
6 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

time line
The Big Bang:

25 Years
of Software
History
“Big Bang” is a popular term: chroniclers of
almost anything like to use it to describe Day
One. The particulars of the event, however, of-
ten don’t live up to the implications of the term.

But for the purpose of placing the past quar-
ter-century of software history into perspec-
tive, let’s be bold. Within a few months on
either side of IEEE Software’s January 1984
debut, what we might arguably call the modern
era of software, computing, and networking
(and perhaps even the modern global economy)
came to fruition almost at once. For instance,
in 1983, Bell Labs researcher Bjarne Stroustrup
contributed C++ to the programming lexicon,
and the Domain Name System was invented.

This time line is our admittedly incomplete
and imperfect snapshot of selected events rep-

resenting the advance of software production,
engineering, and theory—just enough to pro-
vide some context for the times recent and by-
gone. If you have any comments (omitted mile-
stones, corrections), write to us at software@
computer.org.

IEEE Software’s past editors in chief have
added a few comments to provide some context
for the time period of their terms as EIC. We’ve
also asked some of the discipline’s leading prac-
titioners what they think most profoundly infl u-
enced the science and practice of software devel-
opment, and what infl uenced the infl uencers.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

	 November/December 2008 I E E E S o f t w a r E 	 7

Software
Leaders
Cast Their
Votes
Greg Goth

T he time line we present in this issue can-
not claim to be complete. To help round
out the picture, we decided to ask some

of software’s most accomplished practitioners about
the things they thought transformed the discipline,
the industry, and the world between 1984 and to-
day. We set one ground rule—they had to propose
someone else’s work rather than their own. Here-
with, their observations.

KENT BECK
Founder of Extreme Program-
ming and author of Extreme
Programming Explained;
kentb@earthlink.net

Programmers are people, 1987. I wanted
to nominate the publication of Object-Oriented
Software Engineering: A Use-Case Driven Ap-
proach by Ivar Jacobsen, but it was published in
1982. It rocked my world by suggesting I view sys-
tems fi rst through the users’ eyes. Focusing on 1984
on, I nominate Peopleware by Tom DeMarco and
Tim Lister. The idea that programmers are people
was shocking to me. I’ve never thought about soft-
ware development the same since reading it. There
are many clever software engineering ideas that
would work wonderfully, if only programmers were
computers instead of people. Alas ….

continued on p. 9 …

1984
Fred Cohen, creator of the fi rst virus, publishes
Computer Virus—Theory and Experiments.

The US Defense Department awards Carnegie Mel-
lon University the contract to establish a Software
Engineering Institute.

Richard Stallman leaves MIT and begins the GNU
Project.

Apple unveils the fi rst Macintosh.

1985
Bjarne Stroustrup releases the fi rst commercial
implementation of C++.

Aldus develops PageMaker for the Mac, enabling
widespread desktop publishing.

Microsoft releases the fi rst Windows operating
system, signaling it was serious about computing for
the masses.

1986
Microsoft goes public.

The SCSI (Small Computer Systems Interface) speci-
fi cation is accepted as an ANSI standard.

Fred Brooks publishes No Silver Bullet.

The fi rst OOPSLA conference is held.

The Wall Street Journal article helps popularize the
concept and term “CASE” for computer-aided soft-
ware engineering.

1987
Peopleware by Tom de Marco and Timothy Lister is
published.

Larry Wall introduces Perl.

1988
Grad student Robert Tappan Morris writes code to
gauge the Internet’s size; it becomes known as the
fi rst Internet worm.

Barry Boehm publishes “A Spiral Model of Software
Development and Enhancement” in Computer.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

8 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

1989
Tim Berners-Lee writes Informa-
tion Management: A Proposal,
the foundational document of the
World Wide Web, and solicits com-
ments at CERN.

Watts Humphrey writes Managing
the Software Process.

1990
Alan Emtage develops the fi rst
Internet search engine, Archie, at
McGill University.

1991
The Object Management Group
releases Corba 1.0.

Linus Torvalds modestly announces
his new project, a free operating
system, which becomes Linux, and
initiates the “Bazaar” style of soft-
ware development.

Guido van Rossum releases
Python.

The SEI publishes version 1.0 of the
CMM for Software (SW-CMM).

Tim Berners-Lee posts the World
Wide Web on the alt.hypertext
newsgroup.

1992
The US amends the National Sci-
ence Foundation Act to allow com-
mercial use of the Internet.

1993
The Hillside Group discusses ex-
panding the concept of patterns in
software design.

The National Center for Supercom-
puting Applications, at the Univer-
sity of Illinois, releases Mosaic 1.0.

■

■

■

■

■

■

■

■

■

■

■

Refl ections
from Software’s
Past Editors
in Chief
Here, at our request, all the former editors in

chief think back to their goals during their

terms and what they thought were the most

profound events, occurrences, and advances

in software during that time. Some of their

recollections are on pp. 10–14. —ed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

BARRY BOEHM
TRW Professor of Software Engineering and
director of the Center for Systems and Software
Engineering, University of Southern California;
boehm@usc.edu

Software Capability Maturity Model, 1987. When
the SW-CMM emerged as a Software Engineering Institute tech-
nical report in 1987, most of its recommended processes and
practices had been well known ever since the 1956 and 1961
publication of key papers on the SAGE [Semi-Automatic Ground
Environment] air-defense system. No rocket science was involved;
it was simply a “just do it” checklist. But for decades, similar “just
do it” advice was largely ignored via excuses such as “we’re dif-
ferent,” “it’s too expensive,” and “we don’t have time.”

But the SW-CMM got many organizations to “just do it,” ow-
ing to strong packaging and social-engineering practices. Its
major packaging strength was to organize the key process areas
into maturity levels. One of its social-engineering strengths was to
establish a given maturity level (initially Level 2, later Level 3) as a
necessary qualifi cation for bidding on software contracts. A sec-
ond strength was in creating a funded community of practice by
requiring Level 3 organizations to fund corporate Software Engi-
neering Process Groups. Not every “just-do-it” had positive effects
(described later), but overall the SW-CMM signifi cantly reduced
the level of sloppy software engineering practice worldwide.

Architectural mismatch, 1995. One of the more seduc-
tive recent software composition images is that of the Web 2.0
mashup, in which new Web applications are created by mash-
ing together various existing Web apps. This often works when
the Web applications share compatible assumptions about the
nature of control, data, and users, but often doesn’t work when
they don’t. David Garlan highlighted this phenomenon of ar-
chitectural mismatch in a 1995 IEEE Software article, which de-
scribes how his team tried to mash together four components with
incompatible architectural assumptions, turning an expected six-
month, one-person-year project into a two-year, fi ve-person-year
disappointment.

Separation of concerns. Another seductive software
development approach involves the principle of separation of
concerns, expressed in the SW-CMM by the statement “Analy-
sis and allocation of the system requirements is not the respon-
sibility of the software engineering group but is a prerequisite for
their work.” A 2006 Systems Engineering article by Mark Maier
titled “System and Software Architecture Reconciliation” provides
good examples of the trouble that this approach can impose on
software developers. The article deals with the fundamental archi-
tectural mismatches between the physical architectures developed
by hardware systems engineers and good software architectures:
functional “part-of” relationships versus layered “served-by” re-
lationships; monolithic data organization; interface data fl ows
versus protocols; and static versus dynamic functional-physical
allocation.

GRADY BOOCH
IBM Fellow and author of Object-Oriented
Analysis and Design with Applications and the
UML Users Guide; architecture@booch.com

David Parnas’ “On the Criteria to Be Used
in Decomposing Systems into Modules,” 1972. (We
decided to accept Grady’s suggestion even though it falls outside
our ground rules. —ed.) The entire history of software engineer-
ing can be characterized by rising levels of abstraction. We see
this in our languages, our tools, our methods. Such abstraction
is essential, for it’s the primary means whereby we as humans
attack the problems of complexity. Today, the typical contempo-
rary software-intensive system is continuously evolving, distrib-
uted, concurrent—and very complex. David’s work in the early
1970s represented a state change in the way we attack complex-
ity, namely, by information hiding and abstraction. David’s work,
concurrent with work in abstract data types by Mary Shaw and
Joseph Goguen, represented a seminal contribution to the soft-
ware development method, leading the way for the now-contem-
porary generation of object-oriented languages and methods,
which are all mainstream.

MICHAEL CUSUMANO
SMR Distinguished Professor of Management &
Engineering Systems, Massachusetts Institute of
Technology, and author of The Business of Soft-
ware; cusumano@mit.edu

Microsoft’s iterative approach, 1989. In 1989, Mi-
crosoft adopted a more structured iterative approach centering
around daily builds, immediate bug fi xes, and short milestone
releases. These practices, initially in the Excel 3 project headed
by Chris Peters, are now common in software engineering around
the world. They’re especially important for accommodating late
design changes and responding better than older waterfall-ish
methods to the requirements of fast-paced markets and rapidly
evolving technologies. If Microsoft hadn’t mastered these tech-
niques, it never would have shipped Windows 3.1 in 1992 or
blockbuster graphical applications such as Offi ce in the early
1990s, and it probably would have collapsed as a company.

	 November/December 2008 I E E E S o f t w a r E 	 9

continued on p. 11 …

continued from p. 7 …

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

10	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Refl ections
1994

The “Gang of Four” releases Design
Patterns: Elements of Reusable
Object-Oriented Software.

Marc Andreessen and Jim Clark found
Netscape.

The Standish Group publishes the fi rst
edition of the controversial Chaos reports
documenting the prevalence of software
project failures.

Netscape releases its fi rst browser.

 1995
The fi rst wiki, Ward Cunningham’s Wiki-
WikiWeb, debuts.

Microsoft releases Windows 95.

The fi rst Apache server, v0.6.2, is
released.

Java is released at Sun World Conference.

Rasmus Lerdorf creates PHP/FI, the
precursor to PHP.

Yukihiro Matsumoto releases Ruby.

Netscape and Sun Microsystems
announce JavaScript, the precursor
to the ECMA Script standard and several
dialects of Web scripting languages.

1996
The W3C releases the initial draft
of XML.

Gartner introduces the term
“service-oriented architecture” (SOA).

1997
The Object Management Group adopts
UML as a standard.

Eric Raymond presents “The Cathedral
and the Bazaar” at Linux Kongress.

Gregor Kiczales and his team at
Xerox PARC introduce aspect-oriented
programming.

Eric Gamma and Kent Beck write the
basics of JUnit while fl ying over the
Atlantic.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Bruce Shriver
President of Genesis 2 and EIC 1984–1987

As the inaugural EIC of IEEE Software, I faced a
unique challenge: to provide content that would be
an interesting, timely, and relevant blend of practi-

cal and research articles—in short, to develop a differenti-
ating identity for IEEE Software. This required devoting time,
thought, and resources to numerous “infrastructural” areas.
One was to build a pool of referees who understood the
nature and quality of material that I hoped to publish (don’t
underestimate the effort it takes to get quality reviews!).
Other goals were to solicit contributions from a wide range
of practitioners and researchers; appoint a small, working
editorial board and department editors; develop author
and reviewer guidelines; and identify appropriate special-
issue topics and solicit proposals for consideration.

It’s interesting to refl ect on the highlights and challenges
in the 1984 time frame, when the inaugural issue ap-
peared. The Japanese Fifth-Generation Computer Project
had recently been announced, and, among other things,
logic programming and work in intelligent systems were be-
ing widely investigated—as were object-oriented program-
ming languages, relational-database tools and methodolo-
gies, and general-purpose distributed systems. On the other
hand, software quality, testing, and the maintenance and
evolution of large legacy systems had become signifi cant
problems, and reliable software was diffi cult to develop.

The Internet was being used more widely in industry
and academia. In 1985, I initiated a major effort to handle
submissions electronically. I believe Software was one of
the fi rst professional-society periodicals to track submis-
sions and reviewers this way. We now take the Internet for
granted in article and reviewer processing, just as we do
online access to articles, but this generally wasn’t the case
in the mid-’80s.

Ted Lewis
Executive director of the Center for Homeland Defense
and Security at the US Naval Postgraduate School
and EIC 1988−1991

My main challenge as EIC was to strike a balance
between research papers and practical top-
ics. Accordingly, we grew several specialized

columns during that time while maintaining a high level of
sophistication in the research papers. Also, IEEE Software
was a “specialty magazine” at the time, far less mainstream
than it is today. I tried to broaden its appeal, somewhat
following the model of Computer magazine but with the
spotlight on software.

continued on p. 12 …

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

TOM DEMARCO
Principal of the Atlantic
Systems Guild and coauthor
of Peopleware: Productive
Projects and Teams; tdemarco@
systemsguild.com

“Nichifi cation,” mid-1980s. At some point
in the middle of the decade, the software industry
began to fragment into niches. Prior to this time,
we’d all been largely homogenous. The holy grail
for progress had been viewed as the develop-
ment of a so-called higher-order language, one
that would be as grand a step beyond the second-
generation compiled languages as they had been
beyond assembly language. It never happened.
Once this false goal was discarded, real progress
was possible.

Apple’s Applications Store, 2008.
Apple’s concept of a brokered market for indepen-
dently developed modular applications could begin
a sea change in the way software is produced,
priced, and marketed. So far it’s just toy apps for
the iPhone and iPod, but look out when applica-
tions for desktops and laptops begin to use the
same vehicle and when open source protocols for
application suites begin to be promulgated.

ROBERT GLASS
Publisher and editor, the Soft-
ware Practitioner, and a visiting
professor at Griffi th University;
bob@robertlglass.com

Orders-of-magnitude fallacy. The thing
I remember most clearly from 25 years ago was
the belief, prevalent almost everywhere in the fi eld,
that we were about to turn a signifi cant corner
and improve software productivity by what was
called at the time “orders of magnitude.” Some-
how, many believed, we would be producing soft-
ware 10 or more times faster as the result of the
new technologies that everyone was touting. I was
even interviewed for a job in which producing that
breakthrough was to be my charter. I turned the
job down, on the grounds that neither I nor anyone
else could produce what they wanted.

I’m happy to say that, by the end of the 1980s,
we software professionals had begun to realize

	 November/December 2008 I E E E S o f t w a r E 	 11

continued on p. 13 …

1998
SGML Open changes its name to Oasis to refl ect an
expanded scope, including XML and other related
standards.

The US Naval Postgraduate School offers the world’s
fi rst doctoral program in software engineering.

The IBM Software Group begins developing what
would become the Eclipse platform.

Sergey Brin and Larry Page present Google in “The
Anatomy of a Large-Scale Hypertextual Web Search
Engine” and founded Google.

1999
Kent Beck writes fi rst book on XP, Extreme Pro-
gramming Explained.

IBM senior executives decide to fully support Linux
on the company’s servers.

Sun Microsystems releases J2EE 1.2, the fi rst public
edition of Java Platform Enterprise Edition.

Y2K fever spreads worldwide, causing many (not
all) institutions to spend money and effort to avoid
anticipated catastrophe.

2000
The Y2K bug turns out to be not such a big deal,
after all.

The fi rst international XP conference is held.

Roy Fielding discusses Web services in his doctoral
dissertation, Architectural Styles and the Design of
Network-Based Software Architectures.

The OMG starts work on model-driven architecture.
Microsoft releases C#.

Martin Fowler publishes Refactoring: Improving the
Design of Existing Code.

2001
The W3C holds the fi rst workshop on Web services.

The Agile Manifesto is released.

The fi rst agile development conference, XP Universe,
is held.

The Spybot worm emerges.

Microsoft launches the fi rst release of the .NET
framework.

2002

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

continued from p. 9 …

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

Refl ections

2003
SOAP becomes a W3C
recommendation on
exchanging data in XML
over the Internet.

2004
IBM forms the Eclipse
Foundation.

David Heinemeier
Hansson releases Ruby
on Rails.

The fi rst O’Reilly Media
Web 2.0 Conference
is held.

2005
Jesse James Garrett coins
the term Ajax to stand for
Asynchronous Javascript
and XML.

The Internet reaches one
billion users.

2006

2007
IBM Rational announces
the Jazz project to support
collaborative software
development.

2008
IEEE Software celebrates
its 25th birthday.

■

■

■

■

■

■

■

■

At the beginning of my tenure, the idea of automated design via CAD/
CAM-like tools was on the ascendancy. Today we take these tools for granted
and, in fact, have agreed on a unifi ed software design notation and toolset.
So, 20 years ago, software was maturing from a coding discipline into a de-
sign discipline. However, so much was yet to come: agile programming, Ex-
treme Programming, and rapid-development environments, for example, had
still not gotten on our radar screen.

Carl Chang
Professor and chair of the Department of Computer Science, Iowa State
University, and EIC 1991–1994

My goal was to foster technology transfer by publishing innovative
content that addressed readers from both camps—researchers who
are doers, and practitioners who are thinkers. My fi rst step involved

balancing the composition of the editorial board, choosing half from indus-
try and half from academia. In 1991, I established an Industrial Advisory
Board, a new and unprecedented group of advisors for the Computer Society.
The two boards interacted very well, and our joint annual meeting gathered
30−35 people annually. Each two-day meeting resulted in solid editorial de-
velopment plans, which signifi cantly improved magazine content and made it
more relevant to readers. We also conducted the fi rst-ever Computer Society
reader survey (perhaps fi rst in the IEEE as well) in 1991. The message we got
from more than 200 returns was loud and clear: feed the readers with content
that’s cutting-edge yet relevant to their professions.

Two of the most profound advances during my tenure involved the Capa-
bility Maturity Model (CMM) and requirements engineering.

We published two articles (point-counterpoint style) on the SEI’s CMM
in the July 1991 issue. We continued from there, regularly covering process
improvement topics and experience reports. As a result, we received many
letters from readers. Debates ranged from “Are capability evaluations just
wishful thinking?” to “There is more than one way to measure process matu-
rity.” Clearly, IEEE Software played a pivotal role in shaping the SEI’s maturity
model early on.

IEEE Software also played a central role in fostering requirements engi-
neering (RE), a relatively young area of study. When Alan Davis and I looked
for contributions in 1991, we found there weren’t enough reports in the
emerging area. We decided to launch the IEEE International Conference on
Requirements Engineering (ICRE), holding the fi rst one in April 1994. We also
decided to shrink-wrap the March 1994 issue of IEEE Software together with
the ICRE proceedings for conference attendees. This was a starting point for
fostering RE as an emerging discipline (in the software engineering sense). Af-
ter the fi fth ICRE in 2002, it merged with the IEEE International Symposium on
Requirements Engineering, thus creating the IEEE International Requirements
Engineering Conference. Finally, we had a robust community in which RE re-
searchers and practitioners could interact. This enthusiasm has continued, and
RE 2008 was just held in September in Barcelona.

continued on p. 14 …

… continued from p. 10

12	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r eAuthorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

	 November/December 2008 I E E E S o f t w a r E 	 13

that that elusive goal was in fact unreachable. No matter how
much we wished it so, nothing in the present or visible in the fu-
ture was going to produce that kind of benefi t.

And then, when the 1990s came around, people began pre-
dicting that we were going to achieve order-of-magnitude im-
provements in the quality of our software. Ah, but that’s a story
for another time!

WATTS HUMPHREY
Leader of the Capability Maturity Model, Per-
sonal Software Process, and Team Software
Process programs, Software Engineering In-
stitute, and author of Managing the Software
Process; watts@sei.cmu.edu

Coda opens a door, 1987. In scaling-up systems, control
logic has been manageable, but data has always been a prob-
lem. As the number of users of shared fi les increase linearly, their
possible interactions increase as the square. The systems recov-
ery and cleanup workload then increase exponentially. In 1987,
Mahadev Satyanarayanan and James Kistler started a long-term
effort to develop the Coda fi le system, which introduced optimistic
replication coupled with distributed cache management and user
control. By eliminating the need for resolving all potential confl icts
centrally, mobile distributed-computing networks can now be fast
and reliable, even with unreliable networks and components.

People CMM, 1995. Software people rarely agree on
much, but they do agree that human capability is most important
in producing great software. Although this is universally recog-
nized, it gets scant attention in computer science. What makes
some people good at software development and others merely
so-so? The fi rst orderly effort to address this subject was in 1995
when Bill Curtis and his SEI colleagues William Hefl ey and Sally
Miller introduced the People Capability Maturity Model. If this
framework motivates an orderly attack on the human issues in
computer science and software engineering, it could start another
software revolution.

RALPH JOHNSON
Computer science professor, University
of Illinois, and coauthor, Design Patterns:
Elements of Reusable Object-Oriented
Software; johnson@cs.uiuc.edu

Linux leads to open source’s coming of age, 1991.
The most important event in the creation of open source was
the release of Linux in 1991, not because Linux was so great (it’s
one of many Unix clones, and BSD advocates argue that it isn’t

even the best open source one) but because of the process Linus
Torvalds developed for it. This process, described well by Eric
Raymond in “The Cathedral and the Bazaar,” has made open
source an important part of the software industry. It has led to
both standardization (for operating systems) and creativity (script-
ing languages and Web development toolkits). Recently, it has
had a big impact on academic software engineering research,
because academics can now study the development process of
large, widely used software systems without signing nondisclosure
agreements.

DIOMIDIS SPINELLIS
Associate professor in the Department of Man-
agement Science and Technology and director
of the Information Systems Technology Labora-
tory, Athens University of Economics and Busi-
ness, and author of Code Quality: The Open

Source Perspective; dds@aueb.gr

Scripting languages gain signifi cant mind-share
in the late 1980s. At the time, many programmers were
already using special-purpose scripting languages, such as the
Unix shell, awk, and Rexx. However, the distribution of Perl (in
1987) and Tcl (a year later) as open source software stimulated
their widespread adoption, their porting to low-cost platforms,
and a drive for piling features onto them.

Perl’s popularity led to the development of an archive contain-
ing more than 13,000 modules today and to a cycle of software
reuse and ever more-specialized contributions. Later, the fl exibil-
ity of scripting languages fueled innovation on the fl edging Web,
with many groundbreaking applications such as Wikipedia rely-
ing on them. Indirectly, scripting languages’ success contributed
to the adoption of a bytecode interpretation portability layer, gar-
bage collection, and extensive runtime libraries for Java and C#.

GUIDO VAN ROSSUM
Creator of Python; guido@python.org

Open source gets named, 1998. Invented earlier that
year for the public release of the source code for Netscape Navi-
gator, the term was selected by vote at an event organized by
Tim O’Reilly. The leaders of many signifi cant open source projects
were present, and Eric Raymond successfully argued for using
“open source” in preference over the politically charged term
“free software.” The term’s widespread use was virtually guaran-
teed by a press conference held the evening after the vote.

continued from p. 11 …

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

14	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Alan M. Davis
Professor, College of Business, University of Colorado
at Colorado Springs, and EIC 1995–1998

My primary goal was to see how useful we could
make IEEE Software for practitioners. The idea was
to transfer as many “ripe fruits” to practice as pos-

sible: a combination of best practices (that is, get more practi-
tioners to do things the way that the most effective practitioners
did them) and best short-term research (that is, get more practi-
tioners to adopt the most practical research results).

As an industry, we don’t track practices particularly well, let
alone best practices. How successful have we (all the thousands
of people who have contributed to IEEE Software) been?

 Research is a funny thing. For it to be good, it has to be
risky. And risky means that most of it will never get to practitio-
ners’ “real world.” So, the magazine has an almost impossible
mission: to somehow sift through the plethora of “stuff” to find
the one-in-a-thousand idea that practitioners could and should
adopt.

I’d like to believe that research has changed considerably in
25 years, but I don’t think it has. Many of the research papers
in 1995 could appear as well in the latest volume—all they’d
need to do is to freshen up terminology. Most software engi-
neering research is still weak in comparison to other fields. Most
papers still just report “I invented something new” with little
demonstration of practicality. Papers that try to bridge this gap
tend to apply their “new idea” to a student project or an exem-
plar. Few researchers dare to apply their ideas to real industry
problems. The reason is simple: the problems are tough. They
don’t actually fit the assumptions researchers make so that their
research approach will work; unfortunately, this is exactly what
makes real-world software development so difficult.

 Regarding practice, I sense that the software industry has
changed its practices considerably in the past 25 years. The
length of the software development life cycle has decreased
dramatically, from a few years to a few months. I suspect that
“incremental development” results more from project manag-
ers learning from each other and their past mistakes than from
any published paper. The success of shorter life cycles also
results naturally from globalization of and growing competition
within the software industry and from the ubiquity of software.

There’s a growing bimodal distribution of power and con-
trol in the software industry. We see the widespread adoption
of techniques that empower software developers to make more
decisions, including (remarkably!) business decisions; we also
see a tendency to have fewer CIOs in industry. On the other
hand, many implementers of so-called process improvement
try to centralize control and authority.

Software development is also becoming specialized. Twenty-
five years ago, most companies (regardless of industry) hired

their own IT personnel. Now, the trend appears to be the op-
posite: most nonsoftware companies no longer see IT as a core
competency; instead, they outsource it as part of their infrastruc-
ture or overhead.

Finally, seemingly more attention is being given to measur-
ing process than measuring progress. I can’t explain this; it
seems counter-evolutionary to me. I hope it’s just a fad.

Steve McConnell
CEO and chief software engineer, Construx Software,
and EIC 1999–2002

My overriding goal was to fulfill the magazine’s mis-
sion: to “build the community of leading software
practitioners.” New ideas in software come from

both practice and academia, so I tried to encourage contribu-
tions from practically oriented academics and from theoreti-
cally oriented practitioners.

The years I was EIC were exciting times in the software world.
The dot-com bubble reached its maximum and then burst. The
Internet evolved from being a place for toy-sized applications to
become a serious focus for major software development initia-
tives. Open source became a major focus. Y2K came and went.
Agile programming got its start. It was a very busy time!

Warren Harrison
Professor of computer science, Oregon State University,
and EIC 2003–2006

When I became EIC, I was stunned to learn that 44
percent of the readers identified themselves as cor-
porate or technical management, and more than

22 percent were “senior developers,” likely involved in leading
small groups of programmers. In essence, that was 66 percent
in management. Fearing that IEEE Software was on its way to
becoming IEEE Software Management, I was determined to
move the magazine back toward the center and address the
concerns of the industry’s everyday foot soldiers (a move that
my predecessor, Steve McConnell, had already begun). I note
with pleasure that only 46 percent of the magazine’s readers
now identify themselves as management.

No doubt the most profound change during my tenure as
EIC was the legitimization of agile methods. The Agile Mani-
festo was written in 2001, and most of the agile methods pop
ular at that time were developed in the late 1990s. When I
took over the magazine in January 2003, agile methods were
viewed as revolutionary techniques developed by mavericks
who were tweaking the nose of the well-entrenched waterfall
life cycle. By the time I stepped down in December 2006, agile
methods were well entrenched in the industry and had gained
widespread acceptance.

Reflections
… continued from p. 12

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:04:23 UTC from IEEE Xplore. Restrictions apply.

