types of play were tried.

G-4 G-6 G-12 G-17 G-19 G-21 G-31 G-37 G-39 G-41 0-43- -- -- -- -- -- -- -- -- -- --10 14 11 16 11 16 11 16 11 16 11 16 11 16 12 16 11 16 10 14 11 16
24 19 22 18 22 17 24 20 24 20 24 20 23 18 24 20 24 20 24 20 23 19
14 18 16 20 16 20 10 14 7 11 8 11 7 11 8 12 10 15 11 15 16 23
23 14 18 14 1713 20 11 22 17 28 24 27 23 28 24 20 11 27 24 26 19

9 18 9 18 9 14 8 15 10 14 10 14 16 20 10 14 7 16 7 10 8 11
22 15 23 14 23 18 22 17 17 to 23 18 23 19 23 18 21 17 23 18 22 17
11 18 to 17 14 23 7 11 6 15 14 23 20 27 14 23 610 14 23 10 14
21 17 21 14 27 18 17 10 28 24 27 18 31 24 27 18 23 19 26 19 17 10

• Typical games

Sample games in which Alpha played White against forced Beta openings.
G-1 G-18 G-30 G40

Ii
G-1 G-18 G-30 G·40- -- -- -- - -- -- --

12 16 12 16 12 16 10 14 9 13 12 16 9 14 4 8
24 19 24 20 24 20 24 20 il 1 6 24 20 18 9 1 6
8 12 8 12 8 12 11 15 1317 16 19 8 11 10 14

22 18 28 24 28 24 27 24 32 27 29 25 15 8 6 10
10 14 10 15 10 14 7 to 16 20 13 17 4 11 14 17
26 22 22 18 22 18 23 18 18 14 10 7 19 15]0 15
16 20 15 22 6 10 14 23 11 15 211 11 18 17 21
30 26 25 18 24 19 26 19 6 10 14 10 23 14 32 28
11 16 7 10 1 6 10 14 !I 15 18 19 23 1317 5 9
28 24 18 14 32 28 19 10 14 9 21 14 9 5 27 24
7 11 10 17 3 8 6 15

i' Terminated 23 26 12 16 20 27
22 17 21 14 26 22 22 17 II Manually 10 7 28 24 19 16

3 8 9 18 9 13 2 7 26 30 17 22 12 19
17 10 23 14 18 9 17 10 25 21 6 10 15 22 31
6 15 22 6 9 5 14 7 14 30 26 30 25 9 14

26 17 30 25 22 18 24 19 7 3 1 6 31 26
913 9 18 6 9 15 24 11 15 25 21 14 18

17 14 26 23 25 22 28 19 14 10 5 1 28 24
2 7 3 8 2 6 14 17 5 9 21 17 8 11

23 18 23 14 30 25 21 14 10 6 24 20 24 19
16 23 1 6 14 17 9 18 15 19 16 19 21 25
14 10 27 23 21 14 5 25 22 6 1 20 16 30 21
7 14 6 9 6 9 18 25 26 22 17 13 Beta Concedes

18 9 14 10 18 15 29 22 1 6 6 2
5 14 9 13 11 18 5 9 9 13 13 17

27 18 9 25 21 20 11 2 31 27 20 16 10 6
20 27 11 15 10 14 1 5 19 23 Beta Concedes
31 24 20 11 22 15 20 16 6 9
12 16 15 18 14 17 3 7 23 27
21 17 23 14 5 1 22 17 16 11
13 22 8 15 17 21 8 11 22 25
25 18 24 19 25 22 17 13 11 7

1 5 15 24 21 25 11 20 25 30
9 6 32 28 22 18 13 6 7 2
5 9 24 27 25 30 7 10 27 32

226 6 1 31 24 2 6 6 1 70 Move Termination

IBM JOURNAL· JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

WHITE

BLACK

Figure B-1 Square designations used in reporting games.

Appendix C: Evaluation polynomial details for second series

• Method of computing terms

The 16 terms called for in the evaluation polynomial are computed, individually, by taking the value of the appropriate
parameter, as defined below, for the board position under consideration and subtracting the value of this same
parameter computed for the board position just prior to the last move (with the necessary reversal in the definitions
of active and passive sides). This difference is then multiplied by the corresponding program-computed coefficient,
which can vary between -218 and +218 , and credited to the side which was passive on the board position under
consideration. 221

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

228

_ Definitions of parameters

ADV (Advancement)
The parameter is credited with 1 for each passive man in
the 5th and 6th rows (counting in passive's direction)
and debited with 1 for each passive man in the 3rd and
4th rows.

APEX (Apex)
The parameter is debited with 1 if there are no kings on
the board, if either square 7 or 26 is occupied by an ac
tive man, and if neither of these squares is occupied by a
passive man.

BACK (Back Row Bridge)
The parameter is credited with 1 if there are no active
kings on the board and if the two bridge squares (1 and
3, or 30 and 32) in the back row are occupied by passive
pieces.

CENT (Center Control I)
The parameter is credited with 1 for each of the follow
ing squares: 11, 12, 15, 16, 20, 21, 24 and 25 which is
occupied by a passive man.

CNTR (Center Control II)
The parameter is credited with I for each of the follow
ing squares: 11, 12, 15, 16, 20, 21, 24 and 25 that is
either currently occupied by an active piece or to which
an active piece can move.

CORN (Double-Corner Credit)
The parameter is credited with 1 if the material credit
value for the active side is 6 or less, if the passive side is
ahead in material credit, and if the active side can move
into one of the double-corner squares.

CRAMP (Cramp)
The parameter is credited with 2 if the passive side occu
pies the cramping square (13 for Black, and 20 for
White) and at least one other nearby square (9 or 14 for
Black, and 19 or 20 for White), while certain squares
(17,21,22 and 25 for Black, and 8, 11, 12 and 16 for
White) are all occupied by the active side.

DENY (Denial of Occupancy)
The parameter is credited with 1 for each square defined
in MOB if on the next move a piece occupying this
square could be captured without an exchange.

DIA (Double Diagonal File)
The parameter is credited with 1 for each passive piece
located in the diagonal files terminating in the double
corner squares.

DIAV (Diagonal Moment Value)
The parameter is credited with 1/2 for each passive
piece located on squares 2 removed from the double
corner diagonal files, with 1 for each passive piece lo
cated on squares 1 removed from the double-corner files
and with 3/2 for each passive piece in the double-corner
files.

DYKE (Dyke)
The parameter is credited with 1 for each string of pas
sive pieces that occupy three adjacent diagonal squares.

EXCH (Exchange)
The parameter is credited with 1 for each square to
which the active side may advance a piece and, in so
doing, force an exchange.

EXPOS (Exposure)
The parameter is credited with 1 for each passive piece
that is flanked along one or the other diagonal by two
empty squares.

FORK (Threat of Fork)
The parameter is credited with 1 for each situation in
which passive pieces occupy two adjacent squares in one
row and in which there are three empty squares so dis
posed that the active side could, by occupying one of
them, threaten a sure capture of one or the other of the
two pieces.

GAP (Gap)
The parameter is credited with 1 for each single empty
square that separates two passive pieces along a diagonal,
or that separates a passive piece from the edge of the
board.

GUARD (Back Row Control)
The parameter is credited with 1 if there are no active
kings and if either the Bridge or the Triangle of Oreo is
occupied by passive pieces.

HOLE (Hole)
The parameter is credited with 1 for each empty square
that is surrounded by three or more passive pieces.

KCENT (King Center Control)
The parameter is credited with 1 for each of the follow
ing squares: 11, 12, 15, 16,20,21,24 and 25 which is
occupied by a passive king.

MOB (Total Mobility)
The parameter is credited with 1 for each square to
which the active side could move one or more pieces in
the normal fashion, disregarding the fact that jump
moves mayor may not be available.

MOBIL (Undenied Mobility)
The parameter is credited with the difference between
MOB and DENY.

MOVE (Move)
The parameter is credited with 1 if pieces are even with
a total piece count (2 for men, and 3 for kings) of less
than 24, and if an odd number of pieces are in the move
system, defined as those vertical files starting with
squares 1, 2, 3 and 4.

NODE (Node)
The parameter is credited with 1 for each passive piece
that is surrounded by at least three empty squares.

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

OREO (Triangle of Oreo)

The parameter is credited with 1 if there are no passive
kings and if the Triangle of Oreo (squares 2, 3 and 7 for
Black, and squares 26,30 and 31 for White) is occupied
by passive pieces.

POLE (Pole)

The parameter is credited with I for each passive man
that is completely surrounded by empty squares.

RECAP (Recapture)
This parameter is identical with Exchange, as defined
above. (It was introduced to test the effects produced by
the random times at which parameters are introduced
and deleted from the evaluation polynomial.)

THRET (Threat)
The parameter is credited with 1 for each square to
which an active piece may be moved and in so doing
threaten the capture of a passive piece on a subsequent
move .

.............................._-_......•.. ,--_.._----------~.

Undenied Mobility-Denial of OccupancyDenial of Occupancy-Total Mobility

• Binary connective terms

The abbreviations used for the terms of this type which have been employed are listed below, in the order of
AoB, A-B AoB, and /i-B, where A and B are the two respective parameters heading the sublists of abbreviations.

Undenied Mobility~

Center Control I

DEMO
DEMMO
DDEMO
DDMM

MODE 1
MODE 2
MODE 3
MODE 4

MOC 1
MOC 3
MOC 2
MOC 4

• Evaluation polynomial (first 12 terms only) after 42 games, during which a total of 1039 different sets of adjustments
were made to the terms and their coefficients. '"

......_~ __•._---

84
127
95

210
132

91
739

55
6

12
442

89

Times
Adjusted

18
16
14
13
11
8
8
8
6
5
5
4

+

+

+
+
+

Sign of
Coefficient

Power of 2
Used as Coefficient

-----------_ __.~-_._---

0,45
0.40
0.35
0.33
0.27
0.19
0.19
0.19
0.14
0.13
0.13
0.10

Correlation
CoefficientTerm

MOC 2
KCENT
MOC 4
MODE 3
DEMMO
MOVE
ADV
MODE 2
BACK
CNTR
THRET
MOC 3

• Discarded terms during 42 games"

Times Adjusted Times Adjusted
Term Before Discard Term Before Discard

,-----

CORN 0 MODE 1 1
CRAMP 0 CENT 386
GUARD 0 MODE 4 0
EXPOS 162 FORK 400
DDMM 19 MOBIL 707
DYKE 115 POLE 11
MOC 1 1 HOLE 598
EXCH 445 GAP 792
DDEMO 53 MOB 608

*Note added in proof: An additional 20 games have recently been played. Although
some significant changes were noted, the general stabilization of the learning process
suggested by Fieure 4 has been confirmed. During this play, 412 more adjustments
were made to the terms and their coefficients and 12 additions were made to the
list of discarded terms. Received March 3,1959 229

IBM JOURNAL' JULY 1959
Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 09:45:52 UTC from IEEE Xplore. Restrictions apply.

