engineers/scientists working the field of polymer science who need a good book on fundamentals.

Thermoelectrics Handbook– Macro to Nano

D. M. Rowe CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

Phone: (800)272-7737 Fax: (800)374-3401

http://www.taylorandfrancis.com

ISBN 0-8493-2264-2

\$149.95/£85.00 (Hardcover), 2006

Conventional metallic thermocouples are thermoelectric elements made from metal or metal alloys. They typically generate small, typically tens of mV/degree temperature difference by the Seebeck effect. They also can generate small amounts of electrical power when connected to a resistive load. This book is not about conventional thermocouples but

rather thermocouples made from modern semiconductors whose material properties and geometry have been tailored specifically to meet the intended application and possess Seebeck coefficients of hundreds of mV/degree. The shape and size of the semiconductor depends on the application. In larger devices for heat generation or cooling applications, the semiconductors can consist of two ingot-shaped pellets with millimeter size dimensions or in a flat, wafer-shaped geometry. They also can be made as thin films or in nanostructures.

This book covers the general principles and theory, material preparation and measurements of thermoelectric materials, thermoelements, thermoelectric systems, and applications. The book starts with the basic concepts for thermocouples and applies this to semiconducting materials on a macro scale. Each chapter progresses from macroscale to mirco/nano scale topics. There is a tremendous wealth of materials information on a wide range of thermoelectric materials and geometry presented in graphical form. In addition to

the thermoelectric coefficient (Seebeck coefficient) of the material, there also is electrical resistivity, thermal diffusivity, specific heat, and thermal conductivity. There are also some graphs depicting the dependence on the magnetic field of the magneto-thermo power of various doped semiconductors. There are many sections on material preparation, and measurement technique with sufficient technical depth to replicate the setups.

Because many of the most recent advances have been directed toward nanoscale devices and materials, the majority of the book covers nanobase materials and applications, including thin-film structures. Some examples include carbon nanotubes, quantum dots, thermal conductivity of nanostructures, and IV-VI and V-VI based nanostructures are presented.

Material scientists, engineers, academia, students working in the field of thermoelectric materials would find this book to be a wealth of information and a very convenient single source for material properties.

VLF IT!

▶ NEW! Automatic Data Logger With VLF Units – Available NOW!

Our VLF products have finally brought a portable and affordable method of AC testing for cables, generators, and other high capacitance loads. Cables and generators are designed for and operate under AC stress. They should be tested with AC voltage.

Control your outages while improving power delivery reliability.

Power Cables

- Hipot after installation or repair
- Test critical feeders
- · Test cables of critical customers
- · Use our Tan Delta for diagnostics
- · Best means of burning faults

Generators

- · Interim and final factory testing
- On-site maintenance testing
- Post repair/rewind testing

Meets IEEE-400.2, IEEE-433, DIN VDE 0276/620, (Cenelec HD620), IEEE 400-2001

Control Panel Layout

For more information on VLF, download our VLF FAQ paper from our website.

VLF testing offers the surest way to expose defects in cables, splices, bushings and other high capacitance loads that require AC testing.

Fast, easy, and inexpensive.

31 Rt. 7A • P.O. Box 408 • Copake, NY 12516 • (518) 329-3275 • Fax: (518) 329-3271

E-Mail: sales@hvinc.com • Web: www.hvinc.com