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Abstract — The process of weaning from mechanical 

ventilation is one of the challenges in intensive care. 149 
patients under extubation process (T-tube test) were studied: 
88 patients with successful trials (group S), 38 patients who 
failed to maintain spontaneous breathing and were 
reconnected (group F), and 23 patients with successful test but 
that had to be reintubated before 48 hours (group R).  Each 
patient was characterized using 8 time series and 6 statistics 
extracted from respiratory and cardiac signals. A moving 
window statistical analysis was applied obtaining for each 
patient a sequence of patterns of 48 features. Applying a 
cluster analysis two groups with the majority dataset were 
obtained. Neural networks were applied to discriminate 
between patients from groups S, F and R. The best 
performance obtained was 84.0% of well classified patients 
using a linear perceptron trained with a feature selection 
procedure (that selected 19 of the 48 features) and taking as 
input the main cluster centroid. However, the classification 
baseline 69.8% could not be improved when using the original 
set of patterns instead of the centroids to classify the patients.     

I. INTRODUCTION

ISCONTINUATION of mechanical ventilation,  also 
called weaning or extubation,  should be performed as 
soon as autonomous respiration can be sustained. It is 

one of the most challenging problems in intensive care 
units. Despite advances in mechanical ventilation and 
respiratory support, the science of determining if the patient 

Manuscript received April 21, 2009. This work was supported in part
by Ministerio de Ciencia e Innovación under grants TEC2007-63637, 
TEC2007-68076-C02-01 and TIN 2006-08114 from the Spanish 
Government.

C.Arizmendi, E. Romero and R. Alquezar  are with Dep. of LSI, 
Technical University of  Catalonia (UPC), C. Jordi Girona, 1-3, 08034,
Barcelona, Spain (e-mail: Carlos.Julio.Arizmendi@upc.edu, eromero@lsi. 
upc.edu, alquezar@lsi.upc.edu).
P. Caminal and B.F. Giraldo, are with Dep. of ESAII, Universitat
Politècnica de Catalunya (UPC), Institut de Bioingenyeria de Catalunya
(IBEC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN). c/. Pau Gargallo, 5, 08028, Barcelona, Spain (e-mail: 
Pere.Caminal@upc.edu, Beatriz.Giraldo@upc.edu).
S. Benito and I. Diaz are with Dep. Intensive Care Medicine, Hospital de 
la Santa Creu i Sant Pau, Barcelona, Spain.

is ready for extubation is still very imprecise. A failed 
weaning trial is discomforting for the patient and may 
induce significant cardiopulmonary distress. When 
mechanical ventilation is discontinued, up to 25 percent of 
patients have respiratory distress severe enough to 
necessitate reinstitution of ventilatory support. Hence the
need for a more accurate prediction of the optimal
disconnection time, which is extended to the whole
weaning process [1-2].

The variability of breathing pattern is not random and
can be explained by central neural mechanisms or
instability of the feedback loops [3]. The variability of the
breathing pattern was previously analyzed in [4-7].

The aim of this study is to analyse respiratory pattern 
variability in a specific process, the weaning process, by 
applying both cluster analysis and neural networks, in order 
to find possible differences between patients who can 
maintain spontaneous breathing and patients who can not. 
It is also of interest to detect, using these methods, which
variables are the most relevant for the classification.

Data mining is the process of extracting hidden patterns
from data. A cluster analysis permits the classification of
the similar characteristics into different groups according
with the proximity distance. It is a multivariate statistical
technique for unsupervised learning, especially suitable for
extracting information from a data set without imposing
prior restraints explicitly [8]. 

Neural networks are sophisticated statistical techniques
capable of modelling extremely complex functions. In our 
case, linear and non-linear feed-forward neural networks 
have been used, together with feature selection methods, to 
classify patients who presented success or failure in the 
weaning process [9, 10].

II. ANALYZED DATA

Electrocardiographic signal (ECG) and respiratory flow
were measured in 149 patients under mechanical
ventilation and extubation process (database WEANDB).
The signals were recorded from patients in Intensive Care
Units of the Hospital de la Santa Creu i Sant Pau and the
Hospital Universitario de Getafe, according to the 
protocols approved by the local ethics committees. 
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Patients were classified in three groups, taking into 
account clinical criteria based on T-tube test: group S, 88 
patients whose T-tube test was overcome successfully; 
group F, 38 patients who failed the test and therefore could 
not be extubated; and Group R, 23 patients who passed the 
T-tube test and were disconnected from mechanical 
ventilation, but they had to be reintubated before 48 hours. 

The respiratory flow was obtained with a 
pneumotachograph (Datex-Ohmeda monitor with variable 
reluctance transducer) connected to an endotracheal tube. 
The ECG was obtained using a Spacelabs Medical monitor. 
Both signals were recorded during 30 minutes at a 
sampling frequency of 250 Hz. 

The cardiac and respiratory signals were processed to 
obtain the following time series for each patient: cardiac 
interbeat duration (RR), inspiratory time (TI), expiratory 
time (TE), breath duration (TTot), tidal volume (VT),
inspiratory fraction (TI /TTot), mean inspiratory flow  
(VT /TI) and frequency-tidal volume ratio (f / VT).

III. METHODOLOGY AND RESULTS

A. Data preprocessing and cluster analysis 
Each one of the eight time series was resampled to 1Hz 

and was processed using a Moving Window (MW), with a 
width ranging from 3 to 100 consecutive data. Six statistics 
were calculated for each window: the mean (M), standard 
deviation (S), interquartile range (IQR), kurtosis (K), 
obliquity or skewness (O) and coefficient of variation  
(C = S/M). In this way, 48 new statistical time series were 
obtained for each patient, given a window width. 

From these time series, the optimal width of the MW was 
selected in the range from 3 to 100 by using two U Mann-
Whitney tests between groups S and F and between groups 
S and R. Total p-values of the comparison between these 
groups, for all statistical time series was obtained. Minimal 
local and global values were obtained for a window width 
of 8 and 55 respectively (Fig. 1). We kept for further 
analysis the time series for the 48 features of each patient 
corresponding to these optimal (local minimum of 8 and 
global minimum of 55) window widths. Hence, a sequence 
of approximately 1,800 data points (or patterns) of 
dimension 48 were available for each patient and window 
widths of 8 and 55. 

From these patterns, a data cluster analysis was carried 
out into each patient and window width, using the k-means 
method to determine the best number of clusters. Patient 
data were split into k mutually exclusive clusters (minimum 
2, maximum 10). The partitions are assigned and defined 
by the data within each cluster and their centroids. The 
centroid of a cluster is considered to be the point at which 
the sum of the distances to it of the data points in the 
cluster is minimal, using the Fisher statistic. 

The greater intra-cluster cohesion and inter-cluster 
separation is obtained, for a given k, by minimising the sum 
of distances between centroids and data points in their 
clusters. To avoid local minima results, the minimization 

process must be made several times to get the best 
clustering.  

Fig. 1. Total p-values of the comparison between groups S-F, 
between groups S-R, and total sum of p-value, for each 
characteristic of each patient and all windows width. 

As a result of this process, it was obtained that most data 
points from each patient were grouped into two big 
conglomerates, with a dominant cluster containing the 
majority of points. Figure 2 shows as an example a patient 
of each study group, for a moving window of width 8. Each 
graph contains (a) a representation of the silhouette of each 
cluster, which represents the pooled data with the 
corresponding number of clusters, and (b) the average 
values of the cluster silhouette for different number of 
clusters ranging from 2 to 10. 

The silhouette graph represents the data closeness in a 
cluster. Values close to +1 represent the greatest distances 
with the other clusters, some values close to 0 do not 
distinguish between a cluster and another, and negative 
values (-1) indicate data erroneously assigned to its cluster. 
The highest average value of the silhouette represents the 
number of clusters with greater intra-cluster cohesion and 
greater inter-cluster distance. 

Finally, a statistical analysis was made to determine the 
variables that showed statistically significant differences 
between the study groups S, F and R, considering the two 
clusters that contained the most information, since the 
cluster analysis had shown that these two clusters covered 
the vast majority of data. Tables 1 and 2 present the 
average percentage represented by the main cluster (C1) 
and the two larger clusters (C1 + C2) for each group of 
patients, considering window widths of 8 and 55 
respectively.

TABLE I
AVERAGE PERCENTAGE OF DATA REPRESENTED BY THE MAIN CLUSTER 

(C1) AND THE TWO LARGER CLUSTERS (C1 + C2) CONSIDERING A 
WINDOW WIDTH OF 8 FOR EACH GROUP OF PATIENTS

Window 
Width 8 

C1 C1 + C2 

Group S 69.16 ± 13.16 98.08 ± 7.69 

Group F 68.86 ± 14.44 98.60 ± 4.70 

Group R 69.83 ± 10.93 100

4344

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 19:01:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
AVERAGE PERCENTAGE OF DATA REPRESENTED BY THE MAIN CLUSTER 

(C1) AND THE TWO LARGER CLUSTERS (C1 + C2) CONSIDERING A 
WINDOW WIDTH OF 55 FOR EACH GROUP OF PATIENTS

Window 
Width 55

C1 C1 + C2

Group S 58.48 ± 20.08 87.02 ± 21.42
Group F 61.05 ± 22.53 87.50 ± 21.34
Group R 60.56 ± 19.88 89.95 ± 19.58

According to the results of cluster analysis, the highest
concentration of information was obtained with a window 
width of 8, while for a width of 55 a greater dispersion of 
data was found. Selecting the window width of 8, a single 
representative value of each variable for each cluster (C1 
and C2) was calculated as the average value of the data 
point values in the cluster, thus obtaining two centroids for 
each patient, i.e. two vectors representing the two clusters.

Tables 3 and 4 show the variables with statistically 
significant differences between groups S – F and F – R, 
obtained by the U test of Mann-Whitney. The comparison 
between groups S – R did not find any variable with 
statistically significant differences.

B. Neural networks and feature selection
We have carried out three series of experiments for the

discrimination of patients in two classes, weaning success
(S) and failure (F), from the collected data of patients in the 

TABLE IIIPatient�8�– Group�S

Number�of�clustersSilhouette��value�

(a) (b)

Number�of�clustersSilhouette��value�

Patient�21�– Group�F(a) (b)

Number�of�clustersSilhouette��value�

Patient�15�– Group�R(a) (b)

Fig. 2. (a) Silhouette of clusters, representing the appropriated 
pooled data according to the number of clusters for each patient, and 
(b) the number of clusters based on the average value of the 
silhouette, in accordance with the intra-cluster cohesion and the 
increased inter-cluster distance, corresponding to a patient in group 
S, a patient in group F and a patient in group R. 

VARIABLES SHOWING STATISTICALLY SIGNIFICANT DIFFERENCES 
BETWEEN GROUP S AND GROUP F (P < 0.05)

Group S vs. Group F 
Variable p-values

M (TTot) <0.0005 
M (TI) 0.002 
M (TE) <0.0005 
S (TE) 0.027

IQR (TE) 0.018

TABLE IV
VARIABLES SHOWING STATISTICALLY SIGNIFICANT DIFFERENCES 

BETWEEN GROUP F AND GROUP R (P < 0.05)

Group F vs. Group R
Variable P-values
M (TTot) 0.033 
M (TI) 0.023 
M (TE) 0.019 

IQR (TE) 0.015

S and F groups using feed-forward neural networks as
classifiers (both linear single-layer perceptrons and non-
linear two-layer perceptrons). As result of the data pre-
processing and cluster analysis described previously, there
were approximately 1,800 patterns of 48 variables and 2
centroids, corresponding to the main and secondary
clusters, available for each patient. The classification 
baseline for comparison is 69.8% correctness, which is the 
percentage of patients in the majority class (group S). 

In the first series of experiments, 10-fold cross-validation 
(CV) was performed on the whole set of patterns (226,800 
patterns), training both linear and non-linear neural nets.
The average pattern classification correctness in the test
sets did not exceed the classification baseline in any of the
different trials.

In the second series of experiments, we used only the
cluster centroids instead of the whole set of data points.
Again 10-fold CV was performed, training both linear and
non-linear neural nets, in three cases, using for each patient
(a) the two centroids, (b) only the centroid of the main 
cluster and (c) only the centroid of the secondary cluster. 
The CV results that were obtained taking into account the 
full set of 48 variables are displayed in Table 5. 

Then, for each one of the six combinations (linear/non-
linear net and a/b/c cases of data selection), feature
selection was performed by carrying out several runs of a
sequential backward selection method in order to determine
a good subset of input variables. Features were eliminated
one by one, selecting them in the way described in [11] for
non-linear nets and in the way described in [12] for linear
nets. The network was retrained each time a feature was
removed. Once identified the feature subset providing the
best result for each combination, a new 10-fold CV was 
performed to obtain the final average test classification 
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result using the selected variables. These final results are 
shown in Table 6.  

TABLE V
CROSS-VALIDATION CLASSIFICATION RESULTS (CORRECTNESS AVERAGE 
PERCENTAGE) FOR SIX COMBINATIONS OF DATA SELECTION AND NEURAL 

NETS USING THE FULL SET OF 48 VARIABLES

            Type of neural net 
Data selection 

Linear
perceptron

Non-linear
2-L perceptron 

Two cluster centroids 64.4 67.0 
Main cluster centroids 72.0 71.2 
Secondary cluster centroids 63.2 66.2 

TABLE VI
CROSS-VALIDATION CLASSIFICATION RESULTS (CORRECTNESS AVERAGE 
PERCENTAGE) FOR SIX COMBINATIONS OF DATA SELECTION AND NEURAL 
NETS USING THE BEST SUBSET OF VARIABLES OBTAINED FOR EACH CASE 

AFTER SEQUENTIAL BACKWARD SELECTION

            Type of neural net 
Data selection 

Linear
perceptron

Non-linear
2-L perceptron 

Two cluster centroids 76.4 77.1 
Main cluster centroids 84.0 82.7 
Secondary cluster centroids 78.4 78.7 

In the third series of experiments, the neural networks 
that performed the best in the previous experiments (84.0% 
total correctness, 79.3% group S correctness and 86.1% 
group F correctness), i.e. linear perceptrons trained from 
main cluster centroids using only a selected subset of 19 
variables (K(TI), C(VT/TI), M(VT), K(VT/TI), S(RR), M(VT/TI),
C(RR), M(TI/TTot), O(TI), O(VT/TI), O(TI/TTot), I(TI), K(TTot),
S(VT/TI), C(TTot), I(TI/TTot), I(VT), S(TTot), M(f/VT)) were 
applied to classify the set of patterns. In order to 
discriminate the patients from the classification of their 
patterns, the following decision rule was used: a patient 
was classified as S (respectively F) if more than 50% of 
his/her patterns were classified as S (respectively F) by the 
neural net. The results came down to 74.6% total 
correctness, 97.7% group S correctness but only 21.1% 
group F correctness. As a last attempt, we changed the 
decision rule by increasing up to a 70% the percentage of 
S-labelled patterns needed to classify a patient in the class 
S, with the aim of improving the classification of class F. 
The new results were balanced (69.1% total correctness, 
69.3% group S correctness and 68.4% group F correctness) 
but very close to the baseline and considerably worse than 
the results obtained using only the centroids of the main 
clusters as test. 

IV. DISCUSSION AND CONCLUSIONS

The main objective of this work was to analyse the 
respiratory pattern variability in patients on weaning trials 
from mechanical ventilation, using cluster analysis and 
neural networks. With data mining process is possible to 
identify trends within data that go beyond simple data 
analysis.

According to the results of cluster analysis, the highest 

concentration of information was obtained with a window 
width of 8, whereas window width of 55 presented a 
greater dispersion of data.  

The best number of clusters for each patient and window 
width was obtained using the k-means method. The most 
data points were grouped into two big conglomerates. A 
dominant cluster contained around 69% of information 
(window width 8). With the two larger clusters we obtained 
98% (average percentage) of information of groups S and 
F, and 100% of group R. The best statistical differences 
were obtained comparing groups S – F and F – R, and with 
the mean value of the breath duration.    

Applying neural networks, the best result was obtained 
considering a linear single-layer perceptron and main 
cluster centroids, with 19 of 48 features (84% total well 
classified).

Many variables for successful outcomes from mechanical 
ventilation have been identified, but there are not specific 
and reproducible criteria clearly established. It should be 
validated with a larger number of patients. 
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