
IEEE Robotics & Automation Magazine84 1070-9932/09/$26.00ª2009 IEEE DECEMBER 2009

Component-Based
Robotic Engineering

(Part I)

Reusable Building Blocks

BY DAVIDE BRUGALI AND PATRIZIA SCANDURRA

T
his article is the first of a two-part series intended as
an introduction to component-based software en-
gineering (CBSE) in robotics. In this tutorial, we
regard a component as a piece of software that
implements robotic functionality (e.g., path plan-

ning). The focus of this article is on design principles and
implementation guidelines that enable the development of
reusable and maintainable software-building blocks, which can
be assembled to build robotic applications.

Software for autonomous robotics systems is typically em-
bedded, concurrent, real-time, distributed, and data-intensive
and must guarantee system properties such as safety, reliability,
and fault tolerance.

Software requirements of robotic control applications are
similar (to a large extent) to those of software systems in other
domains, such as avionics, automotive, factory automation,
telecommunication, and even large-scale information systems.
In these domains, a strong move toward the application of soft-
ware engineering principles to significantly reduce the effort
to develop new software applications by promoting the sys-
tematic and routine use of existing solutions in the develop-
ment of new systems can be observed.

CBSE [1], [2] is an approach that has arisen in the software
engineering community in the last decade (see ‘‘A Historical
Overview of Software Reuse’’). It aims to shift the emphasis in
system building from traditional requirement analysis, system
design, and implementation to composing software systems
from a mixture of reusable off-the-shelf and custom-built
components.

Such an approach improves software development by re-
ducing the amount of code that has to be written by the applica-
tion designer. In particular, reusing previously existing software
components greatly reduces the time to test new applications.
When a component is used in a large number of systems by dif-
ferent developers, the knowledge about the component usage,
robustness, and efficiency is available in the user community. As
such, software reuse promotes the development of maintainable,
reliable, and affordable software systems.

In robotics, there is a pressing need to regard the construc-
tion of new software applications as the composition of reus-
able building blocks [3]. Software reuse allows researchers to
more easily keep up the pace of robotics research, since they
do not have to constantly rewrite each other’s code. For exam-
ple, experts in motion planning could experiment with new
path-planning algorithms for a mobile robot, relying on obsta-
cle avoidance and self-localization functionalities encapsulatedDigital Object Identifier 10.1109/MRA.2009.934837

© EYEWIRE

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

A Historical Overview of Software Reuse

Software reuse is the use of existing software to con-

struct new software [28]. Software reuse practice typi-

cally takes two different forms:

u Opportunistic: The software engineer reuses pieces

of software that fit the current problem.

u Systematic: The research and development team

puts explicit effort (i.e., invests) in developing soft-

ware-building blocks that meet the requirements
of a family of similar applications, fit into an higher-

level architecture, and thus can be reused to solve

a larger class of problems.

Systematic reuse is generally recognized as a key tech-

nology for improving software productivity and quality.

Systematic software reuse was introduced along with

the first COBOL compiler almost 50 years ago when the

concept of libraries was developed. The libraries allowed
collections of precompiled, reusable subroutines to be

linked into a program. The vision of the COBOL team was

that, in the course of a few years, standard libraries would

be developed for different application domains, allowing

developers to write high-level programs that reused most

of the logic and functionality available in the libraries. This,

however, has not happened; the only domain where

library-based reuse has been successful is numerical analy-

sis, where a large number of FORTRAN and C libraries are
available and are used in many projects. The main reason

for the failure of library-based reuse is the difficulty of

encapsulating high-level functionality in subroutines. Sub-

routine libraries suffer from the division of procedural code

and data that make up a program.

The advent of object-oriented languages, starting with

Simula in 1967 [29] and gaining popularity with the devel-

opment of Smalltalk [30] in the 1980s, introduced a new

technique for reuse: the class library. Object-oriented
programming (OOP) is seen as structures of objects, which

encapsulate state and behavior and communicate with

messages; the behavior of the whole system is the result of

interactions and collaborations between objects. The devel-

oper implements classes that are descriptions of the state

and behavior for a number of similar objects and creates

objects as instances of the classes.

The class library approach, however, has not been
much more successful than the subroutine libraries; most

of the successful class libraries consist of simple container

or collection classes that are object-oriented implementa-

tions of basic data structures. The failure of class-library

reuse is partly because class libraries commonly restricts

polymorphism to work on objects that are specializations

of a class supplied with that library and that each library

provides a different, incompatible version of this top-

level class.
As software systems continue to grow in size and com-

plexity, the importance of design and architecture increased.

Software architecture development has shifted attention

from code to design reuse by giving more importance to the

fundamental role that the patterns of relationships have

between the elements of an architecture in any design. In

contrast to the class-libraries approach, the structure of

interconnections between classes is reused and not the

classes themselves.

Although a large number of general methods and nota-

tions have been developed for creating and documenting

designs and architectures, such as the Object Manage-

ment Group (OMG) Unified Modeling Language (UML)

(www.uml.org), systematic reuse of concrete architectures

and designs has been possible only with the introduction
of design patterns [25], architectural styles [31], and appli-

cation frameworks [32] in the middle 1990s.

Design patterns are textual and graphical descriptions

of reusable design solutions to recurrent design problems

in specific application context. Design patterns document

not only the design but also the development knowledge

and expertise that lead to that design. The whole set of

patterns for a specific application domain (e.g., factory
automation [33]), together with their structuring principles

represented by the network of connections among individ-

ual patterns, is called a pattern language and is a design

method for the domain that accompanies the software life

cycle from the analysis to the final implementation.

Architectural styles describe families of architectural

designs that share a set of common assumptions. An archi-

tectural style provides a specialized component vocabulary

(e.g., the terms client, server, application server, etc.), a
connector vocabulary (e.g., pipes, data stream, etc.), and a

set of rules to build specific topology using components

and connectors.

An application framework is an integrated set of reus-

able and extendible software artifacts for a specific appli-

cation domain. It consists of both reusable code and

design. This means that applications that are built using

the framework are never designed and implemented from

scratch; instead, the framework design and implementa-
tion are used as a starting point.

More recently, in addition to CBSE [2], software product

lines (SPLs) [34] and model-driven engineering (MDE) [35] have

been proposed as new software development approaches

that relieve the application developer from most of the burden

of designing and implementing entire applications.

An SPL is a set of applications (products) that share many

(structural, behavioral, etc.) commonalities and together ad-
dress a particular domain. Each new application is built from

the SPL repository of common software assets (e.g., require-

ments specification, architectural and design models, soft-

ware components). The core of an SPL is the product line

architecture that supports the variations reflected in the

products and prescribes how software components can be

assembled to derive individual products.

MDE tools simplify and automate many activities associ-

ated with developing, optimizing, and deploying complex
software systems. Developers use domain-specific modeling

languages to build models that capture the structure,

behavior, and relevant properties of their component-based

systems. A new application is developed by reusing these

models, customizing them according to specific application

requirements, and semiautomatically generate a source

code using transformation engines and generators.

IEEE Robotics & Automation MagazineDECEMBER 2009 85Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

in components off the shelf. Reuse of consolidated and shared
components allows different teams to test their algorithms on
common benchmarks to assess the performance objectively.

Nevertheless, software reuse and component-based devel-
opment are not yet state-of-the-practice software development
approaches in robotics. Today, most robotic research and devel-
opment is still based on custom-designed software architectures
invented from scratch each time. Many valuable robotic appli-
cations are monolithic systems that have been developed to
solve a specific class of problems. As a result, a huge corpus of
software applications, which implement the entire spectrum of
robot functionality, algorithms, and control paradigms, is
potentially available in robotic research laboratories.

Unfortunately, they are often not reusable even in slightly dif-
ferent application scenarios, because they are tied to specific
robot hardware, processing platforms, and communication infra-
structures and because the assumptions and constraints about
tasks and operational environments are hidden and hard coded in
the software implementation.

This situation is alleviated by an emerging consciousness in
the robotic community of the role that software plays in the
construction of effective, reliable, safe, and economically feasi-
ble robotic systems. During the last few years, many ideas from

software engineering (modularity, information hiding, distrib-
uted middleware) have been progressively introduced in the
construction of robotic software systems to simplify their devel-
opment and improve their quality, as documented in [4] and [5].

The aim of this article is to raise an awareness of the great
potential offered by the state-of-the-art software engineering
techniques and methods to develop complex robotic systems.

The article is structured as follows. The ‘‘Reusable Soft-
ware-Building Blocks’’ section analyzes the factors that enable
software reuse, such as portability, interoperability, and flexibil-
ity of software systems.

The ‘‘Component-Based Software Engineering’’ section
introduces the concept of software component as a unit of
encapsulation of robotic functionality that can be composed as
building blocks of various robotic system, presents a working
example that will be used throughout the article, and illustrates
the fundamental design principle of CBSE, i.e., the separation
of component specification and component implementation.

The ‘‘Component Specification’’ section presents the key
ingredients of component specification, i.e., interfaces and
contract, and discusses some software engineering principles
to design the specification of reusable components.

Finally, the ‘‘Component Implementation’’ section illus-
trates the techniques to implement component specifications
and, in particular, the concept of component framework as a
means to enhance robotic systems flexibility.

Reusable Software-Building Blocks
Within software engineering, a software architecture is typically
defined as the structure or structures of the system, which com-
prise software components, the externally visible properties of

those components, and the relationships
among them [6]. Here, components are
units of implementation and represent a
code-based way of considering the sys-
tem. Thus, a robot–software architecture
describes the decomposition of the robot
control system into a collection of soft-
ware components, the encapsulation of
functionality and control activities into
components, and the flow of data and
control information among components.
The design or selection of the software
architecture specifically takes into ac-
count nonfunctional requirements of a
robotic software system (maintainability,
portability, interoperability, scalability,
etc.), that is, those requirements that char-
acterize software quality and enable soft-
ware reuse.

As an example, Figure 1 depicts the
CLARAty [7] control architecture that
partitions robot capabilities into two hier-
archical layers: the decision and func-
tional layers. Each layer groups software
components that implements specific
algorithms, such as those for task planning,

Rover

Navigator
Morphin

Locomotor

R8 Model

Motor
R8 Motor IMU

SAPP

Pt Cloud

FFalconFF

Go to Target 3 Acquire Imageg

Explore Site
Decision
Layer

Functional
Layer

Rocky 8

Rocky 7

ROAMS

ATRV Jr.

Target Trackeret Trackeret Tracker

ISIS

Camera
1394 Cam

Stereo Vision
Pose Estimator JPL V

Deploy
InstrumentGo to Target 3 Acquire and

Analyze

Figure 1. The CLARAty architecture. (Photos courtesy of lssa A.D. Nesnas, NASA/JPL.)

Technical reusability of a robotic

software component is mainly

concerned with its degree of

usability and interoperability.

IEEE Robotics & Automation Magazine86 DECEMBER 2009Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

navigation, locomotion, pose estimation, sensor processing, and
motor control.

The mapping of robot functionality to components, that is,
how algorithms, data structures, synchronization, and com-
munication mechanisms are packaged together, is a crucial
design step, as it greatly influences the reusability of those
functionality.

Ideally, components embedding common robot functional-
ity should be reusable in different robot control systems and
application scenarios, and thus they should not be bounded to
specific robotic hardware, software-development technologies,
or control paradigms. For example, a fully reusable component
implementing a mobile robot navigation algorithm should be
designed without implicit assumptions about the operational
setting (e.g., stand-alone application or distributed system), the
possible use (e.g., map building or object tracking), the robot
morphology (e.g., size and shape), and even its kinematic struc-
ture (e.g., number and type of wheels).

In reality, designing reusable components consists in finding
the best tradeoff between being too specific (less reusable) and
too generic (less valuable). Three aspects of a reusable compo-
nent are equally important: quality, technical reusability, and
functional reusability.

The quality of a robotic software component is typically
expressed in terms of its computational performance (e.g., the
time required to process a video frame), efficiency (e.g., the
amount of memory used to build a probabilistic road map), or
reliability (e.g., the probability of returning a sensor measure
when needed). Quality can be assessed here and now, provided
that adequate metrics and benchmarks are available (e.g., a
standard reference image for testing different edge detection
algorithms or different implementations of the same algorithm).

Technical reusability of a robotic software component is
mainly concerned with its degree of usability and interoper-
ability. The source code of a software component is not usable
if it is not properly documented or if the cost of its exploitation
(e.g., integration with the rest of the system) is too high. In
some cases, it is more convenient to design and build the
component from scratch. Interoperability is the ability of two
or more systems or components to exchange information and
to use the information that has been exchanged. Interoperabil-
ity with third-party systems can be achieved by designing well-
defined component interfaces, proto-
cols, and data-exchange formats, clearly
separating component interface and
implementation, and possibly conform-
ing the component’s specification to
existing standards.

From a functional point of view, reus-
able components can be classified with
respect to application domains into two
broad categories (see Figure 2): horizontal
and vertical components. The term
domain is used to denote or group a set of
systems (e.g., mobile robots, humanoid
robots) or applications (service robotics,
space robotics, etc.) that exhibit similar

characteristics or fulfill similar requirements. Horizontal com-
ponents provide functionality to a variety of applications that
may implement totally different use cases. Typical horizontal
components provide system services such as interfacing to
hardware devices, providing computational or communication
services, or implementing mathematic functions. Vertical com-
ponents capture a company, organization, or research commu-
nity know-how in specific functional areas such as kinematics,
motion planning, deliberative control, and address the require-
ments of target application domains such as service robotics,
space robotics, or humanoid robotics. It has been reported [8]
that vertical components contribute the most to reuse, up to
65% of any application, while horizontal components typically
contribute no more than 20%. Functional reusability requires
insight into the future and a clear understanding of how robotic
systems integrating reusable components will likely evolve.

The three reusability aspects described earlier are equally
important [9]. The highest-quality component will never be
reused if the function it offers is useless. The most-needed com-
ponent will never be reused if it is unreliable, slow, and hard to
understand. The highest-quality and most-needed component
will never be reused if the interface is not compatible.

Component-Based
Software Engineering
Out of the multiple definitions for software components we
can find in literature, in this tutorial, we adopt the one given
in [2] as it illustrates the key factors that enable component
reusability: ‘‘A software component is a unit of composition
with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third parties.’’

In this article, we illustrate the design principles that
mostly refer to the concepts expressed in the first sentence of

Application
Components

Vertical
Components

Horizontal
Components

HMI

Map
Builder Navigator

Path
Planner

Kinematics

Dynamics
Collision
Checker

Pose
Estimator

Locomotor

Device
Drivers

Math
Library

Middleware
Services

GUI
Library Simulators

Science
Visual

Servoing
Remote
Control

15%

65%

20%

Figure 2. The scope of reuse: horizontal versus vertical components.

Component-based software

engineering is an approach that has

arisen in the software engineering

community in the last decade.

IEEE Robotics & Automation MagazineDECEMBER 2009 87Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

this definition, i.e., contractually specified interfaces and
explicit context dependencies. The second part of this tuto-
rial will address issues related to the components’ composi-
tion and deployment.

Thus, in the rest of this article, we regard components as
implementation software units, which developers can reuse to
develop a variety of different applications more quickly than
writing all of the code from scratch for each application. We will

refer to object-oriented technology (see ‘‘Object-Oriented
Programming’’), which is not a necessary paradigm to imple-
ment components but the most convenient one to use for its
widespread diffusion and understanding. Figure 3 shows the key
ingredients to realize software components.

A software component has a well-defined component specifi-
cation, which is an abstraction of the details (data structures and
operations) of its (possibly many) implementations.

Object-Oriented Programming

OOP consists of techniques and mechanisms to be used in

structuring models and program code after the entities

(objects) are found in the problem domain. OOP is based on

the concept of object as program unit, which encapsulates

both data and algorithms. This concept distinguishes the

OOP paradigm from pure procedural and functional para-
digms. The code that accesses and modifies the given data is

confined to one location in the program and not spread,

uncontrollably, throughout the program. The key ingredient

of an object definition are identity, state, interface, and

behavior.

Take for example, a library of path-planning algorithms.

An object called shortest path (its identity) could describe

an obstacle-free robot path by means of attributes like the
start and end robot configuration (its internal state); it

could implement some operations like appendPathLeg()
(its interface) that can be invoked by other objects (e.g., a

path planner) and perform some computations (its behavior)

like updating the end configuration.

Objects with similar properties belong to the same class.

In the previous example, class RobotPath defines a family

of path objects that differ from each other in terms of their

specific initial and end configurations, via points, and path

legs connecting intermediate configurations. In other words,

a class defines a common type of a set of objects while an

object is an instance of a specific class.

Figure S1 depicts the classes of this example according to

the graphical notation of the UML.
OOP supports reuse of software objects by offering four

basic techniques.

u Composition, which consists in constructing new

classes around objects of existing classes. For exam-

ple, class RobotPath encapsulates two instances of

class Configuration and has the responsibility to

instantiate and initialize them correctly.

u Parametric polymorphism, often called generic program-
ming, which consists in writing a function or a class

generically with respect to the type of values it handles.

For example, the implementation of class List is

generic with regard to the implementation of the list

elements. Thus, it can be reused in class RobotPath to

implement a collection of NavigableLeg objects.

u Subtyping consists in defining a new class as subtype

of an existing one. In the example of Figure S1,

instances of class GeometricCurve can be substi-
tuted by instances of class MotionBehavior with-

out affecting client’s code, because both classes are

subtypes of interface NavigableLeg.

u Inheritance consists of deriving new classes as special-

izations of existing classes and therefore reuse exist-

ing code. For example, class Segment extends class

GeometricCurve by reusing the same data struc-

tures (e.g. curvilinear x) but reimplementing

some operations in a more efficient way (e.g., calcu-
lating the curve length).

OOP is claimed to promote reuse by supporting the orga-

nization of complex data structures into hierarchies of ab-

straction. However, OOP suffers from some well-known

shortcomings. In particular, implementation inheritance cre-

ates a tight coupling between base and derived classes,

which makes the evolution of the base classes difficult (the

fragile base class problem). Every simple modification (e.g.,

changing the parameters of an operation) to the base class
may cause semantic inconsistencies in the derived classes. In

addition, a subclass cannot be understood without knowing

how the inherited methods are implemented in its superclass.

These and other shortcomings of OOP have led to the intro-

duction of CBSE, which specifically promotes the separation of

component specification and component implementation.

Robot Path

+appendPathLeg(in newLeg : Navigable Leg) : void

–start : Configuration
–end : Configuration

+nextConfiguration()

<<interface>>
Navigable Leg

–curvilinear_x : double
+getLength() : double

Geometric Curve Motion Behavior

Arc Segment

1
1..*

Figure S1. A class diagram in a UML.

IEEE Robotics & Automation Magazine88 DECEMBER 2009Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

A component specification explicitly declares which func-
tionalities (provided interfaces) are offered to its clients (code
invoking an operation on some component, not necessarily in
a distributed environment), the public obligations (contracts)
with its clients in the form of various kinds of constraints (e.g.,
preconditions, postconditions, invariants) on how to access
the functionality, and the dependencies (required interfaces) to
the functionality that are delegated to other components.

On the other hand, component implementation defines
how the component supports those features and obligations in
terms of a collaborative structure of realizing objects (class
instances) and algorithms implementing the functionality
declared in the component specification.

Separating component specification from its implementa-
tion is desirable for achieving modular, interoperable, and
extensible software and to allow independent evolution of cli-
ent and provider components. If client code depends only on
the interfaces to a component and not on the component’s
implementation, a different implementation can be substituted
without affecting the client code. Furthermore, the client code
continues to work correctly if the component implementation
is upgraded to support an extended specification.

CBSE defines a set of principles that help the software
developer to design components that are effectively reusable.
We illustrate and exemplify them in the following sections.

A Working Example
Motion planning for autonomous mobile manipulators is a
robot functionality that is realized by an integrated set of algo-
rithms, such as collision checking, configuration sampling,
and path planning. Several implementations of these algo-
rithms are available as open-source software library (see for
example, motion planning kit (MPKit) [10] and motion
strategy library (MSL) [11]). In the context of the European
project best practice in robotics (BRICS) (http://www.best-
of-robotics.org), we are currently contributing to the design
of software components that offer a reusable environment to
embed the most prominent motion-planning algorithms
found in literature [12]. In this article, we take some of our
recent results to exemplify the design principles illustrated in
the following sections. In particular, we refer to the design of
four major components (see Figure 4), i.e., Cartesian space,
configuration space, collision checker, and path planner.

The Cartesian space encapsulates the data structures that
store the geometric representation of the robot and its sur-
rounding environment. It provides information about object
shapes and positions and geometric elaboration services, such
as computing the relative position of two objects.

The configuration space encapsulates the data structures that
define a robot’s configuration space and provides services such as
sampling robot configurations, interpolating between two config-
urations, and measuring the distance between two configurations.

The collision checker checks if a given configuration is
obstacle free. It requires access to the information that define
the shape and position of every object in the environment. In
the example depicted in Figure 4, these informations are pro-
vided by the Cartesian space.

The path planner computes a robot path between the start
and end of the robot configuration. Typical path-planning algo-
rithms such as probabilistic road maps [13], sample the robot
configuration space and check if a given configuration is obstacle
free. For this purpose, in Figure 4, the path planner uses the serv-
ices provided by the configuration space and collision checker.

Component Specification
The specification of a software component is the key to its suc-
cessful use as a part in a larger piece of software. In this section, we
introduce interface design concepts and guidelines [14] first and
then discuss some relevant aspects related to interface contracts.

Interfaces are the external visible parts of the components,
and components interact with each other through interfaces.
Interfaces support the information hidden and protect the cli-
ent code from changes in the component implementation. A
given component may implement more than one interface,

Component
Specification

Component
Implementation

Object Class
Instance

Contract

Required Interface

Provided Interface

1
1. .*

1. .*

1. .*

1

1

*

*

*

*

Figure 3. A component’s key ingredients. ‘‘1’’ denotes a
single element, ‘‘*’’ denotes an unlimited upper bound, and
‘‘1..*’’ denotes an infinite range.

PathPlanning

CollisionChecking

SpaceBrowsing

ConfigurationSampling
<<component>>

Path Planner

<<component>>
Collision Checker

<<component>>
Cartesian Space

<<component>>
Configuration Space

Figure 4. Motion-planning component interconnected by
means of provided and required interfaces. A complete circle
(also known as lollipop) represents an interface that the
component provides. A half circle (also known as socket)
represents an interface that the component requires. In both
cases, the interface’s name is placed near the interface symbol
itself. A dependency arrow comes out of the requiring socket
toward the provider’s lollipop.

IEEE Robotics & Automation MagazineDECEMBER 2009 89Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

and an interface may be implemented by a number of different
components. For example, interface CollisionChecking
could be implemented by different components, each one
embedding a specific algorithm and specific internal represen-
tations of obstacles and robots (see [15] for a comprehensive
overview of collision-checking libraries).

Provided and Required Interfaces
A component has one or more provided and/or required inter-
faces. The provided interfaces of a component are a set of interfa-
ces realized by the component. They represent the contractually
specified functionality that the component offers to their clients.
The required interfaces, instead, specify functionality and resour-
ces that the component needs to perform its own functions and
fulfill its own obligations to its clients. A required interface of a
component denotes an explicit context dependency, that is, a
usage relationship between the component’s implementation
and the implementation of those components implementing the
corresponding provided interfaces. (A context of use exists for
each single component and contains its connections, its contain-
ment, the allocation on hardware and software resources, the
usage profile, and the perceived functional and nonfunctional
properties in the actual environment.)

Components are interconnected to build systems by wiring
together their required and provided interfaces.

The diagram in Figure 4 shows the provided and required
interfaces of each component using the UML ball-and-socket
notation. In particular, the PathPlanner provides the
PathPlanning interface and requires the Configura-
tionSampling and CollisionChecking interfaces.
This means that the PathPlanner is able to plan robot
paths, provided that it is interconnected to two components,
which are responsible for sampling valid robot configurations
and checking if a given configuration is collision free.

Data and Service Interfaces
Interfaces can be classified into data and service interfaces. Data
interface exposes state information of components and makes it
available to its clients. Data interfaces typically contain getter/
setter operations for retrieving or set values of attributes. For
example (see Figure 4), SpaceBrowsing provides access to
the internal state of component CartesianSpace and
returns information about the shape and position of objects
located in the operational environment of the robot.

Data interfaces may also specify attributes as abstract prop-
erties, implying that the realizing component should explicitly
maintain information corresponding to the type and multi-
plicity of the attribute and facilitate retrieval and modification
of that information. If an interface declares an attribute, this

does not necessarily mean that the realizing component will
necessarily have such an attribute in its implementation (i.e.,
the attribute value may be computed by an algorithm when
the get operation is invoked), only that it will appear so to
external observers. This is the case of Configuration-
Sampling, which defines operations that return a valid robot
configuration, i.e., a configuration defined within the
boundary of the robot’s configuration space. The robot-valid
configurations are not individually represented within the
component’s state but are computed by various algorithms for
configuration sampling and configuration interpolation.

A service interface is a declaration of a set of functionalities
offered by a component operating mostly on the parameters
that are passed to it rather than on the attributes of implemen-
tation. For example, CollisionChecking defines opera-
tions whose results are mainly a function of the specific robot
configuration passed as parameter.

This classification is not to be intended as a black-and-
white separation; it opens, rather, a spectrum of ways to define
interfaces. An interface can range from a pure data interface,
whose operations refer only to attributes of the components’
objects, to a command interface, which usually contains only
service operations.

Strongly Typed Versus Loosely Typed Interfaces
Components exchange data through their interface. An infor-
mation model defines the structure and semantics of the data
objects that are exchanged between components via a certain
type of interface [16]. According to the type of their attributes,
interfaces can be classified into strongly typed and loosely typed.

Strongly typed interfaces allow exact descriptions of ex-
changed data objects by means of specific types. For example
(see Figure 5), ConfigurationSampling defines the
sample() operation that returns an object of type Con-
figuration. An attribute of the same type is defined as
input parameter of the checkCollision() operation in
CollisionChecking. Two different implementations of
type Configuration may represent a manipulator config-
uration as a vector of joint values and rover configuration as a
three-field structure, respectively.

In contrast, loosely typed interfaces define generic commu-
nication primitives called performative that correspond to a
specific linguistic action (e.g., query, answer, assert, define)
and exchange data represented using primitive data types, such
as textual strings, and structured according to standard markup
languages such as Extensible Markup Language (XML).

Both approaches have their pros and cons. On the one hand,
strongly typed interfaces require components to commonly agree
on a framework of data-structure definitions and on the meaning
of the operations on those structures to interoperate. Such a com-
mitment leads to more efficient component implementations that
are internally consistent and easier to debug but, at the same time,
limits the reusability of those components, unless the information
model is highly stable and widely accepted by developers. On the
other hand, loosely typed interfaces leave the proper interpreta-
tion of messages to individual components. Although this
approach is supposed to be more flexible because the details of a

CBSE defines a set of principles that

help the software developer to

design components that are

effectively reusable.

IEEE Robotics & Automation Magazine90 DECEMBER 2009Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

message are handled in the component implementation where
specific data structures are defined, it is also more error prone and
requires more manual programming [17].

Stateful Versus Stateless Interfaces
An interface can be either stateful or stateless. In a stateful
interface, each operation invocation changes the component’s
internal state, and the information returned by the operation is
computed differently based on the component’s state. Thus,
the behavior of the exposed operations depends on the history
of their previous invocations by the component’s clients. For
example, operation getNextObstacle() in interface
SpaceBrowsing returns the reference to the next object in
the list of obstacles. Thus, the result depends on the number of
time the operation has been invoked. Typically, the client is
interested in retrieving and analyzing several obstacle objects,
whose identities are not relevant. For this reason, operation
getNextObstacle() is defined in a stateful interface.

In a stateless interface instead, the operations’ behavior is always
the same and depends only on the information supplied through
their parameters. For example, operation getJoint(int
robotID, int jointID) in SpaceBrowsing always
returns a reference to the same joint object, identified by parame-
ters robotID and jointID. This operation is conveniently
defined in a stateless interface, because the client exactly knows the
identity of the object to retrieve.

In a stateless interface, a client component has to specify all
the information related to its request at each operation invo-
cation. This means that the client component has to keep
track of the state of its interaction with the component that
implements the stateless interface. On the other hand, the
main advantage of a stateless interface is that operations can

service many different client requests, without caring about
the order of the operation calls and without binding specific
resources of the provider component to an individual client to
keep track of its state.

In contrast, stateful interfaces require less effort in imple-
menting client components to get the same results. Data sup-
plied by a client (through parameters) are accumulated
between operation invocations, and therefore, operations
require shorter parameter lists. Stateful interfaces are, how-
ever, more complex to implement, because component
implementations have to manage concurrent access to the
internal state by different clients and require a means to keep
track of the order of operation invocations and of their side
effects on the provider components’ state.

Different Interfaces for Different Clients
Usually, a component specification defines more than one pro-
vided interface to address the requirements of different clients.
Two main issues need to be considered in defining the set of
component interfaces: separation of concerns and completeness.

Robotic software systems are typically modeled along a
unique direction: the functional decomposition (or composi-
tion) of parts. The underlying assumption is that the properties
of the entire system may be confined into specific components
so that the system behavior is obtained through the composi-
tion of well-packaged functionality. Nevertheless, there are
concerns (quality factors or functionalities) that cannot be
effectively specified using the concept of composition of high-
cohesion functional components. Such concerns relate to the
software system as a whole, hence, crosscutting its modular
structure. A typical crosscutting concern is system initialization,
for which each component should provide an adequate

<<component>>

Path Planner

<<component>>

Collision Checker

<<component>>

Configuration Space

<<interface>>
Configuration Sampling

+sample() : Configuration

<<interface>>
Configuration

+getDimensions() : int

ManipulatorConfiguration

–jointsPosition[] : double

RoverConfiguration

–x : double

–y : double
–theta : double

<<interface>>
CollisionChecking

+checkCollision(in config : Configuration) : Collision

Figure 5. The information model of configuration objects exchanged through component interfaces.

IEEE Robotics & Automation MagazineDECEMBER 2009 91Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

interface. For example, configuration space and Cartesian space
provide interface initializing, which allows the system factory
component to initialize the boundary and constraints of the
robot configuration space and the geometric representation of
the robot morphology, respectively. In this example, the two
components define different interfaces for creating and initial-
izing their internal state and for using their services.

Interface completeness refers to the degree of usability of the
functionality implemented by a component. Minimal interfaces
expose a minimum set of operations that allows the clients to
access all common component functionality. In contrast, com-
plete interfaces expose additional operations that simplify the use
or enhance the accessibility of those functionality in specific use
cases. For example, SpaceBrowsing defines basic operations
for browsing individual obstacles but also additional operations
for retrieving groups of obstacles satisfying specific conditions
(e.g., they are located within a certain distance from a given posi-
tion). Similarly, CollisionChecking defines operations
that simply check if a given configuration is obstacle free but also
additional operations that return complex data structures storing
information about the shape and position of the contact surface.

Minimal and complete interfaces are conveniently organized
in a specialization hierarchy, where more complete interfaces
extend minimal interfaces. Different components may imple-
ment interfaces at different level of completeness. Although all
component implementations will be usable by all clients, some
clients will benefit from the use of operations providing a higher
level of abstraction or a deeper level of accessibility.

On the one hand, minimal interfaces reduce the responsi-
bilities of the provider component and are thus easier to imple-
ment. It is therefore likely that several implementations of a
minimal interface are available and that developers can choose
the implementation that fits at best the requirements of their
client applications. In contrast, complete interfaces that exhibit
unwanted complexity (in the signature, constraints, and infor-
mation model) increase dependencies on implementation
details leading to less-reusable components.

On the other hand, minimal interfaces make the implemen-
tation of the client code more complicated, since the exposed
operations may require to be invoked in an appropriate and intri-
cate sequence to realize a certain functionality or, even worse,
prevent the client to access all the needed component functional-
ity. In contrast, complete interfaces support the development of a
larger variety of client applications for specialized use cases.

Contracts
An interface specifies a contract between the component
implementation and its clients. A contract can be seen as an
explicit roster of mutual obligations expressed in the form of
various kinds of constraints [18], such as preconditions, post-
conditions, invariants, and protocol specifications.

The client of a component interface needs to ensure that
certain preconditions are met when calling an operation. For
example, the precondition of operations setStart() and
setEnd() in PathPlanning states that the passed param-
eters must represent valid start and end robot configurations.

Each operation in an interface specifies postconditions that
will be true after its invocation is complete. For example, the
computePath() operation returns a robot path that must
be obstacle free.

If a precondition is not met, the operation may work
improperly. If the preconditions are met and a postcondition is
not met, the operation has not worked properly.

Invariants describe the conditions that every component
implementation must satisfy and must not be violated by inter-
face operations. Typical invariants state constraints on the
amount of resources that an operation invocation may require,
such as memory size and processing time.

Protocols impose ordering restrictions on operations invoca-
tion, i.e., it specifies a set of allowable sequences of operations
calls. For example, the protocol of interface PathPlanning
states that operation computePath() can be invoked only
when operations setStart() and setEnd() have been
executed correctly. The protocol can also show the callbacks that
an interface may create events that are generated or observers that
are called.

Component Implementation
Separation of component specification and implementation
enables reuse of software components embedding common
robotic functionality. If, for a given application domain, a
coherent set of required interfaces can be defined that specifies
the most frequently used robot services and capabilities, and if
applications in that domain are designed around those interfa-
ces, then every component implementing compatible provided
interfaces has the potentiality to be reused in those applications.

The various implementations of a component may differ in
nonfunctional characteristics (i.e., performance, maintainabil-
ity, documentation quality, reliability), realizing technology
(e.g., the description of the geometric space may be stored in a
relational database or as collection of XML files) and even
programming language (when components are build on a
middleware or multilanguage run-time infrastructure).

A clear separation of component specification and implemen-
tation grants component developers the flexibility to improve
the software quality of their components, without affecting the
implementation of the applications that integrate them. At the
same time, application developers have the flexibility to choose
the components that best meet the quality requirements of their
systems. Flexibility [see Figure 6(a)] requires component specifi-
cations to be stable for a given domain (i.e., interfaces are
standard or widely accepted in the developers community) and

Component
Specification

Component
Implementation

Component
Specification

Stable
Interfaces

Stable
Interfaces

Variation Points

Stable
Data Structures
and Operations

Variable
Realizations

Refactoring

Component
Framework

Figure 6. (a) Flexibility among different realization of the same
interface and (b) flexibility within a component framework.

IEEE Robotics & Automation Magazine92 DECEMBER 2009Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

variability in application requirements to be embedded in
component implementations. In this context, flexibility en-
hances component reuse in the sense that a given component
implementation can be used as a black box to build different
component systems, provided that it meets their applica-
tion requirements.

Component reuse can be further enhanced if commonal-
ities among different implementations of the same component
specification are identified and properly exploited. Here,
stability can be defined as a component’s resilience to changes
in the original requirements specification [19] and refers to the
internal representation of a component, which is seen as a
white box [see Figure 6(b)]. The basic assumption is that verti-
cal components (see the ‘‘Reusable Software-Building Blocks’’
section) encapsulate functionality that is typically implemented
around common entities and mechanisms, which are core
aspects within the domain (e.g., the concepts of path and
configuration) and can be represented as stable data structures
and operations. Those aspects of a component implementation
that are more likely to be affected by the evolution of the appli-
cation domain represent its variation points.

In the following, we introduce the concept of component
framework as a technique to clearly separate stable and variable
aspects of a component implementation and illustrate variability
implementation techniques that reduce the effort of developing
new implementations of the same component specification.

Component Framework
A component framework is a skeleton of a component imple-
mentation that can be specialized by a component developer
to produce custom components.

A component framework captures commonalities among
different implementations of similar components and points of
variability to express the differences. As such, a component
framework represents a family of component implementations,
which share domain-specific properties and differ for application-
specific requirements. A component framework is stable if new
concrete components can be derived from its design and built on
its data structures and operations without changing them.

Frameworks have acquired popularity in OOPs [20]. Here,
the interpretation of framework ranges from structures of
classes of cooperating objects that provide, through extension,
reusable basic designs for a family of similar applications [22] to
the more restrictive view [21] of complete high-level modules,
which through customization, directly result in specific appli-
cations for a certain domain.

Frequently, the two views of framework, referred to as
white- and black-box approaches to reuse, may be simultane-
ously present in one framework [22]. In fact, features that are
common to most component implementations can be offered
and therefore reused as black boxes with minor changes. On
the other hand, the class library accompanying the framework
usually provides base classes (seen as white boxes) that can be
specialized, by adding subclasses as needed, and easily inte-
grated with the rest of the framework.

An intriguing relationship exists between frameworks, design
patterns, and pattern languages (see ‘‘A Historical Overview of

Software Reuse’’). In a pioneering article [23], Johnson argues
that patterns document frameworks and help to ensure the cor-
rect use of framework functionalities. We take a more radical
position: a pattern language, the organized collection of patterns
for a certain application domain, in our view generates the frame-
work, which thereafter offers the elements for the pattern imple-
mentations and accompanies the framework through its life.

Any application framework, in fact, follows an evolution in
time, which we call the framework life span [24]. In this lifespan,
the basic architectural elements that are independent of any spe-
cific application are implemented first. Then, by generalizing
from concrete component implementations (the refactoring
process indicated in Figure 6), the framework evolves. The gener-
alization process consists in identifying abstractions that are recur-
rent across implementations of the same functionality. These
abstractions can be captured by design patterns and usually consist
of clusters of related classes, which have to be specialized in con-
crete component implementations. In fact, in its early stages, the
framework is mainly conceived as a white-box framework, i.e., it
mainly provides base classes (variation points) that can be special-
ized by adding subclasses that implement specific data structures
and algorithms (variants). However, through its adoption in an
increasing number of component implementations, the frame-
work matures: more concrete variants that provide black-box sol-
utions for the difficult problems as well as high-level objects that
represent the major abstractions found in the problem domain
become available within the framework.

Figure 7 depicts the UML diagram of the configuration-
space component framework. It is the result of the refactory
process of state-of-the-art motion planning libraries [12] that
are currently carried on in collaboration with the partners of
BRICS. The framework represents a family of similar compo-
nents that implement a common set of provided interfaces.
Three of them, namely configuration interpolating, configu-
ration sampling, and configuration metric, provide clients
(e.g., the path planner) with access to the component func-
tionality. Interface CSpace Setup defines operations for compo-
nent initialization and configuration. For the sake of clarity, the
figure shows a simplified version of these interfaces, where only
the main operations are indicated.

The component framework clearly identifies stable data struc-
tures (black boxes), variation points (blue boxes), and concrete
variants (red boxes). The stable entities are the Configuration and
CSpace classes. A configuration has one or more dimensions, one
for each degree of freedom of the robotic system. The configura-
tion space defines the domain of each configuration, represents
the constraints on the values of valid configurations, and stores a
set of valid configurations that have been sampled. The variation
points are represented by classes such as Interpolator, Sampler, and
Distance Metric. They are abstract classes that define basic data
structures and operations that are common to a family of similar
algorithms. The component developer supplies concrete sub-
classes (e.g., Liner Interpolator, Uniform Sampler, Manhattan)
that implement specific algorithms corresponding to possible var-
iants within the family of similar algorithms.

Class CSpace Factory has been designed according to the
prototype pattern [25]. It plays the role of registry that maintains a

IEEE Robotics & Automation MagazineDECEMBER 2009 93Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

cache of all variants implemented by the component framework.
The system factory (see Figure 8) configures the component’s
functionality at initialization time by selecting a specific variant of
each variation point according to a given criteria passed through
the CSpace Setup interface. The selection can be changed at run
time and is transparent to the component’s clients, which access
its functionality through the provided interfaces.

Implementing Variability
Variability is managed through different component-configu-
ration mechanisms [26], which can be classified according to
the binding time, i.e., the software development step when a
variability is decided:

u Compile time: The variability is resolved before the pro-
gram compilation (e.g., with preprocessor directives) or at
compile time. Mechanisms that typically causes the varia-
bility to be resolved at compile time are inheritance,
aggregation, parametrization, and conditional compilation.

u Link time: The variability is resolved during module or
library linking (e.g., selecting different libraries with
different versions of exported operations).

u Run time: The variability is resolved during program
execution. An example of late-binding techniques is
reflection.

Inheritance and Extension

Object inheritance is used to assign base functionality to super-
classes and extensions to subclasses. Subclasses may introduce
new attributes, operations, or overwrite or wrap existing ones.

Inheritance may be used to provide variants by separating
variabilities into derived subclasses. However, this means that
the growing number of different variants implies a growing
number of subclasses, which in many cases leads to complex
inheritance hierarchies.

Aggregation and Delegation

Aggregation is an object-oriented technique that enables an
(aggregate) object to contain other objects. Aggregation may be

<<component>>
Configuration Space

<<component>>
Cartesian Space

<<use>>
ConfigurationSampling

<<use>>
SpaceBrowsing <<create>>

Initializing

<<create>>
Initializing

<<component>>
System Factory

Figure 8. The specification of configuration space and
Cartesian space defines interfaces for clients with different
roles (create and use).

<<interface>>
PI_ConfigurationInterpolating

+Interpolate() : Configuration

<<interface>>
PI_ConfigurationSampling

+getSample() : Configuration

<<interface>>
PI_ConfigurationMetric

+getDistance() : double

<<interface>>
PI_CSpaceSetup

+addSampler()
+selectSampler(in criteria : string) : S_Sampler
+addInterpolator()

+addMetric()
+selectMetric(in criteria : string) : S_DistanceMetric

+selectInterpolator(in criteria : string) : S_Interpolator

S_Interpolator

+initialize()
+getSample() : Configuration +getDistance(in c_first, in c_second) : double

+initialize()
+interpolate(in c_start, in c_end, in t : double) : Configuration

LinearInterpolator RingInterpolator

1 1

1

1
1

1

<<uses>>

Constraint CSpace
–lowerLimit : Configuration
–upperLimit : Configuration

–Valid Conf

<<uses>>

<<uses>> 1

S_DistanceMetricCSpaceFactory S_Sampler

Uniform
Sampler

1

1

10..*

0..*

Halton
Sampler

Configuration

Euclidean L_Infinity Manhattan

Figure 7. The configuration space component framework.

IEEE Robotics & Automation Magazine94 DECEMBER 2009Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

done by value or by reference. By value means that the lifetime
of the whole and part objects are exactly the same; they are born
and die at the same time. By reference decouples the lifetimes of
the two objects. The whole may not have a part or it may have a
different part at different times. Different wholes may share the
same part. Deallocating the whole will not automatically deallo-
cate the part.

The whole can delegate the part to provide some functional-
ity by forwarding to the part requests it can normally not satisfy.
Variability can be handled by putting the standard or mandatory
functionality in the delegating object and the variant functional-
ity in the delegated object. This technique works well with
optional features but gets worse when the number of variants
grows significantly, requiring additional delegation classes.

Parameterization

Parametric types, templates, and precompiler macros are used
when unbound parameters or macroexpressions can be in-
serted in the code and later instantiated with the actual param-
eter or by expanding the macro. The idea of parameterized
programming is to represent reusable software as a library of
parameterized components. Component behavior is deter-
mined by the values the parameters are set to.

Parameterization avoids code replication by centralizing code
decision around a set of variables. A typical usage is to make struc-
tured data types (stacks, queues, lists, etc.) flexible and working for
any kind of data by allowing the setting of the data type through a
parameter. However, the major drawback is that parameterization
strictly depends on a selected programming language.

Conditional Compilation

Macrodefinitions given as parameters to the compiler, ifdefs
statements, and recent context-aware programming languages
[27] may be used at compile time to select between different
implementations in the code and therefore lead to different
variants of a component. Code segments may be included or
excluded from a program compilation. Directives mark the
varying locations in the code. The makefile mechanism is
another way to perform a sequence of compilations and link-
ages at link-time, depending on the makefile parameters.

One benefit of this technique is the encapsulation of multi-
ple implementations in a single module. The desired function-
ality is selected by defining the appropriate conditional
symbols. On the other hand, conditional directives do not sup-
port recursion or any other kind of looping, which makes it
difficult to enable advanced code-selection schema. Moreover,
following the decisions related to a conditional-code selection
is also not easy. A solution to that is to interrelate directives
hierarchically with a central include file as a decision unit at
the top of the hierarchy.

Dynamic-Link Libraries
Static libraries contain a set of functions that can be linked to an
application after it has been compiled and loaded in the same
memory space. The signatures of the functions are known to
the compiled code and therefore must remain unchanged.
The implementations though can change by selecting different

libraries and providing some kind of variability support. In
contrast, Dynamic-link libraries such as Microsoft ActiveX
controls can be combined with several executables in the same
system at loading time through configuration files.

Reflection

Reflection is the ability of a program to observe and modify its
own structure and behavior. Reflection relates strongly to meta-
programming, where objects in higher levels of abstraction (met-
alevels) are established to represent entities like operating systems,
programming languages, processors, object models, etc. Reflec-
tion enables access to such metaobjects and therefore allows archi-
tecting flexible systems. Reflection is an appealing run-time
variation mechanism. Reflection can be, for example, combined
with the standard Java dynamic class loading to load modules
unknown until runtime, depending on the deployment context
and invoke operations on these modules. However, reflective
programs are difficult to understand, debug, and maintain.

Conclusions
In this first of a two-part tutorial on component-based robotic
engineering, we have illustrated the fundamental concepts and
design guidelines for the development of software building
blocks that embed reusable robot functionality. The focus was on
the design of individual components on the separation of
component specification and component implementation and
on the techniques that maximize component interoperability
and flexibility. In the second part of this tutorial, we will discuss
techniques to assemble components into large and distributed
component systems and methods to derive concrete applications
from a common base of domain-specific reusable components.

Acknowledgments
The authors thank Herman Bruyninckx, Stefan Christen,
Angelo Gargantini, Edmund Milke, Walter Nowak, Alexej
Zakharov, and Azamat Shakhimardanov for their valuable
comments. The research leading to these results has received
funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no.
FP7-ICT-231940-BRICS.

Keywords
Software engineering, reuse, architecture, component.

References
[1] G. T. Heineman and W. T. Councill, Component-Based Software Engineer-

ing: Putting the Pieces Together. Reading, MA: Addison-Wesley, June
2001.

[2] C. Szyperski, Component Software: Beyond Object-Oriented Programming.
Reading, MA: Addison-Wesley, 2002.

[3] A. Shakhimardanov, H. Bruyninckx, K. Nilsson, and E. Prassler. (2009,
June 19). White paper: The use of reuse for designing and manufactur-
ing robots [Online]. Available: http://www.robot-standards.org/
index.php?id=19

[4] D. Brugali, Ed., Software Engineering for Experimental Robotics (Springer
Tracts in Advanced Robotics, vol. 30), Berlin: Springer-Verlag, Apr.
2007.

[5] D. Brugali and E. Prassler, ‘‘Software engineering for robotics,’’ Special
Issue on IEEE Robot. Automat. Mag., vol. 16, no. 1, Mar. 2009.

IEEE Robotics & Automation MagazineDECEMBER 2009 95Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

[6] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Reading, MA: Addison Wesley, 1999.

[7] I. A. Nesnas, ‘‘The claraty project: Coping with hardware and software
heterogeneity,’’ in Software Engineering for Experimental Robotics (Springer
Tracts in Advanced Robotics, vol. 30), D. Brugali, Ed. Berlin, Springer-
Verlag, Apr. 2007.

[8] J. Poulin, Measuring Software Reuse: Principles, Practices, and Economic Mod-
els. Reading, MA: Addison-Wesley, 1996.

[9] M. Ezran, M. Moriso, and C. Tully, Practical Software Reuse—The Essen-
tial Guide. Paris: Freelife Publ: ESSI Surprise Project Book.

[10] J.-C. Latombe, F. Schwarzer, and M. Saha. (2004). Mpk—motion plan-
ning kit [Online]. Available: http://robotics.stanford.edu/�mitul/mpk/

[11] S. LaValle, P. Cheng, J. Kuffner, S. Lindemann, A. Manohar, B. Tovar,
L. Yang, and A. Yershova. (2007). Msl—motion strategy library
[Online]. Available: http://msl.cs.uiuc.edu/msl/

[12] E. Milke, S. Christen, E. Prassler, and W. Nowak, ‘‘Towards harmoni-
zation and refactoring of mobile manipulation algorithms,’’ in Proc.
ICAR 2009 14th Int. Conf. Advanced Robotics, Munich, Germany, June
22–26, 2009, pp. 1–8.

[13] G. Sanchez and J. Latombe, ‘‘A single-query bi-directional probabilistic
roadmap planner with lazy collision checking,’’ in Proc. Int. Symp.
Robotics Research (ISRR), 2001, pp. 403–417.

[14] K. Pugh, Interface Oriented Design. Odessa, TX: The Pragmatic Pro-
grammers LLC., 2006.

[15] M. Reggiani, M. Mazzoli, and S. Caselli, ‘‘An experimental evaluation
of collision detection packages for robot motion planning,’’ in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2002, pp. 2329–2334.

[16] J. G. Wijnstra, ‘‘Components, interfaces and information models
within a platform architecture,’’ in Proc. GCSE. (Lecture Notes in
Computer Science, vol. 2186), J. Bosch, Ed. Berlin, Germany:
Springer-Verlag, 2001, pp. 25–35.

[17] A. Tost (2005, Sept. 2). Loosely typed versus strongly typed web serv-
ices. IBM [Online]. Available: http://www.ibm.com/’ developerworks/
webservices/library/ws-loosevstrong.html

[18] B. Meyer, Object-Oriented Software Construction. Englewood Cliffs, NJ:
Prentice Hall, 1997.

[19] M. E. Fayad and A. Altman, ‘‘An introduction to software stability,’’
Commun. ACM, vol. 44, no. 9, pp. 95–98, Sept. 2001.

[20] J. O. Coplien and D. C. Schmidt, ‘‘Frameworks and components,’’ in
Pattern Languages of Program Design, J. O. Coplien and D. C. Schmidt,
Eds. Reading, MA: Addison-Wesley, 1995.

[21] H. Schmid, ‘‘Creating the architecture of a manufacturing framework
by design patterns,’’ in Proc. OOPSLA95, SIGPLAN, ACM, 1995,
pp. 370–384.

[22] R. Johnson and B. Foote, ‘‘Designing reusable classes,’’ J. Object-
Oriented Program., vol. 1, no. 2, pp. 22–35, 1988.

[23] R. Johnson, ‘‘Documenting frameworks using patterns,’’ in Proc. OOP-
SLA 92, Vancouver, BC, Oct. 1992, pp. 63–76.

[24] D. Brugali, G. Menga, and A. Aarsten, ‘‘The framework life span,’’
Commun. ACM, vol. 40, no. 10, pp. 65–68, Oct. 1997.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[26] M. Anastasopoulos and C. Gacek, ‘‘Implementing product line varia-
bilities,’’ SIGSOFT Softw. Eng. Notes, vol. 26, no. 3, pp. 109–117, 2001.

[27] M. Rosemann and J. Recker. (2006). Context-aware process design
exploring the extrinsic drivers for process flexibility Proc. BPMDS.
(CEURWorkshop, vol. 236), G. Regev, P. Soffer, and R. Schmidt, Eds.
pp. 149–158. [Online]. Available: CEUR-WS.org

[28] W. Frakes and K. Kang, ‘‘Software reuse research: Status and future,’’
IEEE Trans. Software Eng., vol. 31, no. 7, pp. 529–536, July 2005.

[29] O. Dahl, B. Myhrhaug, and K. Nygaard, ‘‘Simula information: Com-
mon base language,’’ Norwegian Comput. Center, Oslo, Tech. Rep.
no. 145, 1970.

[30] A. Goldberg and D. Robson, Smalltalk80: The Language and Its Imple-
mentation. Reading, MA: Addison-Wesley, 1983.

[31] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, and J. Stafford, Documenting Software Architectures: Views and
Beyond. Reading, MA: Addison Wesley, 2003.

[32] M. E. Fayad, R. E. Johnson, and D. C. Schmidt, ‘‘Object-oriented
application frameworks,’’ Commun. ACM (Special Issue), vol. 40, no. 10,
Oct. 1997.

[33] D. Brugali and G. Menga, ‘‘Architectural models for global automation
systems,’’ IEEE Trans. Robot. Automat., vol. 18, no. 4, pp. 487–493,
Aug. 2002.

[34] P. Clements and L. Northrop, Software Product Lines: Practices and Pat-
terns. Reading, MA: Addison-Wesley, 2002.

[35] D. C. Schmidt, ‘‘Guest editor’s introduction: Model-driven engineer-
ing,’’ Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.

Davide Brugali graduated in electronic engineering at
Politecnico di Milano in 1994. He received his Ph.D. degree
in computer science from Politecnico di Torino in 1998.
Since 2001, he has been an assistant professor at the Univer-
sity of Bergamo. He has been a visiting researcher at the
CMU Robotics Institute in 1997 and a visiting professor at
National Aeronautics and Space Administration (NASA) Jet
Propulsion Laboratory in 2006. Since 2000, he has been a
cochair of the IEEE Robotics Automation Society (RAS)
Technical Committee on ‘‘Software Engineering for Robot-
ics and Automation.’’ He served as a guest editor of IEEE
Transactions on Robotics and Automation (2002), IEEE Robotics
and Automation Magazine (2008), and Springer STAR book
on Software Engineering for Experimental Robotics (2006). He is
the main author of Software Development—Case Studies in Java
published by Addison-Wesley in 2005. His main research
activity is in the field of techniques to build and reuse soft-
ware for robotics and automation systems. His main publica-
tions can be found in IEEE Transactions on Robotics and
Automation, ACM Communications, ACM Computing Surveys,
and KAP Annals of Software Engineering.

Patrizia Scandurra earned a Ph.D. degree in computer sci-
ence from the University of Catania (Italy) in 2006. From
July 2006 to December 2008, she got a postdoc researcher
position at the Department of Information Technologies
(DTI) of the University of Milan (Italy). She is currently an
assistant professor (researcher) at the Department of Informa-
tion Engineering and Mathematical Methods of the Univer-
sity of Bergamo (Italy), where she teaches basic courses of
software design/programming and operating systems. Her
research interests include integration of formal and semifor-
mal modeling languages for software engineering; formal
methods, and analysis (validation and verification) techniques
for pervasive systems; MDE; model-driven methodologies,
techniques, and tools for the design and analysis of embedded
systems and systems on chip (SoC). She is a member of the
Abstract State Machines (ASMs) formal method community.
She participated in different research projects in the field of
software engineering for modeling and analysis of pervasive
systems and SoC in collaboration with companies like STMi-
croelectronics and AIVE and with the universities of Milan
and Pisa (Italy).

Address for Correspondence: Davide Brugali, Department of
Computer Science and Mathematics, Universita’ degli Studi di
Bergamo, 24044 Dalmine, Italy. E-mail: davide.brugali@unibg.it.

IEEE Robotics & Automation Magazine96 DECEMBER 2009Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

