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n 1960—ten years 
before Intel deve­
loped the first sin­

gle-chip CPU (micro­
computer central pro­

cessing unit)—the revolution that 
would ensue was inconceivable: the 
cost of computing dropped by a fac­
tor of a million, modes of personal 
communication changed forever, 
and intelligent machines took over 
processes in manufacturing, trans­
portation, medicine—virtually ev­
ery aspect of our lives.

Certainly Moore’s law—that the 
number of transistors on a chip dou­
bles every year, later amended to ev­
ery two years—is a dominant factor in 
this revolution. But at Intel, there were 
three other enabling conditions:

a customer with a problem■■

an applications engineering de­■■

partment that listened to the 
customer
a talented engineering group to ■■

implement a solution.
Here I give my views on Moore’s 

law and focus on the role of applica­
tions engineering in developing Intel’s 
first microcomputer. (For an overview 
of basic chip technology, see “IC Back­
grounder: Process and Design.”)

I

by Stanley Mazor

A confluence of skills  
made the microcomputer revolution possible:  
device design, process design, applications, and marketing.
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Although electrical engineering 
students study the design of logic and 
circuits, when they graduate, they 
find a large number of nondesign po­
sitions posted: quality engineer, pro­
cess engineer, marketing engineer, 
and applications engineer. But what 
does an application engineer do? I 
want to tell you about my experienc­
es with Gordon Moore’s law in Silicon 
Valley (from 1964 to 1984) as an ap­

plications engineer using and design­
ing digital computers, digital IC com­
ponents, and microcomputers [1]. 
But first, let me contrast the change 
in the value of a computer over a  
15-year period with the following 
personal anecdote. 

Computer Values (1962–1977)
In 1962, Prof. Robert J. Levitt of the 
Math Department at San Francisco 

State University didn’t let students 
play games on the campus’s only 
computer, an IBM 1620 (Figure 1). 
“After all,” he said, “it cost almost 
$100k and could execute instruc­
tions in milliseconds. This valuable 
resource should neither be wasted 
nor made to do frivolous tasks.” Ac­
cordingly, I played my own tic-tac-
toe assembler language program 
only at night, when no one was 
watching; playing games on com­
puters was not allowed. 

Fifteen years later, I visited 
Midway Games, which had been 
acquired by Bally Technologies, a 
manufacturer of pinball machines 
and slot machines, and coordinated 
development of a custom Intel game 
chip for the Magnavox Odyssey2 

I want to tell you about my experiences  
with Gordon Moore’s law in Silicon Valley as 
an applications engineer using and designing 
digital computers, digital IC components, and 
microcomputers.

IC Backgrounder: Process and Design 

Chip Size and Cost
Although larger chips can accommodate more functions, a chip’s 
manufacturing cost increases with the square of its die size. So the 
chip cost constrains the practical number of transistors that can be 
placed on a chip. But, as Gordon Moore observed in the mid-1960s, 
the practical limit doubles every year.

The early Intel microcomputers (circa 1970) contained about 2,000 
transistors, organized into a few logic blocks—ALU, register array, in-
struction decoder, I/O pads, and so forth.  As processing improved over 
the years, the individual transistor sizes shrank, and at the same time the 
chips grew bigger. As transistor features got smaller, the lower capaci-
tance helped the circuits run faster.

MOS Process Technology
Modern complementary metal-oxide semiconductor (CMOS) ICs 
provide optimum power dissipation and speed, but the manu-
facturing process is complicated because two different transistor 
types are needed within the same chip: NMOS and PMOS, with  
n-type and p-type substrates, respectively. Standby power is reduced 
by pairing transistors, so that at any instant one of the transistors is 
turned off. NMOS devices are faster and smaller than PMOS devices 
because the carrier mobility of NMOS is about twice that of PMOS, 
but both transistor types are needed within a CMOS chip.

For lower manufacturing costs and simpler processing, either all 
NMOS or all PMOS ICs are preferred. Early semiconductor companies 
such as Electronic Arrays, General Instrument, and Texas Instruments 
produced ICs containing only PMOS transistors. NMOS required ex-
ceptionally clean fabrication facilities, as any impurities tend to perma-
nently turn on NMOS transistors. Only IBM experienced early success 
with NMOS chip production. Early microprocessor chips were made 
with only PMOS transistors, but within ten years they were being made 

with all-NMOS transistors. After mastering both of these technologies, 
most semiconductor companies moved into CMOS production (about 
1985), which required more photomasks and costlier production meth-
ods, but gave a better-performing product.

Power Dissipation 
CMOS transistor pairs minimize the amount of power consumed in their 
steady or quiescent state, and lower operating voltages reduced the active 
power consumption. The combined effects reduced the power that has 
to be dissipated, thereby permitting more transistors on a chip. Process 
improvements such as ion implantation and polysilicon (rather than metal) 
gates lowered transistor threshold voltages and subsequent operating volt-
ages. These processes were pioneered in the United States by: Fairchild, 
Intel, and Mostek. Operating voltages dropped from 14 V in 1970 to 5 V in 
1975, and then to 1.5 V in 2000. Since power varies with the square of the 
voltage, reducing the operating voltage by a factor of 10 reduced power 
dissipation by a factor of 100. Early ceramic packages could handle about 
1 W of power; plastic packages had a much lower rating.

Circuit Background
A CPU chip is characterized by its maximum clock frequency. A 100-
MHz chip corresponds to a clock cycle period of 10 ns. The clock pe-
riod in digital integrated circuits allows for signal propagation along 
the longest logic switching path within the chip’s circuitry. This path 
typically goes from a flip/flop output, passes through a number of logic 
gates, and finally enters another flip/flop.

In typical MOS circuits, each logic gate’s output transistor drives one or 
more transistor gate input loads. These loads are equivalent to an open cir-
cuit (high resistance with some stray capacitance to ground); there is no DC 
load. The switching speed of such a digital logic circuit depends on the volt-
age swing to be traversed, for example from .2 V (logic 0) to 4 V (logic 1), and 
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home TV game system. This spe­
cial video chip was used with an 
off-the-shelf single chip microcom­
puter to display game objects on a 
TV screen. In just 15 years, play­
ing games had gone from being a 
frivolous use of computers to a big 
business [2]. Thanks to Moore’s 
doubling, computers became cheap 
and new markets (for digital logic) 
appeared. (Today, Midway Games 
offers such popular video games 
as Mortal Kombat, Ms. Pac-Man, Spy 
Hunter, Tron, and NBA Jam.)

Moore’s Law (1965)
I joined Fairchild Semiconductor in 
Mountain View, California, before 
Gordon Moore published his de­
finitive paper [3], [4]. (Moore was in 

charge of Fairchild R&D.) I’ve lived 
with Moore’s law from its beginning 
and have found it both difficult to 
ignore and difficult to grasp. The 
following story is enlightening: Leg­
end has it that the man who saved a 
king’s son’s life was asked what he 
wanted as a reward. The hero asked 
that rice be placed on his checker 
board as follows: one grain on the 
first square, two grains on the sec­
ond square, doubling on each suc­
cessive square. The king agreed to 
this seemingly modest request, not 
realizing that the total would be 
more rice than there are grains of 
sand on the beach.

Similarly the significance of 
Moore’s doubling of transistors each 
year is outside our normal expecta­

tions. Now after 40 years we have 
chips with billions (230) of transis­
tors, a daunting result of this kind of 
exponential behavior. We live most­
ly in a linear world—miles/gallon, 
dollars/pound—and we just don’t 
experience exponential relations 
(except perhaps for acceleration and 
compound interest) [5], [6].

Did anyone predict that “some­
day” the whole computer would fit 
on a single chip? Considering that 
a minicomputer (circa 1962) CPU 
needed about 16k transistors, and 
16k = 214, one could have predicted 
a single-chip CPU after 14 years of 
Moore’s doubling, or roughly in 1976. 
However there weren’t any such pre­
dictions! Apparently Moore’s law is 
easier to apply in hindsight than in 

the speed of the voltage transition. This switching speed (dv/dt) is directly 
proportional to the current output (I) of the driving transistor and inversely 
proportional to the capacitance (C)of the driven transistor gates and the 
interconnection wiring, as given by the formula dv/dt = I/C.

The output current of an MOS driver transistor sets the switching 
speed, and depends on circuit layout and process features. The voltage 
on the gate and the transistor’s size are the most important circuit de-
sign features, determining an output transistor’s drive strength and the 
ultimate circuit’s speed. With silicon (rather than metal) gate the tran-
sistor’s size was reduced because the source and drain features were 
formed by the self-aligned silicon gate [31].

Although today’s circuits utilize two transistor types for optimum 
drive for both rising and falling signals, that is, transition from logical  
0 to 1 and from 1 to 0, earlier circuits weren’t good at both “pushing 
and pulling.” Accordingly, the circuits were operated in dynamic mode 
with a precharge and conditional discharge circuit. First a circuit was 
precharged by an on-chip amplifier, and then, according to the logic 
state, was conditionally discharged.

The PMOS transistors of 1970 required 14 V to operate; the circuits 
were operated dynamically in either a two-phase or a four-phase mode. 
The historic improvements in MOS process technology have resulted in

lowering the voltage swing needed to switch a logic signal••

reducing the transistor size to improve a driver’s output current••

reducing the transistor size to lower the gate’s capacitance.••

RAM Circuits
In 1970 an IC could contain about 256 bits of static RAM, the limit be-
ing imposed by both power dissipation and chip size. Dynamic RAM 
(DRAM) chips became practical in the early 1970s and had much low-
er power requirements, but needed to be refreshed periodically. The 
three-transistor dynamic memory cell was considerably smaller than a 
six-transistor static memory cell.

In addition, the cell connection signals were a major area constraint. 
Memory circuit design was often described in terms of the number of con-
necting bus lines, for example, a three-line or six-line organization. Larger 
DRAM memory chips were made possible by using a single transistor per 
cell and just two lines—gate selection and bidirectional data bus.

Early microcomputer chips used small, integrated dynamic RAM arrays for 
the CPU’s registers and a program counter stack. For example, Intel’s 4004 
had a 64-b DRAM for its 16 four-bit registers, and the 8008 had a push-
down stack of 14 3 8 within a DRAM array. The decisions to be made in 
designing ICs—then and now—are many. Table 1 highlights some of them.

LSI Chip Issues:

■	 How many pins on the IC package?

■	 What is IC package’s power dissipation 
constraint?

■	 What is the projected die size and aspect 
ratio?

■	 What are the operating voltages?

■	 What are the I/O interface voltages and 
signal timings?

■	 What are the technology constraints?

■	 What chip speed and power goals?

■	 What is the on-chip routing/bus  
strategy?

■	 How will the chip be tested?

Table 1.  LSI Chip Issues.
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foresight. This despite the fact that 
we announced the MCS-4 chip at In­
tel in 1971, roughly five years “ahead 
of schedule”; the CPU had about 2k 
transistors [7], [8]. 

Generally, if you can double a 
chip’s density next year, you have 
two choices:

halve the cost of a chip you’re ■■

currently making
make a new chip with twice as ■■

much “stuff” on it.
By way of analogy, suppose you 

were a bicycle manufacturer that 
could reduce bicycle prices every 
year by 50%: $80, $40, $20, . . . 

$1.25. After a while everyone would 
own several and the market would 
become saturated; this wouldn’t be 
a good business. Sometimes lower­
ing prices increases market con­
sumption and sometimes not. Ac­
cordingly, although many believe 
Moore’s law is about semiconduc­
tor technology, thoughtful analysis 
reveals two fundamental business 
questions: Will decreasing chip pric­
es dramatically increase chip sales? 
Will the expected profits justify im­
proving semiconductor processes? 
In other words, Moore’s doubling oc­
curs only if it makes good business 

sense, that is, can you use more 
transistors sensibly? 

If Moore’s law is taken into ac­
count, there are more choices to con­
sider, as Table 2 shows. First, for an 
existing product, one needs to know 
the results of lowering the price. Of­
ten new applications and new mar­
kets are needed to propel the sales 
volume of an existing IC chip. 

For new chip designs, it is a chal­
lenge to determine what kind of chip 
to make. Table 1 illustrates the op­
tions for new chips for both existing 
and new markets. Deciding on how 
to use more transistors requires 
a good understanding of how new 
chips would be used—their applica-
tion. The role of both the applica­
tions engineer and the product mar­
keting engineer become prominent 
in new chip specification—how big, 
how fast, what features, how many 
will sell, what price?

Let me continue now with my per­
sonal story after I joined Fairchild.

Transistor Data (1964)
One of my application engineering 
projects at Fairchild was to write 
a program to calculate the Y-pa­
rameters of individual, or discrete, 
transistors. At that time each three-
legged transistor had a serial num­
ber, and we recorded and calculat­
ed parameters for each part. When 
users paid US$150 per transistor, 
arguably they paid more for the 
data than for the transistor itself. 
Fairchild applications engineers 
were selling their service bundled 
with the devices. 

When transistor prices dropped 
by a thousand times (to US15¢ each), 
the price of a five-transistor radio 
dropped to about US$2. At some 
point the solid-state devices weren’t 
a factor in a radio’s price; the costs 
of the case, power supply, battery, 
coils, capacitors, and resistors 
outweighed transistor costs. Soon 
everyone owned a couple of these 
radios, and the market for radios 
saturated. Chips containing more 
transistors and their wiring—that 
is, integrated circuits—would be 

You will see that our early experience with 
small computers was a factor in creating the 
first microcomputer.

Lower the price of existing chips.

Find new uses for existing chips.

Build a similar chip with improved features.

Build a noncompatible chip with improved features.

Develop a new chip design for an existing chip market.

Develop a new chip to replace another technology—mechanical, magnetic, analog, other.

Develop a new chip for a totally new market.

Table 2. LSI chip marketing issues.

Figure 1: Stan Mazor and an IBM 1620 in 1963.
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the key to fueling Moore’s law and 
lead to lower digital system costs.

Novel Computer Architecture (1966)
At Fairchild I programmed six differ­
ent computers, and in 1966 I trans­
ferred to Gordon Moore’s R&D labs 
in Palo Alto, joining Rex Rice’s high-
level language computer design proj­
ect. Following Moore’s predictions 
for “cheap” logic, we built a radical 
computer called Symbol (Figure 2) 
that had 100 times more logic with­
in the CPU. It used more than 20,000 
of Fairchild’s complementary tran­
sistor logic (CTL) chips. However 
the idea of “maximizing” CPU logic, 
while consistent with Moore’s law, 
was flawed and the project wasn’t a 
success [9], [10].

However, my experience in de­
signing the serial decimal floating 
point arithmetic logic unit (ALU) and 
the string-processing unit would 
later help me in understanding the 
Busicom calculator’s arithmetic, 
with Intel’s first microcomputer [1].

Intel Is Founded (1968)
Robert Noyce and Gordon Moore 
quit Fairchild, where they were 
general manager and director of 
R&D, respectively, and started 
Intel to capitalize on the emerg­
ing semiconductor memory mar­
ket and fulfill Moore’s promise 
of growing chip density [11]. My 
Fairchild officemate, Jim Angel, 
suggested they hire a brilliant 
Stanford research associate, M.E. 
(Ted) Hoff, as director of applica­
tions research. I joined Hoff at In­
tel in 1969 as an applications engi­
neer. (I recall first meeting Hoff in 
1963 while he was demonstrating 
his experiments in speech recog­
nition on an IBM 1620 at Stanford 
University. At that time I was also 
programming an IBM 1620 on more 
mundane applications.)

You will see later that our early 
experience with small computers 
was a factor in creating the first mi­
crocomputer. But let’s consider the 
first kinds of memory chips that 
were enabled by Moore’s law.

Shift Register ICs (1969)
If you look at history you’ll find 
that shift registers were one of the 
first large-scale integration (LSI)  
chips available, and from several 
companies—including: General In­
strument, Electronic Arrays, MOS 
Technology, AMI, and Intel. Although 
dynamic random-access memories 
(DRAMs) are now common, the shift 
register was a precursor memory 
chip and had several advantages. A 
shift register chip has few leads and 
can be encased in a small eight-pin 
package (the TO-5 can).

Keep in mind that, although chip 
density had been doubling, the number 
of input and output pins on a package 
was growing slower, so I/O pin count 
was a real limitation to a chip designer. 
Normally chip wiring is a major prob­
lem for designers—one that eats up 
valuable chip real estate. But not in a 
shift register, for three reasons:

Serial memories have no address ■■

pins, just the data-in, data-out, and 
clock and power pins—regardless 
of the number of bits inside the 
chip, as shown in Figure 3.
Shift register chips are simpler to ■■

design and debug because they 
have no address decoder in the 
chip, and most of the circuit lay­

out just repeats the memory cells, 
thousands (or millions) of times.
On-chip wiring is minimal, since ■■

each cell communicates with just 
its left and right neighbors.
Finding new uses for shift reg­

ister chips was a challenge for the 
Applications Engineering depart­
ment. We built a few interesting 
systems such as a moving sign­
board using shift register chips. 
Realizing that some of the early 
computers used serial disk memo­
ries for the main program memory, 
we proposed using shift registers 
for main memory. However, a prin­
cipal use of shift registers turned 
out to be video screen refresh cir­
cuits, since video is a bit-serial ap­
plication [12], [23]. 

Minicomputer Market (1965–1969)
DEC’s 12-b PDP-8 and Data Gener­
al’s 16-b Nova popularized the gen­
eral-purpose minicomputer. A few 

Power

Data In Data Out
Shift Register

Clock

Figure 3: Shift register block diagram.

Figure 2: Experimental Fairchild symbol computer, circa 1968, shown with its developers in 
the rear and, in the foreground, two attendants at Fairchild’s introduction.
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years later, many other vendors of­
fered comparable minicomputers 
for under US$10,000. There were a 
variety of minicomputers featuring 
12–18-b words for both data and 
instructions, and they came with 
4K words of core memory. These 
minicomputer CPUs were built with 
bipolar transistor-transistor logic 
(TTL) gates and a few medium-
scale integration (MSI) ICs. These 
MSI parts were typically 4-b wide—
multiplexers, adders, shifters, and 
so forth.

While the new metal-oxide semi­
conductor (MOS) circuits offered 
ten times the density of TTL cir­
cuits, their slow speed made them 
unacceptable for CPU logic circuits. 
And even though MOS chips cost 
less than TTL, when you added the 
cost of main memory and periph­
erals, the cost savings would not 
be significant.

Moving from diode-transistor 
logic (DTL) and resistor-transistor 
logic (RTL) logic that was popular 

in the early 1960s, many manu­
facturers produced TTL logic in 
14-pin dual in-line packages—
Texas Instruments, National Semi­
conductor, Sylvania, and others. 
These sold for about US25¢ each 
on average, and the cost of a three-
input NAND gate was less than a 
dime. The plentiful availability 
and low cost of these ICs made 
possible digital systems in general 
and minicomputers in particular. 
Moore’s law was at work; the lower 
costs of ICs opened up a vast mini­
computer market [13], [14].

Universal Arithmetic Element (1970)
Given the popularity of 4-b-wide 
MSI parts, one of Intel’s first prod­
ucts was a 16 3 4 high-speed bipo­
lar memory chip. It could be used to 
provide data registers within a CPU. 
Intel’s bipolar read-only memory 
(ROM) could hold the microcode for 
the CPU’s logic. 

Hoff also began developing a 4-b 
universal arithmetic element (UAE) 

at Intel. My job was to design and 
demonstrate a CPU using this UAE 
with Intel ROMs and RAMs. We de­
cided to emulate the 12-b DEC PDP-8 
minicomputer, which was a popular 
standard. To make it interesting, my 
coworkers and I fit the entire CPU 
on a small 36-chip board (Figure 4), 
and we used ROM microcode to de­
fine an instruction set similar to the 
PDP-8’s. We presented the results of 
this experiment at the Northeast Re­
gional Electronics Meeting (NEREM) 
in 1970 [15]. Intel considered the 
UAE experiment as a demonstration 
of “miniaturization” and did not 
pursue the UAE as a product.

DRAM Versus Core Memory (1972)
A general-purpose computer can’t 
do much until a program is load­
ed into its memory. The magnetic 
cores used in memories in 1972 
could hold a program with power 
absent. When Intel promoted semi­
conductor DRAM as a replacement 
for core memory, an oft-heard com­
plaint was that DRAM would lose 
data if the power was off, and this 
was true. However, in reality not 
many computers relied on this fea­
ture, and it was common practice to 
load/reload a program just before 
executing it. Arguments from In­
tel applications engineers familiar 
with actual customer use overcame 
this criticism of DRAMs; we did suc­
ceed in getting computer designers 
to switch from magnetic core to 
DRAM chips. It’s been said that Intel 
created the RAM business in 1972, 
and Intel was indeed a major DRAM 
chip supplier, but that success was 
a result of a combination of chip 
engineering and applications engi­
neering support [11]. 

DRAM Improvements (1972)
Historically, doubling RAM chip 
bits according to Moore’s doubling 
of the transistor count was a good 
fit—larger RAMs were both natural 
and needed. Furthermore, only one 
additional address input lead was 
needed on the chip’s package—
and, as I noted earlier, I/O pins are Figure 4: Intel’s experimental 12-b CPU using universal arithmetic element chips.

In just 15 years, playing games had gone  
from being a frivolous use of computers to  
a big business.
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a severe limitation in chip design. 
With minor redesigns, customer 
memory boards were upgraded to 
use newer and larger DRAM chips, 
and customers readily accepted 
these improved chips [16].

Content-Addressable 
Memory—A Failure (1974)
After an address is input into a 
RAM, the contents are returned. 
In a content-addressable memory 
(CAM) it’s just the opposite. Data 
for matching are entered, and if a 
match is found within the CAM, the 
location is output. CAMs are much 
faster than searching RAMs, but 
they require additional circuitry 
that increases the physical size 
of the CAM chip, which in turn in­
creases manufacturing cost.

We believed CAMs would be useful 
in CPU memory page tables (virtual 
memory). Applications engineering 
promoted this product, but regretta­
bly no large-scale market appeared 
after the chip materialized—an ap­
plications engineering failure.

Today, CAMs are only used in 
specialized applications where ad­
equate searching speed cannot be 
achieved with a less costly method.

A Memory Market Pitfall— 
And a Solution (1969)
When Intel successfully produced 
the first DRAM chips, commercial 
viability was slow to come. Although 
customers would buy samples,  
their lead time from engineering to 
manufacturing meant that volume 
production orders wouldn’t be re­
alized for several years. Meanwhile 
Intel’s own production line would 
be idle. Intel needed a way to utilize 
its factory with a shorter lead-time 
product [17]. 

The Busicom desktop calcula­
tor provided a way to keep idle 
production lines busy. While 
minicomputer unit sales were 
only in the low thousands at the 
time, desktop calculators were 
selling by the hundreds of thou­
sands. Using a handful of MOS 
LSI chips, they sold for less than  

US$1,000. Again, low prices led to 
large sales volumes.

Because a desk calculator responds 
to keystrokes, not stored programs as 
in minicomputers, it was a fine match 
for the speed, density, and cost of 
MOS LSI. Japan’s Busicom promised 
the substantial sales volume that Intel 
needed if we could design and build 
custom MOS LSI chips for their new 
desktop calculator [18]. 

Hoff was evaluating Busicom’s 
design when I joined him at Intel in 
1969. Busicom’s Masatoshi Shima 
had designed the overall logic for 
his calculator’s custom chip set. 
His design called for a processor 
that operated on multidigit decimal 
numbers, a ROM for coding float­
ing-point operations, and separate 
control chips for the keyboard, dis­

play, and printer. Hoff proposed a 
simpler approach substituting pro­
gramming for hardware, and I as­
sisted in this design. Table 3 lists 
some of the key design decisions on 
this project [19].

Shima and I shared an office; 
I was the principal liaison on the 
project. Because he had done quite 
a bit of work on his design, he was 
skeptical of Intel’s alternative pro­
posal. I needed to demonstrate how 
we could achieve various calcula­
tor features by programming rath­
er than in hardware. Moreover, all 
of his flowcharts for floating-point 
arithmetic assumed multidigit 
fixed-point numbers, but our CPU 
operated on only a single digit. I 
needed to make the CPU look more 
like Shima’s original and show him 

Table 3. Key design decisions for the Busicom chip set.

Busicom/Masatoshi Shima:

    Family of systems using the same custom components

    Serial decimal floating point arithmetic via a ROM program

Intel/Ted Hoff:

    4-b architecture

    Separate program ROM and data RAM chips 

    Time multiplex 4-b bus; 16-pin IC packages

    Dynamic RAM for CPU registers and PC stack

    4-b I/O ports (RAM and ROM chips) for interfacing

    ROM program: keyboard, printer, lights

Intel/Stan Mazor:

    FIN/JIN instructions to Fetch/Indirect jump within ROM

    Pseudo-code interpreter to reduce ROM code size

    4004 assembler and ROM code bit mapper 

    Code snippets for calculator functions

Intel/Federico Faggin:

    Custom chip methodology, circuits, layout

    Bootstrap amplifier circuit for silicon gate process

    Checking and debugging custom IC chips

When Intel successfully produced the first 
DRAM chips, commercial viability was 
slow to come. 
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how the features he needed could 
be provided.

Using my college programming 
experience with virtual machines, 
I made Intel’s system look more 
like Shima’s original. An inter­
preter program, occupying less 
than 20 bytes, was the solution. 

This also reduced the amount of 
ROM needed by replacing 2-byte 
instructions with 1-byte pseudo 
operations. To interpret Shima’s 
“pseudo-instructions,” we added 
two CPU instructions—the ability 
to fetch data from ROM (fetch indi­
rect) and to jump to a subroutine 
(jump indirect). I wrote program­
ming snippets, to operate on a 
field of digits, and also wrote pro­
gram pieces for scanning the key­
board, displaying data in lights, 
and running the printer.

In the end, Shima did all the cal­
culator design and coding of four 
ROM chips for the Busicom calcu­
lator. The interpreter directed the 
program to the correct subroutines. 
Hoff’s architecture was proven and 
provided a general-purpose solu­
tion (Figure 5). Federico Faggin did 
all the chip design, circuit design, 
and layout, resulting in a new mi­
crocomputer chip set that later 

became a standard product, MCS-4 
[20]–[22].

Busicom produced several dif­
ferent calculators using this fam­
ily of parts. However, in just a few 
years the growing density of LSI 
made the products obsolete. Busi­
com was ultimately beaten by com­
petition that used more dense and 
less general chips.

MCS-8 (1972)
In 1969, Intel built custom shift 
register chips for Control Terminal 
Corporation’s (CTC’s) Datapoint dis­
play terminals. (The company later 
changed its name to Datapoint Cor­
poration.) CTC asked me for a “stack 
chip” for use in their new 8-b CPU, 
unaware of our Busicom microcom­
puter project. Although a single-chip 
CPU like the MCS-4 was “conceiv­
able,” few knew how to do it practi­
cally. There were limits on the size 
of chip that could be built and the 

Figure 6: An 8008 die with designer Hal 
Feeney’s initials.
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Figure 5: Block Diagram of the Busicom chip set (MCS-4).
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amount of circuitry we could put on 
a chip. Hoff and I discussed the pos­
sibility of building the Datapoint CPU 
as a single chip. At first the amount 
of logic circuitry required for an 8-b 
CPU seemed prohibitive, with twice 
as many transistors as a 4-b CPU. 
But in a CPU, the logic for instruc­
tion decoding and execution is not 

dependent on the data word size, so 
instruction decoding logic in an 8-b 
CPU doesn’t require much more cir­
cuitry than that for a 4-b CPU—and 
we knew a 4-b CPU was feasible. See 
the photo of the 8008 chip in Figure 
6 and designer Hal Feeney’s signage. 
Subsequently, we proposed the first 
8-b CPU chip, announced in 1972 as 

the 8008. This led to the 8080 and 
the 8086—the CPUs that launched 
the PC business [23]–[30]. 

In Retrospect
Moore’s law of doubling density 
unquestionably affects everyone’s 
life, with ubiquitous cell phones, 
personal computers, ATMs, and 

As Ted Hoff and I were computer users as well as computer designers, 
we organized and managed digital computers at Intel. One of our major 
accomplishments was providing computer-aided design (CAD) tools to 
assist chip designers—including logic simulation and circuit simulation 
tools (transient analysis).  I wrote and maintained the production version 
of our home-grown (pre-Spice) circuit analysis program, using Hoff’s cir-
cuit simulation strategy and Dov Frohman’s transistor model. I constantly 
revised my program to handle larger circuits and the ever-changing tech-
nology on our DEC PDP-10 large-scale, time-shared computers. This was 
a nice way for me to learn some semiconductor physics and observe cir-
cuit phenomena. At Fairchild, I had done extensive logic simulation on 
my floating-point arithmetic unit, and there is a fine difference between 
functional logic simulation and lower-level circuit simulation.

In 1974 I transferred to Belgium to become Intel’s first field applica-
tions engineer in Europe, and to develop new markets in new places. I 
found many exciting applications for our microcomputers in a variety 
of companies and industries. When I returned to the United States in 
1976 I worked extensively on microcomputer programming, writing, 
lecturing, and teaching on the subject. In fact Intel trained tens of thou-
sands of engineers using the Intel Development System (Figure 7), in 
which I participated.

A Higher Level of Abstraction
In 1983, I left Intel to join a start-up, Silicon Compilers, realizing that 
the real potential of very large scale integration (VLSI) could be reached 
only by designing at a higher level of abstraction [32]. After five years I 
abandoned that work to join CAD start-up, Synopsys, working in logic 
synthesis. I had found that, although the compilation ideas weren’t ef-
fective, logic synthesis from a hardware description language was 
practical. At Synopsys I managed a capable team of application engi-
neers and trainers for more than five years. I continued my writing and 
teaching about these new methodologies and published a popular book 
on VHDL, the design language for field-programmable gate arrays and 
application-specific integrated circuits [33]. 

Staying in the CAD field, I worked at Cadabra, where we automatically 
generated standard cell layouts from transistor netlists. Again, the ever-
changing technology meant reducing the time delay in developing an IC 
layout. Standard cells were a good meeting place for the logic designer 
and circuit and layout designer.

Later I joined Numerical Technologies to help overcome the 250-
nm limit on optical photomask resolution [34]. Our solution involved 

phase-shift masking, which made 20-nm geometries feasible—and  
helped continue Moore’s law.

Smaller Focus
It’s amusing that, although I started as a computer programmer, I moved 
into logic design, then circuit design, layout, and finally photolithogra-
phy. While the focus of my work continued to grow “smaller,” most of 
my concerns were with automation tools and techniques to give design-
ers more power and flexibility in doing their designs—for logic, circuits, 
layout, and photomasks.

Since I “retired,” I’ve written two books: one on using high-level design 
methodologies in home construction (Design an Expandable House) 
and the other on using statistical techniques in the stock market (Stock 
Market Gambling) [35], [36]. Each year I visit two colleges and share 
some of my engineering experiences, and I’m active in writing short 
history articles about the early microcomputer days [37].  Every year I 
help to organize the invitational Asilomar Microcomputer Workshop. I 
invite interested readers to contact me at stanmazor@sbcglobal.net with 
comments or questions.

From Programming to Photolithography: A Professional Odyssey

Figure 7: Intel development system.
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invisible, embedded computers 
providing smarter machines every­
where. That Intel was a memory com­
pany certainly influenced our ability 
to make CPUs, and microcomputers 
helped Intel sell main memory chips 
(DRAM, EPROM, ROM). 

This success was made possible 
by intertwined efforts. Developing 
new standard chips requires close 
cooperation among applications 
and marketing engineers who in­
terpret users’ needs, as well as 
clever process and chip designers 
who implement new technology. 
The development of businesses 
at Intel relied on applications en­
gineers to define new products as 
well as skilled design engineers. 
Hoff and Mazor’s early experiences 
with computers and programming, 
and Shima’s and Faggin’s design 
background were key to the cre­
ation of the microcomputer at Intel 
during the early 1970s. I was very 
lucky to be working with these tal­
ented coworkers and to participate 
in a great team. Although Moore’s 
curve is aggressive, the first mi­
crocomputer was “slightly ahead 
of the curve.”

Incidentally, my career didn’t 
end when I left Intel—far from it. 
I continued to work on microcom­
puters, albeit in diverse ways, and 
I continued to see Moore’s law in 
operation (see “From Programming 
to Photolithography: A Profession­
al Odyssey”).
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