
	1943-0582/09/$25©2009IEEE	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 WINTER 20 0 9	 29

Digital Object Identifier 10.1109/MSSC.2008.930943

© artville & photo f/X2

n 1960—ten years
before Intel deve­
loped the first sin­

gle-chip CPU (micro­
computer central pro­

cessing unit)—the revolution that
would ensue was inconceivable: the
cost of computing dropped by a fac­
tor of a million, modes of personal
communication changed forever,
and intelligent machines took over
processes in manufacturing, trans­
portation, medicine—virtually ev­
ery aspect of our lives.

Certainly Moore’s law—that the
number of transistors on a chip dou­
bles every year, later amended to ev­
ery two years—is a dominant factor in
this revolution. But at Intel, there were
three other enabling conditions:

a customer with a problem■■

an applications engineering de­■■

partment that listened to the
customer
a talented engineering group to ■■

implement a solution.
Here I give my views on Moore’s

law and focus on the role of applica­
tions engineering in developing Intel’s
first microcomputer. (For an overview
of basic chip technology, see “IC Back­
grounder: Process and Design.”)

I

by Stanley Mazor

A confluence of skills
made the microcomputer revolution possible:
device design, process design, applications, and marketing.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

30	 WINTER 20 0 9	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

Although electrical engineering
students study the design of logic and
circuits, when they graduate, they
find a large number of nondesign po­
sitions posted: quality engineer, pro­
cess engineer, marketing engineer,
and applications engineer. But what
does an application engineer do? I
want to tell you about my experienc­
es with Gordon Moore’s law in Silicon
Valley (from 1964 to 1984) as an ap­

plications engineer using and design­
ing digital computers, digital IC com­
ponents, and microcomputers [1].
But first, let me contrast the change
in the value of a computer over a
15-year period with the following
personal anecdote.

Computer Values (1962–1977)
In 1962, Prof. Robert J. Levitt of the
Math Department at San Francisco

State University didn’t let students
play games on the campus’s only
computer, an IBM 1620 (Figure 1).
“After all,” he said, “it cost almost
$100k and could execute instruc­
tions in milliseconds. This valuable
resource should neither be wasted
nor made to do frivolous tasks.” Ac­
cordingly, I played my own tic-tac-
toe assembler language program
only at night, when no one was
watching; playing games on com­
puters was not allowed.

Fifteen years later, I visited
Midway Games, which had been
acquired by Bally Technologies, a
manufacturer of pinball machines
and slot machines, and coordinated
development of a custom Intel game
chip for the Magnavox Odyssey2

I want to tell you about my experiences
with Gordon Moore’s law in Silicon Valley as
an applications engineer using and designing
digital computers, digital IC components, and
microcomputers.

IC Backgrounder: Process and Design

Chip Size and Cost
Although larger chips can accommodate more functions, a chip’s
manufacturing cost increases with the square of its die size. So the
chip cost constrains the practical number of transistors that can be
placed on a chip. But, as Gordon Moore observed in the mid-1960s,
the practical limit doubles every year.

The early Intel microcomputers (circa 1970) contained about 2,000
transistors, organized into a few logic blocks—ALU, register array, in-
struction decoder, I/O pads, and so forth. As processing improved over
the years, the individual transistor sizes shrank, and at the same time the
chips grew bigger. As transistor features got smaller, the lower capaci-
tance helped the circuits run faster.

MOS Process Technology
Modern complementary metal-oxide semiconductor (CMOS) ICs
provide optimum power dissipation and speed, but the manu-
facturing process is complicated because two different transistor
types are needed within the same chip: NMOS and PMOS, with
n-type and p-type substrates, respectively. Standby power is reduced
by pairing transistors, so that at any instant one of the transistors is
turned off. NMOS devices are faster and smaller than PMOS devices
because the carrier mobility of NMOS is about twice that of PMOS,
but both transistor types are needed within a CMOS chip.

For lower manufacturing costs and simpler processing, either all
NMOS or all PMOS ICs are preferred. Early semiconductor companies
such as Electronic Arrays, General Instrument, and Texas Instruments
produced ICs containing only PMOS transistors. NMOS required ex-
ceptionally clean fabrication facilities, as any impurities tend to perma-
nently turn on NMOS transistors. Only IBM experienced early success
with NMOS chip production. Early microprocessor chips were made
with only PMOS transistors, but within ten years they were being made

with all-NMOS transistors. After mastering both of these technologies,
most semiconductor companies moved into CMOS production (about
1985), which required more photomasks and costlier production meth-
ods, but gave a better-performing product.

Power Dissipation
CMOS transistor pairs minimize the amount of power consumed in their
steady or quiescent state, and lower operating voltages reduced the active
power consumption. The combined effects reduced the power that has
to be dissipated, thereby permitting more transistors on a chip. Process
improvements such as ion implantation and polysilicon (rather than metal)
gates lowered transistor threshold voltages and subsequent operating volt-
ages. These processes were pioneered in the United States by: Fairchild,
Intel, and Mostek. Operating voltages dropped from 14 V in 1970 to 5 V in
1975, and then to 1.5 V in 2000. Since power varies with the square of the
voltage, reducing the operating voltage by a factor of 10 reduced power
dissipation by a factor of 100. Early ceramic packages could handle about
1 W of power; plastic packages had a much lower rating.

Circuit Background
A CPU chip is characterized by its maximum clock frequency. A 100-
MHz chip corresponds to a clock cycle period of 10 ns. The clock pe-
riod in digital integrated circuits allows for signal propagation along
the longest logic switching path within the chip’s circuitry. This path
typically goes from a flip/flop output, passes through a number of logic
gates, and finally enters another flip/flop.

In typical MOS circuits, each logic gate’s output transistor drives one or
more transistor gate input loads. These loads are equivalent to an open cir-
cuit (high resistance with some stray capacitance to ground); there is no DC
load. The switching speed of such a digital logic circuit depends on the volt-
age swing to be traversed, for example from .2 V (logic 0) to 4 V (logic 1), and

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 WINTER 20 0 9	 31

home TV game system. This spe­
cial video chip was used with an
off-the-shelf single chip microcom­
puter to display game objects on a
TV screen. In just 15 years, play­
ing games had gone from being a
frivolous use of computers to a big
business [2]. Thanks to Moore’s
doubling, computers became cheap
and new markets (for digital logic)
appeared. (Today, Midway Games
offers such popular video games
as Mortal Kombat, Ms. Pac-Man, Spy
Hunter, Tron, and NBA Jam.)

Moore’s Law (1965)
I joined Fairchild Semiconductor in
Mountain View, California, before
Gordon Moore published his de­
finitive paper [3], [4]. (Moore was in

charge of Fairchild R&D.) I’ve lived
with Moore’s law from its beginning
and have found it both difficult to
ignore and difficult to grasp. The
following story is enlightening: Leg­
end has it that the man who saved a
king’s son’s life was asked what he
wanted as a reward. The hero asked
that rice be placed on his checker
board as follows: one grain on the
first square, two grains on the sec­
ond square, doubling on each suc­
cessive square. The king agreed to
this seemingly modest request, not
realizing that the total would be
more rice than there are grains of
sand on the beach.

Similarly the significance of
Moore’s doubling of transistors each
year is outside our normal expecta­

tions. Now after 40 years we have
chips with billions (230) of transis­
tors, a daunting result of this kind of
exponential behavior. We live most­
ly in a linear world—miles/gallon,
dollars/pound—and we just don’t
experience exponential relations
(except perhaps for acceleration and
compound interest) [5], [6].

Did anyone predict that “some­
day” the whole computer would fit
on a single chip? Considering that
a minicomputer (circa 1962) CPU
needed about 16k transistors, and
16k = 214, one could have predicted
a single-chip CPU after 14 years of
Moore’s doubling, or roughly in 1976.
However there weren’t any such pre­
dictions! Apparently Moore’s law is
easier to apply in hindsight than in

the speed of the voltage transition. This switching speed (dv/dt) is directly
proportional to the current output (I) of the driving transistor and inversely
proportional to the capacitance (C)of the driven transistor gates and the
interconnection wiring, as given by the formula dv/dt = I/C.

The output current of an MOS driver transistor sets the switching
speed, and depends on circuit layout and process features. The voltage
on the gate and the transistor’s size are the most important circuit de-
sign features, determining an output transistor’s drive strength and the
ultimate circuit’s speed. With silicon (rather than metal) gate the tran-
sistor’s size was reduced because the source and drain features were
formed by the self-aligned silicon gate [31].

Although today’s circuits utilize two transistor types for optimum
drive for both rising and falling signals, that is, transition from logical
0 to 1 and from 1 to 0, earlier circuits weren’t good at both “pushing
and pulling.” Accordingly, the circuits were operated in dynamic mode
with a precharge and conditional discharge circuit. First a circuit was
precharged by an on-chip amplifier, and then, according to the logic
state, was conditionally discharged.

The PMOS transistors of 1970 required 14 V to operate; the circuits
were operated dynamically in either a two-phase or a four-phase mode.
The historic improvements in MOS process technology have resulted in

lowering the voltage swing needed to switch a logic signal••

reducing the transistor size to improve a driver’s output current••

reducing the transistor size to lower the gate’s capacitance.••

RAM Circuits
In 1970 an IC could contain about 256 bits of static RAM, the limit be-
ing imposed by both power dissipation and chip size. Dynamic RAM
(DRAM) chips became practical in the early 1970s and had much low-
er power requirements, but needed to be refreshed periodically. The
three-transistor dynamic memory cell was considerably smaller than a
six-transistor static memory cell.

In addition, the cell connection signals were a major area constraint.
Memory circuit design was often described in terms of the number of con-
necting bus lines, for example, a three-line or six-line organization. Larger
DRAM memory chips were made possible by using a single transistor per
cell and just two lines—gate selection and bidirectional data bus.

Early microcomputer chips used small, integrated dynamic RAM arrays for
the CPU’s registers and a program counter stack. For example, Intel’s 4004
had a 64-b DRAM for its 16 four-bit registers, and the 8008 had a push-
down stack of 14 3 8 within a DRAM array. The decisions to be made in
designing ICs—then and now—are many. Table 1 highlights some of them.

LSI Chip Issues:

■	 How many pins on the IC package?

■	 What is IC package’s power dissipation
constraint?

■	 What is the projected die size and aspect
ratio?

■	 What are the operating voltages?

■	 What are the I/O interface voltages and
signal timings?

■	 What are the technology constraints?

■	 What chip speed and power goals?

■	 What is the on-chip routing/bus
strategy?

■	 How will the chip be tested?

Table 1. LSI Chip Issues.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

32	 WINTER 20 0 9	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

foresight. This despite the fact that
we announced the MCS-4 chip at In­
tel in 1971, roughly five years “ahead
of schedule”; the CPU had about 2k
transistors [7], [8].

Generally, if you can double a
chip’s density next year, you have
two choices:

halve the cost of a chip you’re ■■

currently making
make a new chip with twice as ■■

much “stuff” on it.
By way of analogy, suppose you

were a bicycle manufacturer that
could reduce bicycle prices every
year by 50%: $80, $40, $20, . . .

$1.25. After a while everyone would
own several and the market would
become saturated; this wouldn’t be
a good business. Sometimes lower­
ing prices increases market con­
sumption and sometimes not. Ac­
cordingly, although many believe
Moore’s law is about semiconduc­
tor technology, thoughtful analysis
reveals two fundamental business
questions: Will decreasing chip pric­
es dramatically increase chip sales?
Will the expected profits justify im­
proving semiconductor processes?
In other words, Moore’s doubling oc­
curs only if it makes good business

sense, that is, can you use more
transistors sensibly?

If Moore’s law is taken into ac­
count, there are more choices to con­
sider, as Table 2 shows. First, for an
existing product, one needs to know
the results of lowering the price. Of­
ten new applications and new mar­
kets are needed to propel the sales
volume of an existing IC chip.

For new chip designs, it is a chal­
lenge to determine what kind of chip
to make. Table 1 illustrates the op­
tions for new chips for both existing
and new markets. Deciding on how
to use more transistors requires
a good understanding of how new
chips would be used—their applica-
tion. The role of both the applica­
tions engineer and the product mar­
keting engineer become prominent
in new chip specification—how big,
how fast, what features, how many
will sell, what price?

Let me continue now with my per­
sonal story after I joined Fairchild.

Transistor Data (1964)
One of my application engineering
projects at Fairchild was to write
a program to calculate the Y-pa­
rameters of individual, or discrete,
transistors. At that time each three-
legged transistor had a serial num­
ber, and we recorded and calculat­
ed parameters for each part. When
users paid US$150 per transistor,
arguably they paid more for the
data than for the transistor itself.
Fairchild applications engineers
were selling their service bundled
with the devices.

When transistor prices dropped
by a thousand times (to US15¢ each),
the price of a five-transistor radio
dropped to about US$2. At some
point the solid-state devices weren’t
a factor in a radio’s price; the costs
of the case, power supply, battery,
coils, capacitors, and resistors
outweighed transistor costs. Soon
everyone owned a couple of these
radios, and the market for radios
saturated. Chips containing more
transistors and their wiring—that
is, integrated circuits—would be

You will see that our early experience with
small computers was a factor in creating the
first microcomputer.

Lower the price of existing chips.

Find new uses for existing chips.

Build a similar chip with improved features.

Build a noncompatible chip with improved features.

Develop a new chip design for an existing chip market.

Develop a new chip to replace another technology—mechanical, magnetic, analog, other.

Develop a new chip for a totally new market.

Table 2. LSI chip marketing issues.

Figure 1: Stan Mazor and an IBM 1620 in 1963.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 WINTER 20 0 9	 33

the key to fueling Moore’s law and
lead to lower digital system costs.

Novel Computer Architecture (1966)
At Fairchild I programmed six differ­
ent computers, and in 1966 I trans­
ferred to Gordon Moore’s R&D labs
in Palo Alto, joining Rex Rice’s high-
level language computer design proj­
ect. Following Moore’s predictions
for “cheap” logic, we built a radical
computer called Symbol (Figure 2)
that had 100 times more logic with­
in the CPU. It used more than 20,000
of Fairchild’s complementary tran­
sistor logic (CTL) chips. However
the idea of “maximizing” CPU logic,
while consistent with Moore’s law,
was flawed and the project wasn’t a
success [9], [10].

However, my experience in de­
signing the serial decimal floating
point arithmetic logic unit (ALU) and
the string-processing unit would
later help me in understanding the
Busicom calculator’s arithmetic,
with Intel’s first microcomputer [1].

Intel Is Founded (1968)
Robert Noyce and Gordon Moore
quit Fairchild, where they were
general manager and director of
R&D, respectively, and started
Intel to capitalize on the emerg­
ing semiconductor memory mar­
ket and fulfill Moore’s promise
of growing chip density [11]. My
Fairchild officemate, Jim Angel,
suggested they hire a brilliant
Stanford research associate, M.E.
(Ted) Hoff, as director of applica­
tions research. I joined Hoff at In­
tel in 1969 as an applications engi­
neer. (I recall first meeting Hoff in
1963 while he was demonstrating
his experiments in speech recog­
nition on an IBM 1620 at Stanford
University. At that time I was also
programming an IBM 1620 on more
mundane applications.)

You will see later that our early
experience with small computers
was a factor in creating the first mi­
crocomputer. But let’s consider the
first kinds of memory chips that
were enabled by Moore’s law.

Shift Register ICs (1969)
If you look at history you’ll find
that shift registers were one of the
first large-scale integration (LSI)
chips available, and from several
companies—including: General In­
strument, Electronic Arrays, MOS
Technology, AMI, and Intel. Although
dynamic random-access memories
(DRAMs) are now common, the shift
register was a precursor memory
chip and had several advantages. A
shift register chip has few leads and
can be encased in a small eight-pin
package (the TO-5 can).

Keep in mind that, although chip
density had been doubling, the number
of input and output pins on a package
was growing slower, so I/O pin count
was a real limitation to a chip designer.
Normally chip wiring is a major prob­
lem for designers—one that eats up
valuable chip real estate. But not in a
shift register, for three reasons:

Serial memories have no address ■■

pins, just the data-in, data-out, and
clock and power pins—regardless
of the number of bits inside the
chip, as shown in Figure 3.
Shift register chips are simpler to ■■

design and debug because they
have no address decoder in the
chip, and most of the circuit lay­

out just repeats the memory cells,
thousands (or millions) of times.
On-chip wiring is minimal, since ■■

each cell communicates with just
its left and right neighbors.
Finding new uses for shift reg­

ister chips was a challenge for the
Applications Engineering depart­
ment. We built a few interesting
systems such as a moving sign­
board using shift register chips.
Realizing that some of the early
computers used serial disk memo­
ries for the main program memory,
we proposed using shift registers
for main memory. However, a prin­
cipal use of shift registers turned
out to be video screen refresh cir­
cuits, since video is a bit-serial ap­
plication [12], [23].

Minicomputer Market (1965–1969)
DEC’s 12-b PDP-8 and Data Gener­
al’s 16-b Nova popularized the gen­
eral-purpose minicomputer. A few

Power

Data In Data Out
Shift Register

Clock

Figure 3: Shift register block diagram.

Figure 2: Experimental Fairchild symbol computer, circa 1968, shown with its developers in
the rear and, in the foreground, two attendants at Fairchild’s introduction.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

34	 WINTER 20 0 9	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

years later, many other vendors of­
fered comparable minicomputers
for under US$10,000. There were a
variety of minicomputers featuring
12–18-b words for both data and
instructions, and they came with
4K words of core memory. These
minicomputer CPUs were built with
bipolar transistor-transistor logic
(TTL) gates and a few medium-
scale integration (MSI) ICs. These
MSI parts were typically 4-b wide—
multiplexers, adders, shifters, and
so forth.

While the new metal-oxide semi­
conductor (MOS) circuits offered
ten times the density of TTL cir­
cuits, their slow speed made them
unacceptable for CPU logic circuits.
And even though MOS chips cost
less than TTL, when you added the
cost of main memory and periph­
erals, the cost savings would not
be significant.

Moving from diode-transistor
logic (DTL) and resistor-transistor
logic (RTL) logic that was popular

in the early 1960s, many manu­
facturers produced TTL logic in
14-pin dual in-line packages—
Texas Instruments, National Semi­
conductor, Sylvania, and others.
These sold for about US25¢ each
on average, and the cost of a three-
input NAND gate was less than a
dime. The plentiful availability
and low cost of these ICs made
possible digital systems in general
and minicomputers in particular.
Moore’s law was at work; the lower
costs of ICs opened up a vast mini­
computer market [13], [14].

Universal Arithmetic Element (1970)
Given the popularity of 4-b-wide
MSI parts, one of Intel’s first prod­
ucts was a 16 3 4 high-speed bipo­
lar memory chip. It could be used to
provide data registers within a CPU.
Intel’s bipolar read-only memory
(ROM) could hold the microcode for
the CPU’s logic.

Hoff also began developing a 4-b
universal arithmetic element (UAE)

at Intel. My job was to design and
demonstrate a CPU using this UAE
with Intel ROMs and RAMs. We de­
cided to emulate the 12-b DEC PDP-8
minicomputer, which was a popular
standard. To make it interesting, my
coworkers and I fit the entire CPU
on a small 36-chip board (Figure 4),
and we used ROM microcode to de­
fine an instruction set similar to the
PDP-8’s. We presented the results of
this experiment at the Northeast Re­
gional Electronics Meeting (NEREM)
in 1970 [15]. Intel considered the
UAE experiment as a demonstration
of “miniaturization” and did not
pursue the UAE as a product.

DRAM Versus Core Memory (1972)
A general-purpose computer can’t
do much until a program is load­
ed into its memory. The magnetic
cores used in memories in 1972
could hold a program with power
absent. When Intel promoted semi­
conductor DRAM as a replacement
for core memory, an oft-heard com­
plaint was that DRAM would lose
data if the power was off, and this
was true. However, in reality not
many computers relied on this fea­
ture, and it was common practice to
load/reload a program just before
executing it. Arguments from In­
tel applications engineers familiar
with actual customer use overcame
this criticism of DRAMs; we did suc­
ceed in getting computer designers
to switch from magnetic core to
DRAM chips. It’s been said that Intel
created the RAM business in 1972,
and Intel was indeed a major DRAM
chip supplier, but that success was
a result of a combination of chip
engineering and applications engi­
neering support [11].

DRAM Improvements (1972)
Historically, doubling RAM chip
bits according to Moore’s doubling
of the transistor count was a good
fit—larger RAMs were both natural
and needed. Furthermore, only one
additional address input lead was
needed on the chip’s package—
and, as I noted earlier, I/O pins are Figure 4: Intel’s experimental 12-b CPU using universal arithmetic element chips.

In just 15 years, playing games had gone
from being a frivolous use of computers to
a big business.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 WINTER 20 0 9	 35

a severe limitation in chip design.
With minor redesigns, customer
memory boards were upgraded to
use newer and larger DRAM chips,
and customers readily accepted
these improved chips [16].

Content-Addressable
Memory—A Failure (1974)
After an address is input into a
RAM, the contents are returned.
In a content-addressable memory
(CAM) it’s just the opposite. Data
for matching are entered, and if a
match is found within the CAM, the
location is output. CAMs are much
faster than searching RAMs, but
they require additional circuitry
that increases the physical size
of the CAM chip, which in turn in­
creases manufacturing cost.

We believed CAMs would be useful
in CPU memory page tables (virtual
memory). Applications engineering
promoted this product, but regretta­
bly no large-scale market appeared
after the chip materialized—an ap­
plications engineering failure.

Today, CAMs are only used in
specialized applications where ad­
equate searching speed cannot be
achieved with a less costly method.

A Memory Market Pitfall—
And a Solution (1969)
When Intel successfully produced
the first DRAM chips, commercial
viability was slow to come. Although
customers would buy samples,
their lead time from engineering to
manufacturing meant that volume
production orders wouldn’t be re­
alized for several years. Meanwhile
Intel’s own production line would
be idle. Intel needed a way to utilize
its factory with a shorter lead-time
product [17].

The Busicom desktop calcula­
tor provided a way to keep idle
production lines busy. While
minicomputer unit sales were
only in the low thousands at the
time, desktop calculators were
selling by the hundreds of thou­
sands. Using a handful of MOS
LSI chips, they sold for less than

US$1,000. Again, low prices led to
large sales volumes.

Because a desk calculator responds
to keystrokes, not stored programs as
in minicomputers, it was a fine match
for the speed, density, and cost of
MOS LSI. Japan’s Busicom promised
the substantial sales volume that Intel
needed if we could design and build
custom MOS LSI chips for their new
desktop calculator [18].

Hoff was evaluating Busicom’s
design when I joined him at Intel in
1969. Busicom’s Masatoshi Shima
had designed the overall logic for
his calculator’s custom chip set.
His design called for a processor
that operated on multidigit decimal
numbers, a ROM for coding float­
ing-point operations, and separate
control chips for the keyboard, dis­

play, and printer. Hoff proposed a
simpler approach substituting pro­
gramming for hardware, and I as­
sisted in this design. Table 3 lists
some of the key design decisions on
this project [19].

Shima and I shared an office;
I was the principal liaison on the
project. Because he had done quite
a bit of work on his design, he was
skeptical of Intel’s alternative pro­
posal. I needed to demonstrate how
we could achieve various calcula­
tor features by programming rath­
er than in hardware. Moreover, all
of his flowcharts for floating-point
arithmetic assumed multidigit
fixed-point numbers, but our CPU
operated on only a single digit. I
needed to make the CPU look more
like Shima’s original and show him

Table 3. Key design decisions for the Busicom chip set.

Busicom/Masatoshi Shima:

   Family of systems using the same custom components

   Serial decimal floating point arithmetic via a ROM program

Intel/Ted Hoff:

   4-b architecture

   Separate program ROM and data RAM chips

   Time multiplex 4-b bus; 16-pin IC packages

   Dynamic RAM for CPU registers and PC stack

   4-b I/O ports (RAM and ROM chips) for interfacing

   ROM program: keyboard, printer, lights

Intel/Stan Mazor:

   FIN/JIN instructions to Fetch/Indirect jump within ROM

   Pseudo-code interpreter to reduce ROM code size

   4004 assembler and ROM code bit mapper

   Code snippets for calculator functions

Intel/Federico Faggin:

   Custom chip methodology, circuits, layout

   Bootstrap amplifier circuit for silicon gate process

   Checking and debugging custom IC chips

When Intel successfully produced the first
DRAM chips, commercial viability was
slow to come.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

36	 WINTER 20 0 9	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

how the features he needed could
be provided.

Using my college programming
experience with virtual machines,
I made Intel’s system look more
like Shima’s original. An inter­
preter program, occupying less
than 20 bytes, was the solution.

This also reduced the amount of
ROM needed by replacing 2-byte
instructions with 1-byte pseudo
operations. To interpret Shima’s
“pseudo-instructions,” we added
two CPU instructions—the ability
to fetch data from ROM (fetch indi­
rect) and to jump to a subroutine
(jump indirect). I wrote program­
ming snippets, to operate on a
field of digits, and also wrote pro­
gram pieces for scanning the key­
board, displaying data in lights,
and running the printer.

In the end, Shima did all the cal­
culator design and coding of four
ROM chips for the Busicom calcu­
lator. The interpreter directed the
program to the correct subroutines.
Hoff’s architecture was proven and
provided a general-purpose solu­
tion (Figure 5). Federico Faggin did
all the chip design, circuit design,
and layout, resulting in a new mi­
crocomputer chip set that later

became a standard product, MCS-4
[20]–[22].

Busicom produced several dif­
ferent calculators using this fam­
ily of parts. However, in just a few
years the growing density of LSI
made the products obsolete. Busi­
com was ultimately beaten by com­
petition that used more dense and
less general chips.

MCS-8 (1972)
In 1969, Intel built custom shift
register chips for Control Terminal
Corporation’s (CTC’s) Datapoint dis­
play terminals. (The company later
changed its name to Datapoint Cor­
poration.) CTC asked me for a “stack
chip” for use in their new 8-b CPU,
unaware of our Busicom microcom­
puter project. Although a single-chip
CPU like the MCS-4 was “conceiv­
able,” few knew how to do it practi­
cally. There were limits on the size
of chip that could be built and the

Figure 6: An 8008 die with designer Hal
Feeney’s initials.

CPU 4004
Program.Ctr

ADDR STACK

OPR OPA
Registers

Instruction Reg.

Control
Arithmetic

CY ACC

Addr.

Control

Status

RAM 4002
Output Port

ROM 4001
Input/Output

Port

Main Memory

Port Logic

Reg. Addr.

Control

Port Logic

ROM Array
256 × 8

Reg.

0 1
2 3
4 5
6 7
8 9
10 11
12 13
14 15





Test

Command
Line Control

RAM Control Lines

SYNC SYNC

ROM Control Line

Data Bus

Figure 5: Block Diagram of the Busicom chip set (MCS-4).

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 WINTER 20 0 9	 37

amount of circuitry we could put on
a chip. Hoff and I discussed the pos­
sibility of building the Datapoint CPU
as a single chip. At first the amount
of logic circuitry required for an 8-b
CPU seemed prohibitive, with twice
as many transistors as a 4-b CPU.
But in a CPU, the logic for instruc­
tion decoding and execution is not

dependent on the data word size, so
instruction decoding logic in an 8-b
CPU doesn’t require much more cir­
cuitry than that for a 4-b CPU—and
we knew a 4-b CPU was feasible. See
the photo of the 8008 chip in Figure
6 and designer Hal Feeney’s signage.
Subsequently, we proposed the first
8-b CPU chip, announced in 1972 as

the 8008. This led to the 8080 and
the 8086—the CPUs that launched
the PC business [23]–[30].

In Retrospect
Moore’s law of doubling density
unquestionably affects everyone’s
life, with ubiquitous cell phones,
personal computers, ATMs, and

As Ted Hoff and I were computer users as well as computer designers,
we organized and managed digital computers at Intel. One of our major
accomplishments was providing computer-aided design (CAD) tools to
assist chip designers—including logic simulation and circuit simulation
tools (transient analysis). I wrote and maintained the production version
of our home-grown (pre-Spice) circuit analysis program, using Hoff’s cir-
cuit simulation strategy and Dov Frohman’s transistor model. I constantly
revised my program to handle larger circuits and the ever-changing tech-
nology on our DEC PDP-10 large-scale, time-shared computers. This was
a nice way for me to learn some semiconductor physics and observe cir-
cuit phenomena. At Fairchild, I had done extensive logic simulation on
my floating-point arithmetic unit, and there is a fine difference between
functional logic simulation and lower-level circuit simulation.

In 1974 I transferred to Belgium to become Intel’s first field applica-
tions engineer in Europe, and to develop new markets in new places. I
found many exciting applications for our microcomputers in a variety
of companies and industries. When I returned to the United States in
1976 I worked extensively on microcomputer programming, writing,
lecturing, and teaching on the subject. In fact Intel trained tens of thou-
sands of engineers using the Intel Development System (Figure 7), in
which I participated.

A Higher Level of Abstraction
In 1983, I left Intel to join a start-up, Silicon Compilers, realizing that
the real potential of very large scale integration (VLSI) could be reached
only by designing at a higher level of abstraction [32]. After five years I
abandoned that work to join CAD start-up, Synopsys, working in logic
synthesis. I had found that, although the compilation ideas weren’t ef-
fective, logic synthesis from a hardware description language was
practical. At Synopsys I managed a capable team of application engi-
neers and trainers for more than five years. I continued my writing and
teaching about these new methodologies and published a popular book
on VHDL, the design language for field-programmable gate arrays and
application-specific integrated circuits [33].

Staying in the CAD field, I worked at Cadabra, where we automatically
generated standard cell layouts from transistor netlists. Again, the ever-
changing technology meant reducing the time delay in developing an IC
layout. Standard cells were a good meeting place for the logic designer
and circuit and layout designer.

Later I joined Numerical Technologies to help overcome the 250-
nm limit on optical photomask resolution [34]. Our solution involved

phase-shift masking, which made 20-nm geometries feasible—and
helped continue Moore’s law.

Smaller Focus
It’s amusing that, although I started as a computer programmer, I moved
into logic design, then circuit design, layout, and finally photolithogra-
phy. While the focus of my work continued to grow “smaller,” most of
my concerns were with automation tools and techniques to give design-
ers more power and flexibility in doing their designs—for logic, circuits,
layout, and photomasks.

Since I “retired,” I’ve written two books: one on using high-level design
methodologies in home construction (Design an Expandable House)
and the other on using statistical techniques in the stock market (Stock
Market Gambling) [35], [36]. Each year I visit two colleges and share
some of my engineering experiences, and I’m active in writing short
history articles about the early microcomputer days [37]. Every year I
help to organize the invitational Asilomar Microcomputer Workshop. I
invite interested readers to contact me at stanmazor@sbcglobal.net with
comments or questions.

From Programming to Photolithography: A Professional Odyssey

Figure 7: Intel development system.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

38	 WINTER 20 0 9	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

invisible, embedded computers
providing smarter machines every­
where. That Intel was a memory com­
pany certainly influenced our ability
to make CPUs, and microcomputers
helped Intel sell main memory chips
(DRAM, EPROM, ROM).

This success was made possible
by intertwined efforts. Developing
new standard chips requires close
cooperation among applications
and marketing engineers who in­
terpret users’ needs, as well as
clever process and chip designers
who implement new technology.
The development of businesses
at Intel relied on applications en­
gineers to define new products as
well as skilled design engineers.
Hoff and Mazor’s early experiences
with computers and programming,
and Shima’s and Faggin’s design
background were key to the cre­
ation of the microcomputer at Intel
during the early 1970s. I was very
lucky to be working with these tal­
ented coworkers and to participate
in a great team. Although Moore’s
curve is aggressive, the first mi­
crocomputer was “slightly ahead
of the curve.”

Incidentally, my career didn’t
end when I left Intel—far from it.
I continued to work on microcom­
puters, albeit in diverse ways, and
I continued to see Moore’s law in
operation (see “From Programming
to Photolithography: A Profession­
al Odyssey”).

References
[1]	 S. Mazor, “The history of the microcom­

puter,” in Readings in Computer Archi-
tecture, M. Hill, N. Jouppi, and G. Sohi,
Eds. San Francisco, CA: Morgan Kaufman,
2000, p 60. Reprinted from Proc. IEEE, vol.
83, pp. 1601–1608, Dec. 1995.

[2]	 “Halycon days: Interviews with classic
computer and video game programmers.”

Video book available at www.dadgum.
com/halcyon/.

[3]	 G. E. Moore, “Cramming more compo­
nents onto integrated circuits,” Electron-
ics, pp. 114–117, Apr. 19, 1965.

[4]	 “The technical impact of Moore’s law,”
IEEE Solid-States Circuits Society Newslet-
ter, vol. 20, Sept. 2006.

[5]	 F. G. Heath, “Large scale integration in
electronics,” Sci. Amer., p. 22, Feb. 1970.

[6]	 P. E. Haggerty, “Integrated electronics—A
perspective,” Proc. IEEE, pp. 1400–1405,
Dec. 1964.

[7]	 “MCS-4 micro computer set,” Data Sheet
7144, Intel Corp., 1971.

[8]	 Intel advertisement, Electronic News, Nov.
1971.

[9]	 L. C. Hobbs, “Effects of large arrays on
machine organization and hardware/
software tradeoffs,” in Proc. 1966 Fall
Joint Computer Conf., vol. 29, p. 89.

[10]	S. Mazor, “Fairchild Symbol Computer,”
IEEE Ann. History Comput., vol. 30, pp.
92–95, Jan.–Mar. 2008.

[11]	 G. Bylinsky, “Little chips invade the memory
market,” Fortune, pp. 100–104, Apr. 1971.

[12]	M. Hoff and S. Mazor, “Operation and
application of shift registers,” Computer
Design, pp. 57–62, Feb. 1971.

[13]	D. C. Hitt et al., “The mini-computer—A
new approach to computer design,” in
Proc. IEEE 1968 Fall Joint Comp. Conf, pp.
655–662.

[14]	R. Hooper, “The minicomputer, a pro­
gramming challenge,” in Proc. 1968 Fall
Joint Comp. Conf., pp. 649–654.

[15]	M. Hoff and S. Mazor, “Standard LSI for
a micro programmed processor,” in
IEEE NEREM ’70 Record, Nov. 1970, pp.
92–93.

[16]	J. Karp, A. Regitz, and S. Chou, “A 4096-
bit dynamic MOS RAM,” in Proc. Int. Solid-
State Circ. Conf., Feb. 1972, pp. 10–11.

[17]	R. Noyce and M. Hoff, “A history of mi­
croprocessor development at Intel,” IEEE
Micro, vol. 1, no.1, pp. 8–21, 1981.

[18]	M. Shima, The Birth of the Microcomputer:
My Recollections. Tokyo: Iwanami Shoten,
1987 (in Japanese).

[19]	M. E. Hoff, S. Mazor, and F. Faggin, “Memory
system for a multi·chip digital computer,”
U.S. Patent 3,821,715, Intel Corp., June 1974.

[20]	F. Faggin et al., “The MCS-4—An LSI micro
computer system,” in Proc. IEEE Region 6
Conf., 1972, pp. 8–11.

[21]	H. Smith, “Impact of LSI on microcomput­
er and calculator chips,” in IEEE NEREM ’72
Rec., 1972.

[22]	S. Mazor, “Micro to mainframe,” IEEE Ann.
History Computing, vol. 27, pp. 82–84,
April–June 2005.

[23]	S. Mazor, “8-bits of Irony,” IEEE Ann. His-
tory Computing, vol. 28, pp. 73–76, April–
June 2006.

[24]	Intel MCS-8 User Manual, 1972.
[25]	V. Pzoor, “Letters,” Fortune, p. 94, Jan.

1976.
[26]	G. Boone, “Computing system CPU,” U.S.

Patent 3,757,306, Texas Instruments,
Sept. 1973.

[27]	G. Bylinsky, “Here comes the second com­
puter revolution,” Fortune, Nov. 1975.

[28]	S. Mazor, “Intel 8080 CPU chip develop­
ment,” IEEE Ann. History Computing, vol.
29, pp. 70–73, April–June 2007.

[29]	F. Faggin, M. Shima, and S. Mazor, “Single
chip CPU,” U.S. Patent 4,010,499, Intel
Corp., 1977.

[30]	S. Morse, B. Ravenel, S. Mazor and W.
Pohlman, “Intel microprocessors 8008 to
8086,” Computer, pp. 42–60, Oct. 1980.

[31]	L. Vasdasz, A. Grove, G. Moore, and T.
Rowe, “Silicon gate technology,” IEEE Spec-
trum, pp. 27–35, Oct. 1969.

[32]	S. Mazor and L. Jack, “The validation of
silicon compiler technology on a VHSIC
process,” in GOMACTech Digest, Nov.
1986, pp. 437–441.

[33]	S. Mazor and P. Langstraat, A Guide to
VHDL, 2nd ed. Norwell, MA: Kluwer, 1993.

[34]	L. Karklin, S. Mazor, et al., “Subwavelength
lithography: An impact of photomask er­
rors on circuit performance,” Proc. SPIE,
pp. 259–267, July 2002.

[35]	S. Mazor, Design an Expandable House,
2nd ed. Morrisville, NC: Unlimited Pub­
lishing, Lulu, 2003.

[36]	S. Mazor, Stock Market Gambling: Turn-
ing on a Dime. Morrisville, NC: Unlimited
Publishing, Lulu, 2007.

[37]	S. Mazor, “Programming and/or logic de­
sign,” in Proc. IEEE Computer Group Conf.,
1968, pp. 69–71.

[38]	B.O. Evans, “System/360: A retrospective
view,” Ann. History Computing, vol. 8, no
2, pp. 155–179, 1986.

[39]	M. Wilkes, “The genesis of microprogram­
ming,” Ann. History Computing, vol. 8, no.
2, pp. 115–126, 1986.

About the Author
Stanley Mazor (stanmazor@sbc­
global.net) worked on early micro­
processor chips at Intel and shares
patents on the 4004 and 8080 mi­
crocomputer chips. Previously he
worked on the design of Symbol,
a high-level language computer at
Fairchild R&D (1964). He has worked
in several start-up companies includ­
ing: Intel, Synopsys, Silicon Compil­
ers, Numerical Technologies, Ca­
dabra, and BEA Systems. He studied
mathematics at San Francisco State
College. He has published 55 articles
relating to large-scale integration
chips and three books including A
Guide to VHDL (Kluwer, 1993). For his
work on Intel’s microcomputers he
was awarded the Kyoto Prize, the Ron
Brown American Innovator Award,
and the Semiconductor Industry As­
sociation Robert Noyce Award and
was inducted into the Inventors’ Hall
of Fame. His hobby is architecture,
and he recently published Design an
Expandable House as well as Stock
Market Gambling.

Since I “retired,” I’ve written two books: one
on using high-level design methodologies
in home construction and the other on using
statistical techniques in the stock market.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 00:43:15 UTC from IEEE Xplore. Restrictions apply.

