
The evolution of
RISC technology
at IBM

by John Cocke
V. Markstein

This paper traces the evolution of IBM RISC
architecture from its origins in the 1970s at the
IBM Thomas J. Watson Research Center to the
present-day IBM RISC System/6000* computer.
The acronym RISC, for Reduced Instruction-Set
Computer, is used in this paper to describe the
801 and subsequent architectures. However,
RISC in this context does not strictly imply a
reduced number of instructions, but rather a set
of primitives carefully chosen to exploit the
fastest component of the storage hierarchy and
provide instructions that can be generated
easily by compilers. We describe how these
goals were embodied in the 801 architecture
and how they have since evolved on the basis of
experience and new technologies. The effect of
this evolution is illustrated with the results of
several benchmark tests of CPU performance.

Introduction
IBM RISC technology originated in 1974 in a project to
design a large telephone-switching network capable of
handUng an average of three hundred calls per second.
With an approximate 20 000 instructions per call and

*RISC System/6000 is a trademark of Imeraational Business Machines Corporation.

^Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

Stringent real-time response requirements, the
performance target was 12 million instructions per
second (MIPS) [1]. This specialized apphcation required
a very fast processor, but did not have to perform
compUcated instructions and had little demand for
floating-point calculations. Other than moving data
between registers and memory, the machine had to be
able to add, combine fields extracted from several
registers, perform branches, and carry out input/output
operations.

When the telephone project was terminated in 1975,
the machine itself had not been built, but the design had
progressed to the point where it seemed to be an excellent
basis for a general-purpose, high-performance
miniprocessor. The attractiveness of the processor design
stemmed from projections that it would be able to
compute at high speed relative to its cost in a variety of
application areas.

The most important features of the telephone-
switching machine which contributed to its low cost/
performance ratio were 1) separate instruction and data
caches, allowing a much higher bandwidth between
memory and CPU; 2) no arithmetic operations to
storage, which greatly simplified the pipeline; and 3)
uniform instruction length and simplicity of design,
making possible a very short cycle time: ten levels of
logic. (For example, all register-to-register operations
executed in one cycle.)

Instruction traces showed that 30 percent of all
instructions involved moving data between storage and
the CPU [2]. Various studies had shown that branching
can take up as much as one third of the execution time
[2]. Performance degradation due to branches had been
recognized as far back as the IBM 7030 (STRETCH),
where the hardware was biased to perform better if

JOHN COCKE AND V. MARKSTEIN IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

4

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

conditional branches failed to execute the target
instruction.

A small degree of pipelining, two or three levels, cut
down the eifective time required for memory accesses
and branches. Memory-fetch operations required two
cycles, one to compute the address of the data and send
the address on the memory bus, and a second to receive
the data and place it in the target register. Since the CPU
itself was not needed during the second cycle, it was
available to execute the following instruction unless that
instruction required the data being fetched.

Pipelining in instruction fetching also helped reduce
the cost of branching, which required one or two cycles
depending on whether the branch was successful. During
the first cycle, the target address was computed, and it
was determined whether the branch would be successful.
If the branch was unsuccessful, the machine would
continue with the prefetched instruction in the current
instruction stream. If the branch was successful, however,
a cycle would be lost while the first word of the new
instruction stream was fetched from memory and
reached the CPU. To recover this cycle, a second form of
branch instruction, called BRANCH AND EXECUTE,
was introduced in an experimental successor to the
telephone-machine design. This form of branch, which is
commonly called "delayed branch," caused the CPU to
unconditionally execute the instruction immediately
following the branch, whether or not the branch was
successful. If a BRANCH AND EXECUTE could be
used instead of a conventional branch instruction, the
lost cycle could be recovered whenever the branch was
taken. Delayed branch, by the way, was used as early as
1952 in the Los Alamos MANIAC computer [3] and was
resurrected in the experimental machine.

To keep the basic cycle as short as possible, the original
machine was architected without the usual memory-
protect mechanisms, which require memory blocks to
have control bits to indicate whether they are read, write,
or execution blocks. The machine would have depended
entirely on software for this feature, but this notion was
abandoned in later designs. The cache, a high-speed
memory used as a buffer between main memory and the
CPU, was split into two parts: a data cache and an
instruction cache. At that time it was widely accepted
that a running program would not modify itself at
execution time. Therefore, no mechanisms were added to
ensure that stores into the instruction stream were
immediately reflected in the instruction cache. Instead,
the ability to void cache lines was added to the
instruction set.

When the capabilities of this machine were compared
with those of large System/370 machines, it was reaUzed
that its programs would be longer: Many of the
System/370 instructions which required many cycles

were no longer available. Even the popular ADD FROM
STORAGE instruction was gone, and the equivalent
operation would require a LOAD instruction followed by
an ADD FROM REGISTER instruction. However, the
System/370 Model 168 (for example) took almost as long
to execute the ADD FROM STORAGE instruction as
the two-instruction sequence that our experimental
machine would require, and the latter was in fact an
alternative sequence for the System/370.

IBM had a vast amount of data on instruction
frequencies for various appUcations [1]. From these
instruction traces, it was clear that LOAD, STORE,
BRANCH, FIXED-POINT ADD, and FIXED-POINT
COMPARE were the most frequently occurring
instructions, accounting for well over half of the total
execution time in most application areas. (Numerically
intensive computation was the one exception, where
floating-point operations were among the instructions
most frequently seen.) Therefore, the experimental
machine did not seem to be disadvantaged, since it could
execute each of the most often used System/3 70
operations in one cycle. In that sense, the machine was
very similar to a vertical microcode engine, i.e., a
machine that executes one instruction at a time. But
instead of "hiding" this attribute behind a complex
instruction set in microcode, we exposed it directly to the
end user. Removing that level of indirection allowed the
most frequent instructions to be executed in one machine
cycle each, whereas using the machine as a microcomputer
simulating a System/370 would introduce a simulator
overhead of about ten instructions. Only after that would
the machine as a simulator issue the one-instruction
equivalent of the fastest System/370 instructions.

This was the key realization: Imposing microcode
between a computer and its users imposes an expensive
overhead in performing the most frequently executed
instructions. Thus, a key task in designing the
experimental machine was to investigate the
consequences of exposing a microcomputer directly to
the end user. In many cases, a microcomputer Umited to
instructions executable in one cycle would execute a
macro-instruction in about as many cycles as a
System/370 Model 168 executing the equivalent
instruction. The great potential was that simple
instructions would run substantially faster for the same
circuit family and cycle time because the overhead of
executing a CISC (Complex Instruction-Set Computer)
interpreter was pared away.

Of course, at that time, the acronym "CISC" did not
yet exist. Neither did "RISC," and for a time there was
no name for the experimental computer. "The telephone
machine" began to seem inappropriate, and we named
the machine "the 801" after the designation of the IBM
building in which the research was taking place.

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990 JOHN COCKE AND V. MARKSTEIN

5

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

Interaction of software with the 801
Compilers were expected to play a central role in the 801.
Its architecture was the antithesis of the "semantic gap"
idea, in that instructions were specificaUy designed for
efficient use by a compiler. Because of the lack of
hardware memory protection, it was envisioned that
every piece of code would be written in high-level
languages for which compilers could be provided. The
compilers ensured that code would not make accesses
outside the regions in which it was entitled to operate.

For memory protection, a special instruction, the trap
instruction, was introduced into the 801. This instruction
compared two quantities, and if a specified condition
existed between the two quantities, the 801 "trapped"
(took its next instruction) from a fixed, hardware-
determined location. The trap instructions behaved like
sequential instructions, which on rare occMions might
trap (just as a division on rare occasions would cause a
divide check). The compilers were to compare memory
addresses with bounds, and cause traps if the accesses
were outside the bounds. Of course, the compilers were
also expected to "optimize away" most of the traps and
the instructions which triggered them [4].

In mid-1975, there existed no software at aU for the
801. An assembler was quickly fashioned, and a
simulator was designed and built. The simulator was
especially fast, and its design was strongly influenced by
the split-cache design of the 801. Since the instruction
cache of the 801 was not expected to reflect changes to
memory unless exphcitly synchronized, the simulator was
designed to simply translate each 801 instruction into 32
bytes of System/370 code which would implement the
801 instruction. Every time a new cache line was
accessed, the 801 memory would be compiled into
System/370 code, and only on cache-invalidate
instructions (801 instructions which specifically indicate
that specified portions of the cache are no longer valid)
would the translated code be abandoned. The result was
a simulator that ran at about one-tenth the speed of the
host machine, fast enough to simulate meaningful
programs.

There was still the question of higher-level languages.
With limited resources, it was decided to concentrate on
just one. PL/I seemed to be a desirable language, since it
supported many applications. Its very richness, however,
also made it difficult for compilers to produce good code
over much of its capability. The construct of PL/I was
therefore reduced to a subset useful to system
programmers, and those language features which seemed
to defy reasonable translation were discarded. The more
arcane constructs would be coded by the programmer
using the rational subset of PL/I that was recognized. The
result was the PL.8 language [5], the ".8" implying that it
had about 80 percent of the richness of PL/I. PL.8 bore

the same relation to PL/I as the 801 architecture had to
the System/370.

Initially, PL.8 was a pure subset of PL/I, so that the
compiler could be coded in PL/I, developed on a
System/370, and its output (801 code) tested on the
simulator. Because there was great concern initially that
801 code sequences would be long and cumbersome,
compiler-code quality was always a central objective in
the construction of the PL.8 language and its compilers.
To that end, the general optimization algorithms
described in [6] were used. (Many of these algorithms,
while very general and powerful, had not previously been
used outside the classroom.)

Our approach to register allocation, which was deemed
to be central to the proper use of the 801, was "graph
coloring." This approach had been mentioned in the
Uterature [7], but was implemented for the first time in
the PL.8 compiler [8].

PL.8 compiler output is code which can be executed
on the 801. Using the PL.8 compiler to compile itself on
a System/370 produced a PL.8 compiler that would
execute on an 801 machine. (This method of producing a
compiler for a new architecture is called
"bootstrapping.")

As the compiler grew in its capabilities, we were able to
simulate sizable pieces of 801 code. Eventually we
bootstrapped the compiler and ran it on the simulator as
well. The simulator counted the number of instructions
executed, and from this number we could project how
fast a program could run on the real 801, once the
engineers finished constructing a model. Many of the
results were very favorable to the 801 architecture;
ironically, however, the compiler proved to be a bad c^e!
The culprit was the large number of move-strings
occurring in the compiler, because the 801 lacked a
sufficiently powerful means of moving strings that were
not identically aligned with respect to full-word
boundaries.

However, one interesting outcome of the bootstrap
procedure was the discovery of dozens of uses for
uninitialized data. PL/I failed to pick these up because
the cost of executing PL/I code compiled with
SUBSCRIPTRANGE ON and other checking code
enabled was intolerably high. PL.8, which always ran
with all checking enabled, but whose compiler optimized
away the vast majority of the overhead, discovered these
uses for uninitialized data because, when used later as
subscripts, this data would have inappropriate values.

As the optimizer and the register-allocation techniques
[9] improved, it was discovered that the resultant 801
code was not much different from ordinary System/370
code. The code sequences were not unduly long or
unnatural. (In later years, path-length comparisons
between RISC and CISC architectures have been shown

JOHN COCKE AND V. MARK.STEIN IBM t. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

6

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

to be very nearly equal [10].) The path-length result was
mostly due to the ability of the compiler to perform
greater optimization, which in turn was possible because
of the regular instruction format. (Had we decided to
name our architecture at that time, we might have called
it a Regular Instruction-Set Computer.)

On the whole, the code generated for the 801
confirmed our belief that an exposed vertical-microcode
machine was a very cost-effective, high-performance
machine. (The original 801 instruction set was adopted
by the IBM Office Products Division as the basis for a
microcomputer, a transfer of technology that in time
developed into the IBM RT System.) There were,
however, several areas in which the 801 needed
improvement. String handling has been already cited
above. Decimal arithmetic was found to need hardware
that could propagate carries between four-bit subfields.
The register allocator proved to be very effective, but it
showed that as many as 32 registers would be desirable to
take full advantoge of the architecture. In addition,
register allocation had to cope with the fact that most 801
operations replaced one of the operands with the result,
thereby making it costly to reuse that operand; an
instruction format which allowed the result register to be
specified independently of the input registers could have
been used to great advantage by the 801 style of register
allocation.

Finally, the original 801 supported a maximum of 16
megabytes of memory. With the radical reduction in the
cost of memory that was occurring at the time, it became
clear that a competitive RISC computer would require
significantly larger addressability, and that virtual
memory could not be ignored. To accommodate these
requirements, a second 801 design was begun.

Improved 801 architectures
The second 801 reflected the lessons learned from the
first. First, all instructions would now be 32 bits in
length. This simplified the instruction-decode mechanism
and made it easier for look-ahead mechanisms to ci t ify
operations. Instructions could no longer straddle cache
Unes, and with the adoption of virtual addressing, full-
word instructions would also never straddle page
boundaries. All of these benefits further simplified
instruction manipulation, and served to nuUify the extra
complexities that virtual memory added to instruction
handling and memory referencing.

For the original 801, the average instruction length was
found to be three bytes. The second 801, with its fixed
four-byte instruction length, had its program size
increased by less than a factor of 33 percent, because
fewer instructions were needed.

The 32-bit instruction was long enough to reference 32
registers, and to provide a unique field to specify the

result of the operation. Nondestructive instructions
allowed better reuse of data, and the additional 16
registers avoided most of the register-spiUing code (code
to store and reload registers) which resulted when register
allocation failed in its initial attempt with the limitation
of only 16 registers. As long as no spill-code was
introduced, the compiler could easily outperform hand-
coding.

The fixed-point unit was bolstered by a powerfid
rotator, which was capable of rotating the contents of one
register and combining selected bits of the rotated result
with the contents of another register, the result being
delivered either to a third register or to storage. The
ROTATE instructions significantly improved the
performance of the 801 move-character routine, and
provided powerful operations for the combining of bit
fields that occurs often in compilers and operating
systems. The more powerful SHIFT instructions also
reduced the time needed to simulate floating-point
instructions. The SHORT FLOATING ADD, for
example, could be performed in 20 cycles.

Assists were provided for decimal addition and
subtraction, which allowed two words of eight digits to be
added in only four instructions.

A major advance in the 801 CPU was its ability to
branch based on the state of any bit in any general-
purpose register. As a result, the state of the condition
register could be saved in a general-purpose register,
improving the treatment of several other branches against
the same condition that might occur in widely separated
parts of a program. With most other architectures, saving
the condition code and then branching on the saved
information is so cumbetBome that optimization of
conditional branches is not fe^ible. For the new 801, it
had become a desirable technique.

In accessing storage, the 801 could add the contents of
a base register either to an immediate operand found in
the instruction itself, or to the contents of another
register. The new 801 included the notion we call
progressive indexing, in which the effective address
replaces the contents of the base register.

The original compiler was modified to generate code
for the improved architecture. Reassociation [11] was
added to the collection of optimizations to improve
addressing in loops. This new optimizing technique is an
extension of strength reduction, which exploits the
associative law of addition to expose additional common
subexpressions that can later be moved out of loops or be
discarded as redundant computations. Reassociation
ultimately enabled progressive indexing to be used in
many commonly occurring loops.

Better and faster spill heuristics enhanced the register
allocator, which was easily parameterized to handle the
32 registere of the 801 or the 16 of System/370. Of

IBM J. RES. DEVELOR VOL 34 NO. 1 JANUARY 1990 JOHN COCKE AND V. MARKSTEIN

7

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

course, spilling was a much rarer event on the enhanced
801. Removing accesses to main memory continued to
be pervasive in the compiler.

System/3T0 as a RISC machine
The 801 team was pleased with the results of its labors,
even though by 1977 it had only simulator results on
which to rely. Compiler code quality was high; when
compared with code produced by the PL/I compiler, the
contrast was impressive. There even were instances of
code which, when compiled for the 801 and simulated on
a System/370 Model 168, ran faster in real lime than the
same program run directly on a Model 168 when
compiled by the PL/I compiler.

When a System/370 processor was added to the
compiler, little was done to alter the code-generation
patterns from those used on the 801. As a consequence,
System/370 RX instructions such as add-from-memory-
to-register went unused, being replaced by the 801
version 2 instruction sequence (load-from-memory,
register-to-register-add). Of course, the System/370
suffered from register-operand destruction, as did the
original 801.

Once PL.8 was ported to System/370, it no longer had
to be a strict subset of PL/L Perhaps the most RISC-like
change to the language was to enable the programmer to
specify that arguments were to be passed by value. This
enabled the argument itself to be passed in a register in
keeping with the general 801 viewpoint, and also freed
the optimizer from having to make pessimistic
assumptions about the use of arguments by subprograms.

We discovered that our Model 168, running code
generated by the PL.8 compiler, consistently ran between
4.5 and 6 MIPS at a time when it was considered an
accomplishment to drive the 168 at 2 MIPS. Perhaps the
path-lengths were somewhat longer, but certainly not 50
percent longer. Abstaining from the CISC-like operations
of the System/370 and using it as a RISC machine gained
substantial performance improvement. This was largely
due to the effort of the PL. 8 compiler to reuse data
already present in the registers of the System/370. Also
contributing to the performance of PL.8 code on the
System/370 were the streamlined subroutine prologues
and epilogues made possible by the PL.8 register
conventions and simple run-time environment. This
demonstrated conclusively that an appropriate
combination of RISC-based architecture and an
optimizing compiler can outperform a CISC-based CPU
for a comparable program-instruction stream without
materially expanding the program code [12].

The payoiFof this code-generation technique was, of
course, reduced by later, more powerful System/370s,
whose more aggressive pipelining and caching drastically
reduced the overhead of certain storage accesses. PL.8

adjusted its code-selection techniques over the years to
use more of the System/370 CISC instructions, but the
emphasis of the software (as well as IBM RISC
architecture) continues to be to reuse information in the
fastest storage elements (registere) to the greatest degree
poffiible.

801 technology transfer
The original 801 was completed in 1978, and for a time
was IBM's fastest experimental processor. In the
meantime, several planned IBM development projects
used 801s as microcomputere. The IBM 3090 I/O
processor uses a 40-MHz 801 as its engine, and a good
portion of its code was written in PL.8. The IBM 9370
uses an 801 as its microcomputer. The newer 801
instruction set was also enhanced with several special-
purpose instructions to assist in the simulation of
System/370.

The Toronto Language Project adopted PL.8
optimization and register-allocation technology for use in
the postprocessor of the XL family of retargetable
compilers [13]. These compilers can produce code for a
wide variety of platforms such as the IBM PS/2 386
models, the IBM RT System, System/370, and the IBM
RISC System/6000* computer, (The algorithms have
been reimplemented with attention to compiler efficiency,
which was a secondary consideration for the 801.)

At the same time, PL.8 was enhanced with a Motorola
M68000 "back-end" [11], and was used for a number of
products incorporating that microprocessor.

The RISC System/6000 computer
The goal of the 801 family was to execute one instruction
per cycle. While this execution rate can be achieved in
specialized code, this rate has not been reaUzed in general
code. Very-large-scale intepation (VLSI), however, has
significantly increased circuit density and opened the
possibility of using additional pipelining to smooth out
delays caused by storage accesses and conditional
branching.

To take advantage of this, a new design evolved which
provides three semi-autonomous processors: an
instruction-stream processor, a fixed-point processor, and
a floating-point processor. The new machine has a very
fast floating-point multiply-add unit and is capable of
concurrently executing a ixed-point, a floating-point, and
a branch instruction. Details of this design are found in
companion papers [14, 15]. The optimizing compiler was
essential to exploit this capability; a description of the
compiler and discussions of related instruction-
scheduHng techniques are provided in [16,17], The
experimental version of the design, called AMERICA and
developed at the Thomas J. Watson Research Center,
was subsequently transferred to the development

JOHN COCKE AND V. MARKSTEIN IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

8

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

Table 1 CPU benchmark performance for selected workstations.

CPU

Sun 4/200
DecStation3100
Apollo DN10000
MIPS M/2000
RISC System/6000 Processor

Dhrystones
1.1

19 000
25 000
25 461
43 100
60 700

Whetstones
(millions)

3.9
8.8

14.9
14.1
25.5

Linpack(dp)
Fortran
rolled

1.6
1,6
5.1
3.9

10.9

Livermore
loops

(geometric mean)

0.11
1.99
2.50
3.60
8.90

SPEC*
Mark

10.1
13.9
17.6
28.9

*SPEC is a trademark of Systems Performance Evaluation Cooperative.

laboratory in Austin, where it evolved into the RISC
System/6000 (RS/6000) processor.

From a software viewpoint, the instruction set is still
simple. The machine behaves as though it executes
straight-line code sequentially; although instructions are
actually not executed sequentially (since there are three
processors that can operate concurrently), the
programmer and the compilers are shielded from the
parallel effects. Thus, the RS/6000 processor retains the
property of earlier 801s of having an instruction set that
is readily usable by the compiler.

The RS/6000 instruction set has been enhanced,
however, with some decidedly complex instructions.
Most notable is the inclusion of floating-point
instructions, most of which operate in two cycles [14, 15].
These were added to the orginal 801 instruction set
because floating-point instructions occur frequently in
most scientific, engineering, and visualization
applications. Therefore, a floating-point RISC
architecture supports the notion of an optimized
hardware implementation for the most frequently used
primitives, which could not be provided as efficiently
with vertical microcode; no one-cycle instructions have
led to acceptable performance for floating-point
computation.

The floating-point unit actuaUy has more real registers
than can be addressed by instructions. A register-
remapping scheme allows several independent sequences
using the same architected register to be processed
concurrently in the pipeline. This capability is vital, since
the floating-point pipeline can contain all the instructions
for several iterations of short loops. In this way, it is not
necessary to delay the decoding of later instructions until
earlier uses of a register are completed.

String-move and string-compare assists have also been
added to the RS/6000 instruction repertoire to reduce the
start-up time for unaligned character-move sequences.

The instruction-stream processor contains eight 4-bit
condition registers. Experience with older 801s had
shown the benefit of moving compares out of loops. In
those machines, the contents of a condition register could
be copied into a general-purpose register and later tested
by the CPU. In the RS/6000 CPU, the general-purpose

registers are in a different unit from the instruction
processor, and a mechanism for preserving multiple
condition-register results without access to the general-
purpose registers added hardware to the instruction
processor. The instruction-stream processor also has the
ability to perform logical operations on bits of the
condition registers, thereby relieving the execution units
of the task of computing complex branching conditions.
The ability to preserve, in a manner convenient to the
instruction-stream processor, the results of several
comparisons makes branching free when the outcomes of
these comparisons must be reexamined.

The new capabilities of the RS/6000 processor require
additional compiler techniques to exploit them. The
RS/6000 loop-closing instruction is a consequence of
reassociation. The capabiUties of the branch unit impose
new considerations for the compiler's scheduler [16, 17],
Techniques often used for compilers for vector processors
are also appropriate for the RS/6000 procressor. These
include loop unrolling, loop jamming, and "strip mining."

Not only does the RISC System/6000 CPU have built-
in floating-point execution, but it can compute ± z±xy
with one instruction, and with only one rounding error.
This instruction provides capabiUties beyond those
required by the IEEE floating-point standard [18], and
provides interesting new opportunities for numeric
applications [19],

To illustrate the results of the design. Table 1 shows
comparisons between a 25-MHz development model of
the RS/6000 CPU and a number of other workstations
against some commonly used CPU-performance
benchmarks [20],

Summary
Here we recapitulate the design principles, evolved from
experience with the family of 801 machines, that are
embodied in the RISC System/6000 processor. The
principal objective was to realize an architecture that
would achieve the performance gains promised by RISC
technology while maintaining the efficiency of
conditional-branch handling and floating-point
operations required of a technical workstation. We have
certainly abandoned the one-cycle-per-instruction

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990 JOHN COCKE AND V. MARKSTEIN

9

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

concept in those cases where vertical microcode cannot
match more complex hardware, as in the case of floating-
point arithmetic. From today's vantage point, the
architectural aims can be summarized as follows:

Design instructions to use the fastest portion of the
memory hierarchy effectively, and to enable data in the
fastest memory to be reused as much as possible. (For
the 801 family, the fastest memory is the set of
registers.)
Provide many functionally equivalent copies of the
fastest memory. (That is, avoid having a large set of
one-of-a-kind objects.)
Avoid complex instructions whenever the same effects
can be realized just as quickly by sequences of simple
instructions. For a given application, cache will become
the equivalent of fast ROM for the macro-instructions
most commonly used by that application.
Use separate instruction and data caches to materially
increase the bandwidth of the data path to the backing
store, and explicit cache-invalidation instructions to
simplify and speed up the instruction-fetching
mechanism.
Ensure that all instructions are usable by compilers.
Provide an optimizing compiler which can
accommodate the architecture's scheduling
requirements, and which can effectively use the fastest
memory of the machine (i.e., registers).

8. G. Chaitin, "Register Allocation Via Coloring," Comput. Lang.
6,47-57(1981).

9. George Radin, "The 801 Minicomputer," IBM J. Res. Develop.
27,237-246(1983).

10. J. Hennessy, "Overview of the Stanford UCode Compiler
System," (monograph), Stanford University, Stanford, CA, 1982.

11. J. Cocke and P. W. Markstein, "Measurements of Program
Improvement Algorithms," Proceedings oflFIP 80, North-
Holland Publishing Co., Amsterdam, 1980, pp. 221-228.

12. P. Wallich, "Toward Simpler, Faster Computers," IEEE
Spectrum 22, 38-45 (1985).

13. AIX/RTXL FORTRAN Users Guide, Order No. SC09-1268,
IBM Canada Ltd., 1989; available through IBM branch offices.

14. G. F. Grohoski, "Machine Organization of the IBM RISC
System/6000 Processor," IBM J. Res Develop. 34, 37-58 (1990,
this issue).

15. R. K. Montoye, E. Hokenek, and S. L. Runyon, "Design of the
IBM RISC System/6000 Floating-Point Execution Unit," IBM
J. Res. Develop. 34, 59-70 (1990, this issue).

16. H. S. Warren, Jr., "Instruction Scheduling for the IBM RISC
System/6000 Processor," IBM J. Res. Develop. 34, 85-92 (1990,
this issue).

17. M. C. Golumbic and V. Rainish, "Instruction Scheduling
Beyond Basic Blocks," IBM J. Res. Develop. 34,93-97 (1990,
this issue).

18. "IEEE Standard for Binary Floating-Point Arithmetic,"
ANSI/IEEE Standard No. 754, American National Standards
Institute, Washington, DC, 1988.

19. P. W. Markstein, "Computation of Elementary Functions on the
IBM RISC System/6000 Processor," IBM J. Res. Develop. 34,
111-119(1990, this issue).

20. "Performance Brief: CPU Benchmarks," Performance Brief 3.9,
John Mashee, Ed., MIPS Computer Systems, Inc., Sunnyvale,
CA, January 1990. A description of the Dhrystone and
UNPACK benchmarks and the conditions of their application to
the RISC System/6000 processor is given in H. B. Bakoglu, G. F.
Grohoski, and R. K. Montoye, "The IBM RISC System/6000
Processor: Hardware Overview," IBM J. Res. Devel. 34, 12-22
(1990, this issue).

Companion papers [14-17, 19] describe the completed
architecture of the IBM RISC System/6000 processor and
the details of hardware design which have realized these
objectives.

Received March 22, 1989; accepted for publication December
18, 1989

10

References
1. John Cocke, "1987 Turing Award Acceptance Speech,"

Commun. ACM31, 250 (March 1988).
2. J. C. Gibson, "The Gibson Mix," Technical Report TR00.2043,

IBM Systems Development Division, Poughkeepsie, NY, 1970.
3. D. R. Ditzel and H. R, McLellan, "Branch Folding in the

CRISP Microcomputer: Reducing Branch Delays to Zero,"
Proceedings of the 14th Annual Meeting of the International
Society for Computing Architecture, Tol<yo, 1987, IEEE, New
York, Cat. No. 87CH2420-8 (1987).

4. V. I. Markstein, J. Cocke, and P. W. Markstein, "Optimization
of Range Checking," ACM SIGPLAN Notices 17, 114-119
(1982).

5. M. E. Hopkins and M. A. Auslander, "An Overview of the PL.8
Comvikr," ACM SIGPLAN Notices 17, 22-31 (1982).

6. J. Cocke and J. Schwartz, "High Level Languages and Their
Compilers," Courant Computer Science Notes C66, Courant
Institute of Mathematical Sciences, New York University, New
York, 1969.

7. J. T. Schwartz, "On Programming: An Interim Report on the
SETL Project," Courant Computer Science Notes S91, Courant
Institute of Mathematical Sciences, New York University, New
York, 1973.

JOHN COCKE AND V. MARKSTEIN IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

John Cocke IBM Research Division, Thomas J. Watson Research
Center. P.O. Box 218, Yorktown Heights, New York 10598. Dr.
Cocke received his B.S. in mechanical engineering from Duke
University, Durham, North Carolina, in 1946, and his Ph.D. in
mathematics, also from Duke University, in 1956. He joined the
IBM Research Division the same year. Dr. Cocke was appointed an
IBM Fellow in 1972; with an IBM colleague, he received the ACM
Programming Systems and Languages Award in 1976. He was
elected to the National Academy of Engineering in 1979, received
the ACM/IEEE Computer Society Eckert-Mauchly Award in 1985
and the ACM A, M. Turing Award in 1987; he became a Fellow of
the American Academy of Arts and Sciences in 1988. Dr. Cocke has
been a visiting professor at the Massachusetts Institute of
Technology and at New York University's Courant Institute of
Mathematical Sciences. His major area of research interest continues
to be systems architecture, particularly hardware design and program
optimization.

Victoria Markstein IBM University and College Systems, 1000
Westchester Avenue, White Plains, New York 10601. Mrs. Markstein
received a B.S. in physics from Queens College, New York, and an
M.S. in computer sciences in 1967 from Pratt Institute, Brooklyn,
New York. She was also a graduate student at New York University,
Courant Institute of Mathematical Sciences. Mrs. Markstein was a
faculty member of the Mathematics Department at Lehman College
from 1970 to 1975; she was on the adjunct Computer Science
faculty of Pratt Institute and New York University. From 1978 to
1988, she was a Research Staff member at the IBM Thomas J.
Watson Research Center, where she worked with John Cocke on
compiler optimizations and architecture design of RISC-like
machines. She also worked as technical staff to the Vice President for
Advanced Engineering, Entry Systems Division, from 1988 to 1989.
Mrs. Markstein holds several patents in the area of compiler
optimization. She is currently program manager of Computer
Sciences for University and College Systems, Entry Systems
Division.

11

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 iOHN COCKE AND V. MARKSTEIN

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 26,2024 at 04:02:58 UTC from IEEE Xplore. Restrictions apply.

