
IEEE TRANSACTIONS ON GEOSCIENCE ELECTRONICS, VOL. GE-6, NO. 2, MAY 1968

Adaptive Combining of Wideband Array Data

for Optimal Reception

RICHARD T. LACOSS

Abstract-A study of several closely related adaptive processors
for array data has been completed. Processors were designed to con-
verge approximately to a minimum-variance linear unbiased esti-
mator of an unknown signal common to all elements of the array.
Any spatial structure of the background noise is used by such a sys-
tem to enhance the output signal-to-noise ratio. Possible areas of
application include sonar, underwater communication, space com-
munication, and seismology.

The basic linear adaptive processor has variable coefficients ad-
justed by a rule similar to that for the minimization by the projection
gradient method of a quadratic form which is subject to a linear
constraint. Modifications of the basic adjustment procedure have
been introduced to reduce system sensitivity to data anomalies, de-
crease computational requirements, and decrease memory require-
ments.

Experimental evaluation of the adaptive array processors has
been completed using data from an actual array of seismometers.
Both transient recovery from initially poor processor coefficients and
steady-state operation have been found quite satisfactory.

I. INTRODUCTION

A LARGE APERTURE Seismic Array (LASA) has
been in operation in the United States since
mid-1965. Fig. 1 shows the geometrical arrange-

ment of the array. There are 525 short-period vertical
seismometers located in 21 clusters of 25 instruments.
Smaller arrays of seismometers have been in operation
in other nations as well as in the United States for a
number of years.['] Of course, the concept of using an
array to increase signal-to-noise ratio is well known. For
example, it has supplied the motivation for the installa-
tion of hydrophone arrays and arrays of electromagnetic
antennas, as well as many other kinds of arrays.
Although arrays of all kinds have been designed and

continue to be designed under the assumption that un-
wanted noise is spatially disorganized, it has become
clear that this basic assumption is often untenable. For
example, biological or man-made noise can be highly
directional as seen by a hydrophone array. A radio
telescope may be subjected to highly directional noise
from an active region of the sky or even from the sun.
Seismic arrays will see directional noise produced by
weatlher conditions, local cultural activity, and other
sources.

Data from an array can be processed to receive signals
and to optimally reject directional noise.21',31 Fig. 2
shows the structure of one simple processor which can
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be used to process wideband data from a seismic array.
Appropriate delays are introduced to line up the desired
signal on each seismogram. The weights applied to each
channel are chosen to use the directional structure of the
noise to minimize noise power in the final output. Under
stationary noise conditions, lengthy observations of
noise can be made and, with the expenditure of consid-
erable computational effort, best values for weights can
be determined. Such a procedure is costly, off-line, and
may not work if the noise structure is time variable.
These considerations led to the adaptive methods for
processing seismic data which are described in the main
sections of this paper.
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The initial work with active adaptive arrays was not
concerned primarily with directional noise but with the
distortion of the wavefronts of the desired signal. [4] This
kind of adaptive system usually requires that test signals
be used to learn the shape of the wavefront. Large seis-
mic arrays also require corrections for nonplanar wave-
fronts. The appropriate corrections, when required, are
normally obtained from observations of many different
earthquakes.['] Other adaptive methods for adjusting
delays before summing seismic signals are under con-
sideration.[6] The 7.0-km subarrays of LASA are suffi-
ciently small so that signals from earthquakes can be
treated as plane waves. Since we have only attempted
to combine signals from a single subarray, the adaptive
adjustment of delays has not been considered.
Array processors which adapt to noise structure rather

than to signal structure are not verv common. The filter-
ing methods of Capon et al. [2] are adaptive insofar as the
noise structure is estimated shortly before filters are to
be used. However, the methods are quite impractical for
most on-line operations. This is especially true of a time
variable situation where filters must be updated very
often. Some adaptive array processors which are more
similar to those developed in the sequel have been de-
scribed in the literature. Shor[7] has proposed a gradient
adaptive method for narrowband hydrophone arrays
when the autocorrelation function of signals is known.
Adams[8] has indicated a possible on-line adaptive struc-
ture for a ground station receiving signals from a deep-
space probe.
The contents of the present paper are arranged as

follows. In Section II, the design of a processor is mathe-
matically formalized. Section III describes a linear adap-
tive method for filter design which is related tc stochastic
approximation methods and is computationally feasible
for on-line operation. These evolved methods reduced
sensitivity to anomalous noise bursts and reduced mem-
ory requirements. The final algorithm is appropriate for
a fast special-purpose device. Section VI containing
experimental results using actual seismic data, has been
included in order to verify that the adaptive design
methods do operate as asserted. Section VII contains the
summary, discussion, and suggestions for future investi-
gation.

II. STOCHASTIc APPROXIMATION DESIGN OF AN
OPTIMAL PROCESSOR FOR STATIONARY NOISE

Consider a time variable vector whose components at
time t are the outputs of the delay lines indicated in
Fig. 2. The delays are assumed correct to line up a
desired signal s(t). The observed vector is then

E{ nk(t)nl(t + r) } = Rkl(r).

The output waveform from the processor is
K

Y(t) = E WkXk(t)
k=l

K K

= E Wk S(t) + j Wknkf(t).
-k=l - k=l

(2)

(3)

Thus, if y(t) is to be an unbiased estimator of s(t), the
Wk must satisfy

K

Ea Wk = 1.
k=i

(4)

The optimum choice of the Wk is that which minimizes
the variance of y(t),

K

var y(t) = E WARkl(O)WI.
k,1=1

(5)

The use of Lagrange multipliers immediately gives the
optimum Wk by solving

RR0) 1 w 0

where R(0) is a KXK matrix with elements R,kl(0),
w = col (w1, * *, wk)
O=col(0,*.. ,0)
I = col (1 ,1

and a superscript T indicates transpose. The Lagrange
multiplier is X. [2

In order to derive a practical iterative method to opti-
mize the array processor, it is more fruitful to consider a
gradient projection method of solving for optimum
weights. If w satisfies (4) and is optimum, then the
gradient of var {y(t) } must be collinear with 1. That is,
the projection of the gradient into the K -1 dimensional
subspace defined by (4) must be zero. Thus,

VR(0)w = 0 (6)
and (4) define the optimum weights where R(0)w is the
gradient of (5) with respect to w and

1
6= I - - 1T

K (7)

is the projection operator.
Let w(k) be a sequence of weight vectors given by

Xk(t) = s(t) + nk(t), (1)

where K is the dimension of the observation vector, and
the nk(t) are noise waveforms as seen at the output of
the delay lines. Assume that the nk(t) are zero mean and
wide-sense stationary with correlatiQn functions

w(k + 1) = w(k) - a(k)YR(O)w(k) (8)

where a(k) is smaller than one divided by the largest
eigenvalue of R(O),

N

lim E a(k) = oo (9)
N-bo k=i
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and w(0) satisfies (4). It is demonstrated in Appendix
I that

lim w(k) = w*
t -xo

where w* is the optimum weight vector. Weaker con-
straints upon a(k) are possible but complicate the issue
without adding significantly.

It is a small step from (8) to a variety of stochastic
approximationM91 methods which can be used to solve
the stationary problem described in this section. Sup-
pose that R(0) is not known a priori, but that a sequence
of estimates R(k) of R(0) is available. That suggests
using

w(k + 1) = w(k) - a(k)1R®(k)w(k) (10)

in order to try to converge to w*. One possibility is to
pick R(k) which converge to R(0) as k gets large. This
tends to be computationally wasteful and has not been
pursued. We have considered

I L

R(k) =-E x(kL + j)xT(kL +i) (11)
L j=1

where L is a given integer and, for convenience, time is
assumed to take on only integer values. Changes in the
weighting vector take place after every L observations of
data,. This is one of many choices which could be made.

For seismic data, the signal is an earthquake so that
R(k) is usually computed with no signal present. The
expected value of R(k) is then R(0). In the presence of
signal, R"(k) has a different average value but, due to the
projection operator, the R(k) can still be used effec-
tively. One way to see this is to note that in the presence
of signal

E{ R(k)} - R(0) + o82(k)11T
where o,2(k) is the rms value of signal over the set of L
points used to compute R(k). Now consider

E(VR(k) = PR(O) + o82(k)P1 JT

Substituting (7) for (P in the second term on the right
gives

o82(k)P1 1T = o.2(k) { 1 1T - 1 iT}.

Thus,

E(PR(k) = PR(0).

On the average, the projected gradient is correct even

when signals are present. Only the situation with no

signal present is considered in most of what follows.
By introducing a few additional censtraints upon the

a(k) and R(ir), it is possible to show that w(k) given by
(10) converges in mean square to w*. If

E a2(k) < oo
k=l

and R(ir) goes to zero sufficiently quickly with ITr , then
convergence is assured. A proof is outlined in Appendix
II for the case R(-r) = 0, if r 0. Weaker bounds on R (-),
which admit most situations of real interest, require sig-
nificantly more sophisticated treatment but can be
handled by methods similar to those used by Sakrison. [10]

III. LINEAR ITERATIVE DESIGN WITH CONSTANT GAIN

Although the iterations described in Section II are
interesting, they do not seem particularly relevant for
continuing on-line operation of an adaptive array
processor. For that purpose, consider a rule given by
(10) and (11), but for which a(k) =a is a positive con-
stant. It is demonstrated in Appendix III that the
asymptotic mean-square error between w(k) and the
optimum weight is bounded by aCj1(1 -aC2) where Ci
and C2 are positive constants. This verifies the intuitive
notion that a linear iterative process with constant gain
a can be made satisfactory by using a sufficiently small
gain.
The linear iteration rule should not be applied by first

computing R(k) from (11) and then using (10). Using
(3) as well as (10) and (11), the iteration law can be
written as

w(k + 1)

= w(k) -- [Z x(kL + j)y(kL + j)].
L j=j

(12)

The scalar y(kL+j) requires K MULTIPLYS and ADDS
(MADS) to compute. If optimum processing is being done,
this is the minimum of computation for each output
point, even when the optimum weights are known. The
vector

L

Z x(kL + j)y(kL + j)
j=l

is thus formed by 2KXL MADs. This is just double the
MADS used to apply optimum weights to L samples of
data. Suppose that (10) and (11) had been used directly
to find w(k+ 1). The same vector LR(k)w(k) would then
require K2X(L+1) MADS to compute. If K>2, the
computational advantage of using (12) is clear.

It is of interest to compare the computation required
by (12) for k=0, 1, N-1 with that required when
directly solving (5) with R(0) replaced by

1 N-i

R?(0) =- E R-(k).
N k=O

The application of (12) requires 2KL-+2K MADS per
iteration or 2NK(L-+-1) MADS total. Computation of
R(O) will require NLK2 MADS. We shall neglect any
additional computations required to solve (5) using
R(O) in place of R(0). The ratio of the number of MADS
is thus 2(1+1/L)/K.
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Suppose that experience shows that N is a good value
to use in computing R(0) in the sense that averaging
fewer terms to get R(0) results in unsatisfactory values
of w computed from (5). If the iterative rule converges
in less than about KN/2 steps, then the iterative scheme
will be at least as efficient as the direct method. Experi-
ments with modifications of (12) indicate that converg-
ence can be obtained in about 3N steps or less for the
seismic data which have been used. Since K=24 was
used, the linear iterative mode would require about 0.25
of the computation required by the direct solution. In
fact, one of the modified methods considered requires
fewer computations than the linear mode and can be
implemented with special-purpose equipment. Thus,
this estimate of time saving is somewhat pessimistic.
Of course, in addition to saving time, the iterative
methods are well adapted to on-line operation and, as is
discussed in Section V, can reduce computer memory
requirements.

IV. CLIPPED GRADIENT ITERATIVE METHOD
One shortcoming of the linear constant gain technique

described in Section III is its sensitivity to large atypical
noise bursts. A variety of tests can be applied to check
for significantly anomalous data and decisions made
concerning their disposition. If the norm of the vector

I L

g(k) =- x(kL + j)y(kL + j)
L j=1

is unusually large, it might be discarded and no adjust-
ment made to the weights. An alternative which has
been implemented is to normalize A(k) for each k. The
resulting recursion relation for w(k) is

a;
w(k + 1) = w(k) - Gll(k). (13)

Note that it is the estimated gradient vector 4(k) which
is infinitely clipped, not the projection of A(k). Thus, if
L is large and w(k) = w*, there will tend to be no correc-
tion because of the projection operator. If w(k) is quite
different from w*, the g(k) will no longer tend to be in
the null space of 6 and the norm of the correction vector
can be as large as a, but no larger.
Although it is intuitively clear, for large L and small

a, that for large k the deviation between w(k) and w*
will be small, no explicit demonstrations have been de-
veloped. However, the assertion has been verified experi-
mentally. The results, presented in Section VI of this
paper, indicated that satisfactory convergence could
be obtained. The particular choices of a and M gave
fast convergence and good stability.

V. ONE-BIT CORRELATION ITERATIVE METHOD

More stable operation under a variety of noise condi-
tions was obtained using the normalized gradient algo-
rithm than by using the linear gradient. However, the
former required additional computations to normalize

the gradient estimates before each adjustment of
weights. The algorithm given below was evolved in
order to reduce computational requirements without
sacrificing the ability to operate in the presence of
anomalous transient noise conditions. Much of this
algorithm is well suited for implementation by a special-
purpose machine, and requires significantly less com-
puter memory than the preceding algorithms.
Assume that ai2 is known and is the expected squared

power in the ith channel of the array in the absence of
signal. Let o-2 denote the average of the ai2. Let h(k)
be a vector defined by

1 L

h1(k) = - sgn [xi(kL + j)y(kL + j)],
L j=l (14)

where sgn ( ) is + 1, depending upon the sign of its
argument. Finally, define g(k) by

(15)gi(k) = - sin (hi(k) .

The adjustment rule for weights which is to be consid-
ered can now be written as

w(k + 1) = w(k) - a(P(k). (16)

This modification of the linear gradient iterative
scheme can be understood as follows. Define a vector
G by

Gi = -sin { E[sgn (xi(kL)y(kL))]}

i = 1, 2, . . ., K

and consider

w(k + 1) = w(k) - a;PG.

(17)

(18)

If x,(kL) and y(kL) are Gaussian data with zero mean,
thenill]

sin { E[sgn (xi(kL)y(kL)]}

E[xi(kL)y(kL) ]
a/E[xi2(kL) ]E[y2(kL)]

(19)

It follows that

1
G = _ _ R(O) w(k).

oGVE[y2(kL)]

Equation (18) can be rewritten as

a
w(k + 1) = w(k) - ffvREy2(kL) w(k).

(20)

(21)

Equation (21) is essentially the same as (8). It is clear
then that the w(k) given by (18) would converge to the
optimum w*. The iteration defined by (14) and (15) is
the same as (18), except that the estimate hi(k) is used
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in place of E sgn [x%(kL)] sgn y(k)] }. It is clear that
for large L this should be a successful method of finding
w*. No error analysis has been completed, but experi-
mental data indicate success for very modest L.

This adaptive scheme which uses one-bit correlation
can be computationally more efficient than the infinitely
clipped gradient method of Section IV. Calculation of
Lh(k) requires LXK MADs. Those are simply operations
required to obtain a processed art ay output for L values
of time. The remaining logic and counting operations
required to obtain Lh(k) should add, at worst, only a
small amount to computation time. In fact, they can
be trivially accomplished in parallel with forming y(k),
the array output at time k. Obtaining sin [(7r/2)hi(k)]
can be done by a simple table look-up. Forming wi(k+ 1)
from wi(k) and sin [(r/2)hi(k) ] requires a MULTIPLY and
ADD. This amounts to (L+1)K MADS per iteration.

If the cri must be updated slowly or periodically, that
would add more operations. The upper bound on addi-
tional operations is about L XK MADs required to esti-
mate the aj or update their estimates with L new obser-
vations. If such continuous updating of estimates of oa
is required, the algorithm described in this section is
comparable in computational requirements to that of
Section IV. If ai changes very slowly, as would be the
case if variations were due to equipment variations for
different sensors, or several output traces are to be
formed so the values of o-i could be used for several out-
puts, then the number of operations for estimating the
o-i can be greatly reduced. For seismic data, the ratios
aio/-j, which are really what must be constant, tend to
be stable for long times so that the estimation of the
oi would require only a small amount of computation in
an adaptive system.
As long as the number of different optimum beams to

be formed is considerably less than the total number of
sensors, the use of one-bit correlation introduces an-
other possible saving. The memory required in a general
or special-purpose digital device can be reduced by an
order of magnitude by the use of one-bit correlation.
Up to this point, it has been assumed that signals are
lined up in time as indicated by (1). Suppose the delay
lines indicated in Fig. 2 are all removed so that (1) must
be replaced by

Xk(t) = s(t -dk) + nk(t), k = 1, * K

where the dk are constants indicating the delay between
some central element of the array and the kth element.
In this case,

K

y(t) = E WkXk(t + dk)
k=l

is the output of the array processor designed to pass s(t).
Let

T- 1 = max di- min di

and
K

T2 - 1 =-E [dk- min d].
k=l i

The sum box method[121 described in Appendix IV for
computing y(t) will require only T1 words of memory
for each beam formed. This is much less than the T2
required, independent of the number of beams, if the Xk
are passed through delay lines to line up signals s(t).
However, except for the one-bit correlation iterative
method, the methods we have considered require the
buffer of length T2 in order to obtain w(k+1) from w(k)
and the data. If B is the length in bits of a computer
word, then storage locations can be reduced from T2 to
T1+(T2/B) by use of one-bit correlation, which requires
that only the sign bit of data be passed through a delay
line, in conjunction with the sum box method.

VI. EXPERIMENTAL RESULTS

Background seismic noise from a collection of 24
seismometers spread over a 7-km aperture in Montana
has been used to test the iteration rules previously
described. A PDP-7 computer was used to make data
tapes compatible with an IBM 360/65 svstem which
was used as the principal computational tool in the
experiments. Early experience with the linear gradient
method of adjustment indicated that, for a given rate of
convergence, the method was too sensitive to atypical
seismic noise bursts, bit dropouts in digital data, and a
variety of equipment failures. Only results from the
hard-limited gradient and one-bit correlation methods
have been included here. The noise was a 900-second
length of noise sampled every 0.05 second. The total
bandwidth of the data was from about 0.1 Hz to 5.0 Hz,
although most of the noise was in the portion below 1.0
Hz. A detailed discussion of optimum processing of such
short-period seismic data can be found in a report by
Capon et al.131 Only data relating specifically to the
operation of adaptive processors are included in the
present paper.

Figs. 3 and 4 show the recovery of the iterative schemes
from an initial condition in which each of the K=24
seismometers has a weight 1/K. Results are shown for a
variety of gain constants, c =a. Adjustments of weights
were made every L =25 samples. The power plotted at

any time t is the average which would be observed over
the entire 900 seconds if the weights were set constant
over that interval at the value which they had at time t.
The optimum value indicated is that which results from
picking constant weights to minimize the mean-square
array output over the 900-second interval. The mean-
square value over 900 seconds which would have been
obtained with weights 1/K, is 6541 digital levels
squared. The mean-square value of the 24 individual
channels was 10 895 digital levels squared during the 900
seconds.

Figs. 5 and 6 show the observed behavior of iterative
array processors during the last 75 of 900 seconds of a
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data interval used for experimentation. Recovery from
initial 1/K weights is shown as a function of c. As ex-

pected, the mean-square output power decreases as c

decreases. This holds as long as c is large enough so that
the adaptive processor has reached steady state. Drift
away from initially optimum weights is also shown in
Figs. 5 and 6. For large values of c, it is clear that steady
state has been reached since the points are close to those
resulting from recovery from 1/K weights.
The results shown in Figs. 3 through 6 are typical of

those obtained using other samples of data. The choice
of gain constants c has not been sensitive to the particu-
lar sample of noise used. Note that a change in the gen-
eral noise level cannot affect the adjustment of weights.

It is generally recognized that the percentage devia-
ticn of a quadratic form from its minimum value may
be very different from the deviation of the vector in-
volved from that which minimizes the quadratic form.
This has been experimentally observed during the itera-
tive array design experiments. For example, while using
one-bit correlation iterations, an array output which was

only 2.5 percent larger than the optimum was observed
while the error in the weights was 41 percent. In the
case of clipped gradient operation, 1.5 percent and 42
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Fig. 6. Behavior of clipped gradient adaptive array
processor after 900 seconds, K= 24, L = 25

percent were observed. This simply underlines the fact
that, for optimization problems, it is the quantity mini-
mized, not the parameters manipulated, which is of
prime importance.

VII. COMMENTS
Experimental results using seismic data have verified

that practical adaptive array processors can perform
nearly as well as optimum processors in a stationary
environment. In addition, the adaptive processors can

compensate for nonstationary trends in the noise
statistics. It should be possible to adapt similar iterative
processors to sonar and electromagnetic arrays which
operate in a directional noise environment. It might be
possible to minimize reverberation as well as ambient
noise in systems where reverberation is significant. Ex-
tensive modifications might be required for any opera-
tional application of adaptive array processors.

Computational and memory requirements of the adap-
tive processors have been emphasized. Their efficiency
in these respects would be of great importance in any
operational system embodying the basic adaptive ideas.
The fact that adaptive operators can also be robust
would also be significant.
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In addition to possible applications, the adaptive
processors suggest more theoretical work is needed. In a
stationary noise field, the asymptotic deviation of the
average array output power from the optimum mini-
mum value could further be investigated theoretically.
In a nonstationary field, the optimum constant values
of gain constants would be of interest. These are, of
course, the same general kinds of problems which are
relevant to most adaptive systems.

APPENDIX I

Although the convergence of w(k) to w* given by (8)
is intuitively clear, it requires some effort to explicitly
demonstrate convergence. It is convenient for this pur-

pose to introduce a change in coordinate system. Let ,6
be an orthonormal matrix which transforms 1/K 1 into
col (0, , 0, V/1/K). If w satisfies (4), then define

76w = col[p 1 * PK-17 P/] = P.

Clearly any W=TP satisfies (4) for any p. Equation
(6) can be written as

= 0. (22)

L/1/KI
Since (P projects into a space orthogonal to the last
basis vector for the ne-w coordinate system, the Kth
element in (22) is identically zero independent ef p.

Define a matrix M by

Mkl = [1PR(0)4T]kk, 1 < k1 < K -1

and a vector v by

Vk / - [+YR(0)4T]kK1 1 < k < K - 1.

Equation (22) can then be written

Mp + v = 0.

The solution p* of this equation can clearly be used to

obtain w*. The matrix M is nonsingular as long as R(0)
is nonsingular.
A little algebra shows that (8) and the constraints on

w(0) are equivalent to

p(k + 1) = p(k) - a(k)[Mp(k) + v] (23)

with no constraints on p(O). It remains to show that

lim p(k) = p*.

From (23) and the definition of p* one obtains

E(k + 1) = E(k) - a(k)ME(k)

where

£(k) = p(k) - p*.

Let, and X be the minimum and maximum eigenvalues
of Ml. The relation of M to R(0) forces the relationships

5 < 1 - a(k)X < 1 -a(k)
where 5 is some positive number. It should be clear that
c(k) converges to zero if

e(k + 1) = [1 - a(k)A]e(k) (24)

converges to zero where
K

e(O) = ,[i2(o)]1/2 = |(0).
k=1

Since
k

e(k + 1) = f [1 - a(k)4]e(O)
i=O

it is sufficient to show that

II [1 - a(k)A]
i=O

converges to zero. This is done using the relationship

log [1 - a(k),] < -a(k)

which is valid if a(k), is positive and less than 1. Tlhus,
k k

log l: [1 - a(k),] < - E a(k)
io i=o

The sum of the a(k) converges to +-- which completes
the proof that e(k) converges tc zero.

APPENDIX I I

Continuing in the coordinate system used in Ap-
pendix I, the stochastic approximation method specified
by (10) and (11) is equivalent to

p(k + 1) = p(k) - a(k)[AM(k)p(k) +v-(k)] (25)
where M(k) and v((k) are obtained from R(k) in the
same way as M and v were obtained from R(0). One
can express M21(k) and v(k) as

M(k) = M + M(k)
v(k) = v + v(k)

where M(k) and v(k) are zero mean, but not independ-
ent. However, if R(r) =0 for rO0, then M(k) and v(k)
are independent of M(l) and v(l) for k#l. Equation (25)
can now be written as

p(k + 1) = p(k) - a(k) [Mp(k) + v]
- a(k)[M(k)p(k) + v(k)].

If e (k) = p(k) - p* as in Appendix I, then

E(kA+ 1) = [I-a(k)M] £(k)-a(k) [M(k)p(k) +Av(k)]. (26)
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LACOSS: ADAPTIVE COMBINING OF ARRAY DATA

Let E denote statistical expectation. Then

E£T(k + 1)E(k + 1) = El E(k + 1)112
= Ell [I- a(k)MM]E(k)l 2

+ a2(k)EIIM(k)p(k) + v(k)112.
The expectation of the cross term does not appear. It is
zero, since its expectation conditioned on p(k) is zero.
Substitute for p(k) to get

EllP(k + 1)112 = E|I[I - a(k)M]E(k) 12

+ a2(k)EflM(k)E(k) + M(k)p* + v(k)112.
Assume all elements of m(k), v(k), and p* are bounded.
Thus

El e£(k + 1)a2 . (1-c(k),4)2El1c(k) 12
+ a2(k) [BElEI£(k)112 + B2]

where B1 and B2 are finite bounds and , is the minimum
eigenvalue of M. Rearranging terms gives

Ell E(k + 1)112 < (1 - 2a(k)yt
+ a2(k)[u2 + Bi])El (k)112 + a2(k)B2. (27)

In the same way that it has been shown in Appendix I
that

H [1 - a(k),]
i=O

converges to zero, it can be shown that
k

rI (1 - 2a(k),u + a2(k)[D2 + B1])
i=O

converges to zero. The proof that El!e(k)112 converges to
zero can now be completed in exactly the same way that
Dvoretzkyl9] has treated a special case in his work.

APPENDIX I I I

Consider the iteration given by (25) of Appendix II.
Suppose that a(k) is set equal to a constant a. Define a
scalar V2(k) by

V2(0) = ElI £0 11
and

V2(k + 1) = (1 - 2a,u + a2[M2 + Bi])V2(k) + a2B2.

Notation is the same as in Appendix II. Assume that a
is sufficiently small so that (1-2au+a2[x2+B1]) <0.
Using induction, it is clear from (27) that V2(k)
>Ell,(k)ll2. V2(k) is a bound on ElI,(k)l12. The difference
equation generating V2(k) is stable with a stationary
point given by

0 = (-2a, + a2[u2 + B3])V2(oo) + a2B2.

Thus

_ a[B2/2m] >E(o
V2(oo)- [I + Bi] >E- ( 2

1-a
2,u

This is a bound on steady-state mean-square deviation
of weights from optimum values.

It is of some interest that

lim EE(k) = 0.

To see this, it is necessary only to take the expectation
of (26) and require that Er(oo +1) =E,(oo). That gives

aMEE(oo) = 0

which implies £_(°o) =0. This and the preceding result
depend upon independent estimates of R(O).

APPENDIX IV
The sum box method of array processing is most easily

explained by a simple example. Suppose three seis-
mometer outputs xl, x2, and X3 are to be combined after
delays of 0, 1, and 3 sample points, respectively. Let
bi, * , b4 be words of memory which have the contents

b6(t) = wlxl(t) + w2x2(t - 1) + w3x3(t- 3)
b2(t) = W2X2(t)+W3X3(t -2)
b3(t) = w3x3(t- 1)
N4(t) = w3x3(t)

at time t. Note that b1(t) =y(t), the weighted delayed
sum of the signals. At time t+1, the memory can be
modified so that

b6(t + 1) = w3x3(t + 1)

b2(t + 1) = b2(t) + wixi(t + 1)

b3(t + 1) = b3(t) + W2X2(t + 1)

b4(t + 1) = 64(t).

Three MULTIPLYs and ADDS have been done and b2(t+1)
=y(t+1). The process can be continued to get b3(t+2)
=y(t+2). The memory contains

b6(t + 2) = b6(t + 1)
b2(t + 2) = w3x3(t + 2)
b3(t + 2) = b3(t + 1) + w1x1(t + 2)
b4(t + 2) = b4(t + 1) + W2X2(t + 2)

at time t+2. Continuing in a similar manner generates
array outputs efficiently with the use of only a few mem-
ory locations.
The sum box processing method can be generalized to

allow for convolutional filtering of each of the input
traces before summing. The technique is exactly the
same as that described previously by example. The num-
ber of memory boxes required is increased by the num-
ber of filter points in the convolutional filters.
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An Iterative Technique for Determining

Inverse Filters

E. ORAN BRIGHAM, HAROLD W. SMITH, SENIOR MEMBER, IEEE, FRANCIS X. BOSTICK, JR.
MEMBER, IEEE, AND WILLIAM C. DUESTERHOEFT, JR., SENIOR MEMBER, IEEE

Abstract-It is the objective of much geophysical research to
increase the resolution of signals recorded on a sluggish measuring
device. The approach genreally followed is to use inverse digital
filters. This treatment presents an iterative technique for obtaining
"stable inverse digital filters." A stable inverse filter is one whose
impulse response decays to zero with increasing time.

An optimum inverse filter R(co) is defined here as R(w) = 1/H(w),
where H(w) =0; R(w) =0, where H(co) =0. It is shown that one can
converge to this solution by operating in the time domain using the
method of successive substitution. This approach to inverse filtering
is unique in that the inverse filter is obtained by an iterative tech-
nique, thereby eliminating the dependence on computer limitations,
as indicated in some reported techniques. In addition, a method of
handling the zero crossings of H(w) is posed. A smoothing technique
to modify these filters for inverse filtering in the presence of noise is
also presented.

I. INTRODUCTION
r HE PROBLEM of the lost resolution resulting

from a sluggish measuring device is the subject of
much geophysical work. To this aim, considerable

attention has been given to the design of high-resolution
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inverse digital filters.[P]-[10] In most of these treatments,
the basis for analysis stems from the fact that the fre-
quency response of the perfect inverse filter is given by
1jH(w), where H(w) is the frequency response of the
measuring instrument. The impulse response of the
inverse filter is then found by forming the inverse Four-
ier transform of 1/H(w). Because problems arise in
forming this transformation numerically, H(w) may
have zero crossings, the majority of the technical litera-
ture deals with various approximations used to obtain
a "stable inverse filter." Here, a stable filter is one whose
impulse response decays to zero with increasing time.

This paper presents an iterative technique for ob-
taining a stable inverse digital filter. It is shown that
one can converge to the solution previously defined by
operating in the time domain using the metlhod of suc-
cessive substitution. This approach to inverse filtering is
new from the standpoint that the inverse filter is ob-
tained by an iterative technique. Such an approach elim-
inates the problem of large-scale matrix inversions, as
indicated in some reported techniques. This paper also
poses a technique to improve those inverse filters deter-
mined for system functions which have zero crossings.
Signal restoration in the presence of noise is considered
under the assumption that no statistics are known for
eithei the signal or the additive noise. A priori knowl-
edge of the impulse response of the measuring device is

86

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 02:40:09 UTC from IEEE Xplore.  Restrictions apply. 


