
22	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

software technology
E d i t o r : C h r i s t o f E b e r t ■ V e c t o r C o n s u l t i n g ■ c h r i s t o f . e b e r t @ v e c t o r - c o n s u l t i n g . d e

a Brief history
of Software technology

christof ebert

G
ood car drivers assess situations—past,
present, and future—with a mix of skills
and qualities. They make unconscious de-
cisions and meld impressions, experiences,
and skills into appropriate real-time ac-
tions. The same holds for assessing soft-

ware technology. When refl ecting on which tech-
nologies have had the most impact in the past 25

years, we can assess it quantita-
tively, by looking at research pa-
pers or “hype-cycle” duration, for
example. Alternatively, we might
judge it like the expert driver,
intuitively evaluating what was
achieved compared to what was
promised from a user perspective.

For this 25th-year issue of
IEEE Software, I wish to re-
fl ect on when some key software

technologies reached their respective markets dur-
ing this period. Of course, many major technology
breakthroughs happened before 1984: Milestones
such as the IBM OS/360 and the microprocessor,
and even many still-relevant software engineering
practices, had been developed much earlier.1,2 So
what makes the recent 25 years unique? First, soft-
ware moved from a few company desks to the lives
of practically everyone on the planet. The PC, the
Internet, and mobile phones showcase this tremen-
dous evolution. Second, empirical evaluations over-
came opinions. Mary Shaw described the eighties
by stating, “Software engineering is not yet a true
discipline, but it has the potential to become one.”3
In those early days, a lot of technologies were just
assembled and delivered, but from the ’80s on-
ward, engineers evaluated and empirically assessed
new technologies to judge their impact.

through the rear Mirror

If the automobile followed the same develop-
ment as the computer, a Rolls-Royce would
today cost $100, get a million miles per gal-
lon, and explode once a year killing everyone
inside. —Robert Cringely

Just as we need the rear-view mirror to see what’s
around us, what just happened, and what might
pass us by, we must evaluate past technologies in
order to better and more quickly propel new top-
ics forward.

Many interesting technologies have clearly
“made it.” Figure 1 shows relevant software tech-
nologies and when they reached major maturation
points. It builds on a layout that Sam Redwine and
William Riddle introduced.1 For simplicity, I dis-
tinguish only three phases on the learning curve—
namely, foundations (when basic research and
concepts were created), limited use (when concepts
reached a few companies and users), and broad use
(when the technology reached roughly a third of its
then-addressable market).

But where to start? Journals and Internet re-
sources have changed dramatically in the past 25
years. Until the early 1980s, Datamation was prac-
titioners’ primary source on software technology.
Today, several such sources are available for the
practitioner. IEEE Software clearly has this focus.
Online resources such as Slashdot also provide in-
sight in the latest technology evolution. So, I com-
piled technologies from a lot of single data points
that I found in the many technology reviews and
wikis of the software world. For balance, I also
asked my colleagues on IEEE Software’s boards
for their insights on technologies during the past

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:15:21 UTC from IEEE Xplore. Restrictions apply.

	 November/December 2008 I E E E S o f t w a r e � 23

Software Technology

19
84

 19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08Basic technologies

Software engineering

Software process

Estimation, planning,
measurement

Security engineering

Artificial intelligence

Empirical software
engineering

Usability engineering

Biologic computing

Technology concepts and methodologies
Object-oriented

development

Unified modelling

Maturity/improvement
models

Agile development

Open source software

Product-line engineering

Software patterns

Component-based
development

Model-driven development

Parallel processing
(distributed, multicore)

Software as a service, SOA

Autonomous software
(agents, learning)

Formal development
(define, verify)

Consolidated technologies
Personal computer

and office efficiency

Unix ecosystem
(C, Unix, tools)

Graphical multitasking
OS (windows, etc.)

Standard enterprise
software (ERP, CRM)

Internet (protocols,
infrastructure)

Internet browser,
markup languages

Mobility (protocols,
infrastructure)

Java ecosystem
(Java, JVM, libraries)

3D animated graphics,
virtual & augmented reality

IPSE, CASE,
IDE, PLM tools

Eclipse ecosystem

FoundationsLAMP: Linux, Apache, MySQL, PHP/Perl scripting stack
IPSE: Integrated project support environment
PLM: Product life-cycle management
IDE: Integrated development environment
CASE: Computer-assisted software engineering

Limited use

Broad use

LAMP middleware,
search engines

Wikis

Figure 1. Software technology maturation during the past 25 years. The colors show how a specific technology
matured and gradually reached its market.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:15:21 UTC from IEEE Xplore. Restrictions apply.

24	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Software Technology

25 years. They’ve been involved in technol-
ogy long enough to assess it from a variety
of angles. Clearly, providing precise time
stamps is impossible. Just think about ob-
ject-oriented development, which has been
used extensively since the 1990s but is still
unappreciated in some industries.

Figure 1 shows three clusters of software
technologies. Basic technologies contrib-
ute to broad trends and disciplines as they
evolve, and they apply to all industries and
across software development. Most of those
we know today have been around the past
25 years. Technology concepts and meth-
odologies combine underlying techniques
that are used in many different industries
and products. Consolidated technologies
build on concepts and provide ready-to-use
technical solutions. In cases where a certain
technology should appear in two such clus-
ters, I ranked it in the more general cluster.

Major Trends
What exactly does it mean that a software
technology has “impact”? Asking different
people the same question will yield a vari-
ety of perspectives. A professor will look at
reputation and research grants and how a
technology will help achieve such targets.
A researcher will answer on the basis of
innovation potential. An industry manager
will look at profitability, image, and inno-
vative products. A software engineer will
look at usability and effectiveness to solve
a problem at hand. The typical consumer
would probably judge the technology on
the basis of how ubiquitously it weaves
into the fabric of everyday life and sup-
ports getting a job done, and kids would
look at keeping up with their peers. Not
only do the two consumer groups—ev-
eryday users of software technology—far

outnumber the other stakeholders I listed,
but they also judge software technology
and products very differently. They con-
sider how invisible, easy to use, and em-
bedded the software is—in other words,
how calmly yet effectively it supports them
in getting real things done.

Looking at Figure 1, we can see several
trends that characterize software technol-
ogy evolution during the past 25 years:

Ecosystems of researchers, suppli-
ers, customers, and users rather than
individual companies drive software
technologies.
Technologies need several trials with
different focuses before they succeed.
A particular technology is adopted in
different industries with varying delays.
Domain-specific focus lets users adjust
technologies to their specific needs.
Working with processes has replaced ad
hoc trial-and-error design and delivery.
Technologies that used to be fragmented
and isolated are now integrated.

Each of these trends left strong footprints
in engineering products and in shaping the
software industry.

Impacts on Products and Industries
Microsoft with Windows or Sun with Java
are major technology drivers as individual
companies, but their technologies succeed
because they’re created and propagated
through industries. We can’t even imagine
Windows without Intel and an entire eco-
system of suppliers and service providers.
Similarly, banking created ATMs and de-
veloped many software technologies, such
as distributed and secure transaction pro-
cessing, around them. Retailers stimulated

■

■

■

■

■

■

the development of point-of-sale terminals
and the necessary supply chain software,
including bar codes and RFID.

Some technologies have overly long
maturation periods—or never fully de-
velop. Their transition to broad usage fol-
lows S-shaped innovation patterns that
flow from initial research and trials to wide
industry usage and then repeat over and
over again.4,5 This explains why success-
ful companies can fail practically overnight
just because they didn’t introduce a certain
technology in a timely way. Software man-
agers are too often biased toward conser-
vation rather than growth. They focus on
efficiency and undervalue experimentation
and innovation. As a senior engineering vice
president said, “After being rewarded for
many years for doing things right, it might
take them a while to accept that you’ve got
a new way and they should bank their ca-
reer on it.”6

Software technologies are useful if
they’re broadly used. However, any par-
ticular technology reaches some industries
much faster than others. A good example
is the long and winding road toward use-
ful code-generation and engineering tool
suites. These tool sets started out with
technology not being ready; later, the mar-
ket wasn’t ready. AI and expert systems
faced the same fate. Today they’re almost
ubiquitous because industry realized that
an expert system is not a stand-alone tech-
nology but rather must be embedded into
products. Figure 2 shows this effect in
some detail for information security.

Security was first recognized as a key
technology in IT infrastructures during
the late ’80s when the Jerusalem virus and
Morris worm effectively brought early In-
ternet traffic to a halt. Incidents continued
throughout the ’90s as technology was ap-
plied only ad hoc and without thorough ar-
chitecture considerations. Today, after 20
years, basic security design principles are
finally being used and deployed with new
IT products. The same story is repeating
in telecommunications, as voice-over-IP
attacks show, where we’re again seeing ad
hoc patches but no real control. Industrial
automation and other domains are even
more delayed in security engineering, as in-
cidents such as the Slammer worm showed.

Domain-specific focus replaced the
one-size-fits-all approach during the ’90s.
Early CASE and distributed component

Telecommunications 1995

Complexity
growth, open

interfaces,
supplier networks

Ad hoc security,
attacks, misuse,
wrong handling,

incidents

Security as basic
design principle,

layered
approaches

19951985IT infrastructures Today

Today

Industrial automation Today

Figure 2. IT security and its industry-specific maturation points. Technologies
face different challenges and are adopted at different rates depending on the
application domain.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:15:21 UTC from IEEE Xplore. Restrictions apply.

	 November/December 2008 I E E E S o f t w a r e � 25

Software Technology

models were trapped in trying to solve too
many problems. When industry realized
that different domains have their own spe-
cific needs and speeds, it was much easier
to optimize a technology and introduce it
to a specific market. Modeling tools im-
mediately became successful when they
were adapted to specific domain needs,
such as embedded controllers or telecom-
munication protocols.

Software processes, both for engineer-
ing and for management, boosted technol-
ogy evolution from the ’80s onward. Soft-
ware system complexity grows faster than
we can control it. We had already seen
this roadblock in the ’60s, but it began to
shrink when major industries moved their
attention to the process of engineering
software. As a consequence, software de-
velopment has changed dramatically over
the past 25 years, from an often-individual
creative activity to a mostly collaborative
engineering discipline.

Integration of processes, tools, and peo-
ple speeds technology introduction, as I’ve
learned from many of the companies I work
with. Today, it’s hard to believe that 25
years ago most software and its developers
and users acted in isolation. Software inte-
gration is best visible with the Internet’s ad-
vent and huge growth, owing to the interac-
tion and integration it provides. Component
frameworks and open standards further
stimulate this trend. Successful adoption
and integration is not trivial. In order to de-
liver value to engineers, new technologies,
processes, and engineering tools need pro-
found change management.

Assess and Anticipate

640K ought to be enough for any-
body. —Bill Gates, 1981

The ability of companies to rapidly assess
new technologies and effectively integrate
and blend them into innovative processes
and products will determine the win-
ners of tomorrow. There are more than
enough good ideas, hypes, and unproven
technologies around.7 But they need pro-
found and sound assessment. So, here are
10 guidelines that will help you assess and
anticipate new software technologies:

Don’t get trapped in hype. Most soft-
ware technologies never make it. Life is

■

too short and budgets too restricted to
jump on everything you hear about at
a conference or read about in articles.
Don’t fall in love with your technol-
ogy. Continuously question how you
can do things better. Think outside the
box for appropriate solutions. Allow
your customers to replace your prod-
ucts with your newer technologies. If
you don’t, your competition will do it
for you.
Think first, then leap to a new tech-
nology. Understand concrete needs
and specify priorities that should be
addressed. Identify the relevant stake-
holders in decision making and get to
a shared vision. Keep these stakehold-
ers onboard to avoid sudden attacks or
refusals.
Consider value and set concrete, mea-
surable objectives and milestones. Tol-
erate small losses in evaluating technol-
ogies in order to win big occasionally.
Typical criteria are efficiency, cash
flow, and time to profit. Not all inno-
vations should have a precise return
on investment up front, as this will kill
creativity. However, at a given point,
they must deliver value—or disappear.
Avoid big-bang technology introduc-
tions. Don’t risk big, but risk often.
Introduce technologies in increments,
and consider how they would reach
the market through your products and
services.
Separate functionality (that is, cus-
tomer value) from software technol-
ogy. If you split the function from its
implementation, you can think about
how to deliver the function in radically
different ways.
Train engineers and managers on new
technologies, free from immediate
product usage. Software technology
knowledge has a half-life of less than
two years, so you’ll inevitably have to
look beyond what you know.
Never ever assume that your team or
your colleagues have the technologies
and skills you need. These are all from
the past. Hire fresh minds and rotate
people so that they’re pushed to throw
away complacency.
Consider change management. New
technologies impact products, pro-
cesses, and people. Prepare a road map
for how the technology will be intro-

■

■

■

■

■

■

■

■

duced. Have an exit strategy in case
those promises aren’t fulfilled.
Periodically align your product port-
folios with your technology road map.
Set milestones for new technologies
when they ought to deliver, and syn-
chronize with market needs and prod-
uct development. Dare to kill products
and technologies if they don’t deliver
according to expectations.

Naturally, not all these hints apply to
all settings. For instance, a company would
not expect its engineers to question all their
legacy technologies when products are in
maintenance mode. However, the oppo-
site is equally true. Just take a look at com-
panies such as SAP and Microsoft, which
have survived this long only because they
continuously and heavily challenge what
they’re doing.

M odern society with globalized trade,
communication, and collaboration
would have been impossible without

steady innovation of appropriate technolo-
gies and engineers that drive this evolu-
tion. Like the expert car driver, we benefit
from looking in the rear-view mirror, being
aware of the road in front of us, and being
alert to what’s around us.

Acknowledgments
Special thanks to David Blaine, John Favaro,
Robert Glass, Simon Helsen, Dieter Lederer,
Diomidis Spinellis, and Rebecca Wirfs-Brock
for sharing their thoughts.

References
	 1.	 S. Redwine and W. Riddle, “Software Tech-

nology Maturation,” Proc. 8th Int’l Conf.
Software Eng. (ICSE 85), IEEE CS Press,
1985, pp. 189–200.

	 2.	 B. Boehm, “A View of 20th and 21st Century
Software Engineering,” Proc. 28th Int’l Conf.
Software Eng. (ICSE 06), ACM Press, 2006,
pp. 12–29.

	 3.	 M. Shaw, “Prospects for an Engineering Disci-
pline of Software,” IEEE Software, vol. 7, no.
6, 1990, pp. 15−24.

	 4.	 G. Hamel, Leading the Revolution, Harvard
Business School Press, 2000.

	 5.	 C. Ebert and R. Dumke, Software Measure-
ment, Springer, 2007.

	 6.	 H. Krasner, “Bottlenecks in the Transfer of
Engineering Technology,” Proc. 28th Ann.
Hawaii Int’l Conf. Systems Sciences, IEEE CS
Press, 1995, pp. 635–641.

	 7.	 Gartner Hype Cycles, Gartner Group, 2008;
www.gartner.com/it/products/hc/hc.jsp.

Christof Ebert is managing director at Vector Consulting
Services. Contact him at christof.ebert@vector-consulting.de.

■

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:15:21 UTC from IEEE Xplore. Restrictions apply.

