
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 3 1

It has made the transition from basic research
to an essential element of software system de-
sign and construction.

This retrospective examines software archi-
tecture’s growth in the context of a technology
maturation model, matching its significant ac-
complishments to the model’s stages to gain
perspective on where the field stands today.
This trajectory has taken architecture to its
golden age. In the near future, it will attain the
status of all truly successful technologies: It
will be considered an unexceptional, essential
part of software system building—taken for
granted, employed without fanfare, and as-
sumed as a natural base for further progress.

How technologies mature
Samuel Redwine and William Riddle re-

viewed several software technologies to see
how they develop and propagate.1 They found

that a technology typically takes 15 to 20
years to be ready for popularization. They
identify six typical phases:

1. Basic research. Investigate basic ideas and
concepts, put an initial structure on the prob-
lem, and frame critical research questions.

2. Concept formulation. Circulate ideas infor-
mally, develop a research community, con-
verge on a compatible set of ideas, solve
specific subproblems, and refine the prob-
lem’s structure.

3. Development and extension. Explore prelimi-
nary applications of the technology, clarify
underlying ideas, and generalize the approach.

4. Internal enhancement and exploration. Ex-
tend the approach to other domains, use
the technology for real problems, stabilize
the technology, develop training materials,
and show value in the results.

focus
The Golden Age of
Software Architecture

S
ince the late 1980s, software architecture has emerged as the prin-
cipled understanding of the large-scale structures of software sys-
tems. From its roots in qualitative descriptions of empirically ob-
served useful system organizations, software architecture has

matured to encompass a broad set of notations, tools, and analysis tech-
niques. Whereas initially the research area interpreted software practice, it
now offers concrete guidance for complex software design and development.

software architecture

Mary Shaw, Institute for Software Research International, Carnegie Mellon University

Paul Clements, Software Engineering Institute, Carnegie Mellon University

In the near
future, software
architecture will
attain the status
of all truly
successful
technologies:
It will be taken
for granted.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

5. External enhancement and exploration.
This resembles phase 4 but involves a
broader community of people who weren’t
developers, show substantial evidence of
value and applicability, and flesh out the de-
tails to provide a complete system solution.

6. Popularization. Develop production-qual-
ity, supported versions of the technology,
commercialize and market the technology,
and expand the user community.

As technologies mature, their institutional
mechanisms for disseminating results also
change. These mechanisms begin with infor-
mal discussions among colleagues and progress
to products in the marketplace. Along the way,
preliminary results of the first two phases ap-
pear in position papers, workshops, and re-
search conferences. As the ideas mature, results
appear in conferences and then journals; larger
conferences set up tracks featuring the technol-
ogy, and eventually richer streams of results may
justify topical conferences. Books that synthe-
size multiple results help to move the technology
through the exploration phases. University
courses, continuing education courses, and stan-
dards indicate the beginning of popularization.

Maturation of software architecture
Software architecture overlaps and inter-

acts with the study of software families, do-
main-specific design, component-based reuse,
software design, specific classes of compo-
nents, and program analysis. Trying to sepa-
rate these areas rigidly isn’t productive.

One way to see the field’s growth is to exam-
ine the rate at which earlier results serve as build-
ing blocks for subsequent results. We can esti-
mate this roughly by counting citations of papers
with “software architecture” in the title. In a
more comprehensive survey,2 the one on which
this article was based, we analyzed the results of
a search for such papers in the CiteSeer data-
base (http://citeseer.ist.psu.edu). Virtually all
the cited papers were published in 1990 or later.
The number of such citations increased steadily
from 1991 to 1996 and sharply increased for
papers published in 1998. The two dozen most
widely cited books and papers were published
between 1991 and 2000. They include

■ five books (1995–2000),
■ four papers presenting surveys or models

of the field (1992–1997),

■ six papers dealing with architecture for
particular domains (1991–1998),

■ seven formalizations (1992–1996), and
■ one paper each on an architectural descrip-

tion language and an analysis technique.

The major changes in this pattern since a sim-
ilar count in 20013 are an increase in citations
on formalizations and a substantial turnover
in the most-cited papers about architectures
for specific domains. This indicator is based
on the published literature, so it naturally re-
flects the first three phases of development.
Imperfect though this estimate might be, it still
indicates substantial growth over the past
decade or so and a balance between explo-
ration of specific problems and development
of generalizations and formalizations. Of the
two dozen papers that were most commonly
cited in 2001, 14 remain among the most
commonly cited papers in 2005—indicating
that the seminal sources have been identified.

Here are some highlights of the field’s devel-
opment. The chronology isn’t as linear as the
Redwine-Riddle model might suggest: different
aspects of the field evolve at different rates, tran-
sitions between phases don’t happen instantly,
and publication dates lag the actual work by dif-
ferent amounts (see figure 1). Nevertheless,
overall progress corresponds fairly well to their
model. The phases’ time spans are suggested by
the dates of the work mentioned, discounting
foundational work from the 1960s and 1970s.

Basic research: 1985–1993
For as long as complex software systems

have been developed, designers have described
their structures with box-and-line diagrams and
informal explanations. Good designers recog-
nized stylistic commonalities among these struc-
tures and exploited the styles in ad hoc ways.
These structures were sometimes called architec-
tures, but the knowledge of common styles—
that is, generally useful structural forms—wasn’t
systematically organized or taught.

Significantly, by the mid-1980s several foun-
dational concepts were firmly in place, having
traveled their own 15- to 20-year Redwine-
Riddle cycles. These included information hid-
ing, abstract data types, and other ideas that
considered software elements as black boxes.
Object-oriented (OO) development was build-
ing on abstract data types and inheritance.
These ideas all had their foundations on the ob-

3 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

By the mid-
1980s several
foundational

concepts were
firmly in place,
including ideas
that considered

software
elements as
black boxes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

servation by Edsger Dijkstra, David Parnas,
and others that it isn’t enough for a computer
program to produce the correct outcome. Other
software qualities such as dependability and
maintainability are also important and can be
achieved by careful structuring.

In the late 1980s, people began to explore
the advantages of deliberately designed, spe-
cialized software structures for specific prob-
lems. Some of this work addressed software
system structures for particular product lines
or application domains, such as avionics,4 os-
cilloscopes,5 and missile control.6 Other work
organized the informal knowledge about com-
mon software structures, or architectural
styles, that can serve a variety of problem do-
mains. This work cataloged existing systems to
identify common architectural styles such as
pipe-filter, repository, implicit invocation, and
cooperating processes, both by identifying the
architectures of specific classes of systems7,8

and by finding general ways to describe such
structures.9–11 Complementary lines of re-
search led to models for explaining architec-
tural styles and to two widely cited papers in
1992 and 1993 that established the field’s
structure (and settled its name).12,13

Concept formulation: 1992–1996
Architecture description languages, early

formalization, and classification helped elabo-
rate and explore the models from the basic re-
search phase. These early ideas centered on the
system structures that commonly occur in soft-
ware systems, and the results emphasized de-
scription of organizations found in practice.12

ADLs14 served as a vehicle to flesh out spe-
cific details of various aspects of architecture,
especially alternatives to the then-emerging
object orientation.

Formalizations developed in parallel with
language development. Sometimes this was in-
tegral to the language;15–17 in other cases, it was
more independent, as the formalization of
style18 or the formal analysis of a specific archi-
tectural model19 or application area.20,21 The
recognition that architectural analysis must rec-
oncile multiple views22 helped to frame the re-
quirements for formalism.

The early narrative catalogs of styles were
expanded into taxonomies of styles23 and of
the elements that support those styles.24 The
common forms were cataloged and ex-
plained as patterns.25 An early book on these
ideas, Software Architecture: Perspectives on

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 3 3

20051990 1995 20001985

Internal enhancement/exploration

Development/extension

Concept formulation

Basic research

External enhancement/exploration

Popularization

Foundations Information hiding, abstract data types, importance of structure to achieve qualities

System structures for specific
problems, catalogs of style

Acme, taxonomies,
journals, and conferences

Early formalization and classification,
architecture description languages,
views, architecture evaluation, workshops

Architectural-pattern design guides,
formal analysis, tactics, books, linking
architecture to quality attributes

UML, Rational Unified Process, object-oriented
frameworks, built-in infrastructure,
component-based software engineering,
company-specific lifecycle models

Production-quality supported commercialized versions of technology,
standards, university and industry courses, attention to role of architect,
professional organizations

Figure 1. Maturation
of the software
architecture field. Time
spans for phases are
suggested by the dates
of the work mentioned
in the corresponding
sections, discounting
foundational works
from the 1960s and
1970s.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

an Emerging Discipline, set the stage for fur-
ther development.26

Understanding the relationship between ar-
chitectural decisions and a system’s quality
attributes revealed software architecture vali-
dation as a useful risk-reduction strategy. Inter-
connectivity metrics and attribute-specific ar-
chitecture analysis techniques27 gave way to
more general architecture evaluation methods
such as the Software Architecture Analysis
Method.28

Significant in this phase was the emergence
of architectural views as a working concept.
Parnas set the stage for this in 1974 by observ-
ing that software systems have many structures
serving different engineering purposes and that
selecting any one as distinguished makes little
sense. After percolating for a Redwine-Riddle
maturation period, the concept flowered in in-
fluential papers that firmly established views in
architectural practice.13,22,29

Workshops on related topics (for example,
the International Workshop on Software Spec-
ification and Design, http://portal.acm.org/toc.
cfm?id=SERIES341) provided a temporary
home for the software architecture commu-
nity. A formative Dagstuhl seminar in 1995
(www.dagstuhl.de/9508/Report) gathered re-
searchers to think about the field’s layout and
future directions. A series of International
Software Architecture Workshops (associated
with other conferences) from 1995 to 2000
provided a welcome, ongoing forum devoted
solely to software architecture.

Development and extension: 1995–2000
During this phase, the focus shifted to uni-

fying and refining initial results. The Acme ar-
chitectural interchange language began with
the goal of providing a framework to move
information between ADLs30; it later grew to
integrate other design, analysis, and develop-
ment tools. Refinement of the taxonomies of
architectural elements31 and languages14 also
continued.

The field’s institutions also matured. The
IEEE’s Transactions on Software Engineering
had a special issue on software architecture in
1995. The special “Future of SE” track at the
22nd International Conference on Software
Engineering (www.softwaresystems.org/future.
html) in 2000 included software architecture
among its topics, and now ICSE routinely has
one or more sessions on architectural topics. A

standalone conference, the Working IEEE/IFIP
Conference on Software Architecture (www.
wicsa.net), began in 1998 and continues to the
present. One of its sponsors is a new Interna-
tional Federation for Information Processing
working group on software architecture (www.
softwarearchitectureportal.org).

Internal enhancement and exploration:
1996–2003

Informally, software designers typically use
architectural styles (which during this stage
came to be called architectural patterns to ac-
knowledge their kinship with design patterns)
as design guides. Explicit attention to this as-
pect of design is increasing, and as a result
we’re gaining experience.

A few real system designs have been for-
mally analyzed as well. For example, architec-
tural specification of the High-Level Architec-
ture for Distributed Simulation32 was able to
identify inconsistencies before implementa-
tion, thereby saving extensive redesign.

Architectural analysis and evaluation
emerged as a fertile subtopic. The Software Ar-
chitecture Analysis Method28 gave way to the
Architecture Tradeoff Analysis Method,33

which supports analysis of the interaction
among quality attributes as well as the attrib-
utes themselves. Books on the application of the
research to practice34,35 set the stage for exter-
nal exploration. Books on specialized parts of
the practice such as architecture evaluation36

and documentation37 also emerged, signaling a
new kind of maturation of the overall field.

During this stage, the importance of quality
attributes increased, along with architecture’s
role in achieving them.38 The early 2000s saw
work strongly connecting quality attributes
and architectural design decisions, and for the
first time an automated architectural design
aid seemed within reach.39

External enhancement and exploration:
1998–present

Several technologies have matured enough
to be useful outside their developer groups.

UML, under the leadership of (at the time)
Rational, integrated a number of design nota-
tions and developed a method for applying
them systematically. UML has, for better or
(many would say) worse, become the industry
standard ADL. Tied inextricably to UML is
the Rational Unified Process, a tool-centered

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

It isn’t enough
for a computer

program
to produce
the correct
outcome.

Other software
qualities are

also important
and can be
achieved
by careful

structuring.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

industrialization of Philippe Kruchten’s origi-
nal elegant idea of 4+1 views.22 For the most
part, UML provides graphical notations. It
still lacks, however, a robust suite of tools for
analysis, consistency checking, or other means
of automatically connecting the information
expressed in UML with the system’s code.

The rise of OO software frameworks pro-
vided a rich development setting for object-
style architecture and considerable public en-
thusiasm for object-orientedness. The benefits
of a built-in infrastructure and available, in-
teroperable components provide substantial
incentive to use the frameworks even when
they’re not ideal fits for the problems. So,
work on general-purpose ADLs gave way to
extensive support for specific architectures.
At about the same time, architecture provided
a solid enough foundation to implicitly sup-
port the component-based software engineer-
ing movement.40

Also indicative of external enhancement
are company-specific end-to-end architecture-
based development life-cycle models, such as
the Raytheon Enterprise Architecture Process
(http://wwwxt.raytheon.com/technology_today/
v3_i2/feature_ent_arch.html).

Popularization: 2000–present
The popularization phase is characterized

by production-quality, supported, commer-
cialized, and marketed versions of the technol-
ogy, along with an expanded user community.

Architectural patterns, fueled in part by the
explosion of the World Wide Web and Web-
based e-commerce, are leading the commercial-
ization wave. N-tier client-server architectures,
agent-based architectures, and service-oriented
architectures—along with the interfaces, spec-
ification languages, tools, and development
environments, and wholly implemented com-
ponents, layers, or subsystems to go along
with them—are examples of enormously suc-
cessful architectural patterns that have entered
everyone’s vocabulary. Microsoft says its
.NET platform “includes everything a busi-
ness needs to develop and deploy a Web serv-
ice-connected IT architecture: servers to host
Web services, development tools to create
them, applications to use them, and a world-
wide network of more than 35,000 Microsoft
Certified Partner organizations to provide any
help you need” (www.microsoft.com/net/basics.
mspx). Connected services, tools, applica-

tions, platforms, and an army of vendors, all
built around an architecture, represent true
popularization.

One hallmark of a production-ready tech-
nology is good standards. Standards for par-
ticular component families (such as the Com-
ponent Object Model, or COM, and CORBA)
and interfaces (such as XML) have existed for
several years, but they reflect component reuse
interests as much as architectural interests. An
ANSI/IEEE standard, IEEE-Std-1471-2000,
has attempted to codify the current best prac-
tices and insights of both the systems and soft-
ware engineering communities in the area of
documentation. Newer standards are emerg-
ing all the time, primarily to support the im-
portant patterns mentioned earlier. Recently,
the Society of Automotive Engineers standard-
ized its Architecture Analysis and Design Lan-
guage (AADL)—a true ADL—as SAE Stan-
dard AS5506 (www.sae.org/servlets/product
Detai l?PROD_TYP=STD&PROD_CD=
AS5506).

One sure sign of a thriving user community
is the degree to which people take ownership of
the terms and concepts. Bill Gates, who could
have any title he chooses, is Microsoft’s “chief
software architect.” The Object Management
Group chose to call its development initiative
separating business and application logic from
platform technology “model-driven architec-
ture.” In response to the Software Engineering
Institute’s invitation to submit working defini-
tions of “software architecture,” practitioners
in 24 countries had submitted more than 156
definitions by late 2005 (www.sei.cmu.edu/
architecture/definitions.html). Another sign is
the way the term gets co-opted and diluted by
people pulling their own interests under the
currently popular umbrella. Terms such as
“program architecture” make us shudder.

An institutional indicator of popularization
is the availability of courses in the subject. In
universities, software architecture is moving
from graduate to undergraduate curricula;
more than one textbook for introductory soft-
ware engineering courses now includes a chap-
ter on “architectural design.” In the ACM/IEEE
undergraduate software engineering curriculum
(http://sites.computer.org/ccse/SE2004Volume.
pdf), 20 percent of the software design unit is
devoted to software architecture. The Soft-
ware Engineering Body of Knowledge (www.
swebok.org) identifies software architecture as

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 3 5

N-tier
client-server
architectures,
agent-based

architectures,
and service-

oriented
architectures

are examples of
enormously
successful

architectural
patterns.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

a major section in its software design chapter.
Industrial courses and certificate programs are
also widely available.

Finally, “software architect” is a common
job title in companies that build software-in-
tensive systems, and professional organiza-
tions such as the Worldwide Institute of Soft-
ware Architects (www.wwisa.org) and the
International Association of Software Archi-
tects (www.iasahome.org) enable communica-
tion, foster networking, encourage profes-
sional practice, and (we hope) help their
members sort out the avalanche of books—
over 50—now available on the topic.

Conferences continue to thrive, not only
for the research community but also for user
networks. In early 2006, the SEI listed two
dozen upcoming conferences that explicitly
mention “software architecture” in their calls
for participation (www.sei.cmu.edu/architec-
ture/events.html). These include user network
meetings as well as research conferences.

Current status
The broad concept of software architecture

has run the full course of the Redwine-Riddle
model, pretty much right on schedule. The re-
sult is a breathtaking capability for reliably
designing systems of unprecedented size and
complexity verging on a true engineering dis-
cipline. Consider the resources readily avail-
able to a contemporary software architect:

■ Off-the-shelf industrial training and certi-
fication programs reflect a converging
sense of what software architecture is and
why it’s a critical discipline.

■ Standard architectures exist for countless
domains and applications. For example,
nobody will ever again have to design
from scratch a banking system, an avion-
ics system, a satellite ground system, or a
Web-based e-commerce system.

■ Where total architectural solutions don’t yet
exist, partial ones certainly do in the form of
catalogs of architectural patterns and tactics
that help solve a myriad of problems and
achieve various quality attributes.

■ End-to-end life-cycle models (industry-
wide or, more likely, company-specific)
build on architectural principles.

■ Architecture evaluation and validation
methods support robust and repeatable
design approaches.

■ Practical approaches to architecture docu-
mentation build on standards for artifacts
and standards for languages in which to
render the artifacts.

■ Robust tool environments exist for devel-
oping designs.

■ Commercial-quality architectural infra-
structure layers can handle intercomponent
communication and coordination of dis-
tributed generic computing environments.

■ Commercial-quality application layers
(and tooling) can handle business logic,
user interface, and support function layers.

■ Software architects have access to career
tracks and professional societies.

■ An active pipeline of journals and confer-
ences devoted to software architecture
serves as a conduit between the research
and practice communities.

These and other factors indicate that soft-
ware architecture is integrated in the fabric of
software engineering.

What’s next?
Software engineering research is often mo-

tivated by problems arising in producing and
using real-world software. Technical ideas of-
ten begin as qualitative descriptions of prob-
lems or practice and gradually become more
precise—and more powerful—as practical and
formal knowledge grow in tandem. Thus, as
some aspect of software development comes
to be better understood, more powerful speci-
fication mechanisms become viable, in turn
enabling more powerful technology.

Software architecture has followed this par-
adigm, growing from its adolescence in re-
search laboratories to the responsibilities of
maturity. This brings with it additional respon-
sibility for researchers to show not just that
new ideas are promising (a sufficient grounds
to continue research) but also that they’re ef-
fective (a necessary grounds to move into prac-
tice). For example, at one time a new ADL
seemed to emerge almost monthly. Now some-
one proposing a new language must be able to
answer the question, “Does what you’re pro-
posing have any chance of unseating UML?
What tooling will you provide with it?”

Nevertheless, significant opportunities exist
for new contributions in software architec-
ture. Some of the more promising areas are the
following:

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Software
engineering
research is

often motivated
by problems

arising in
producing
and using

real-world
software.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

■ Expanding formal relationships between
architectural design decisions and quality
attributes. This could one day lead to a
practical and sophisticated automated ar-
chitecture design assistant. It could also
enable earlier, more accurate predictions
of the value a system would deliver to spe-
cific types of users.

■ Finding the right language in which to rep-
resent architectures. UML 2.0 was a mar-
ginal improvement over its predecessor, but
it still lacks basic architectural concepts
such as layer or a faithful notion of con-
nector. Also, it can’t analyze interactions
among views or make strong connections
to code, and it too easily mixes design con-
cepts with implementation directives.

■ Finding ways to assure conformance be-
tween architecture and code. Lack of con-
formance dooms an architecture to irrele-
vance as the code sets out on its own
independent trajectory. We might establish
conformance by construction (via genera-
tion, refinement, and augmentation) or by
extraction (analyzing an artifact statically
or dynamically to determine its architec-
ture). Early work exists in both ap-
proaches, but solutions are incomplete, es-
pecially in recovery and enforcement of
runtime views and architectural rules that
go beyond structure.

■ Rethinking our approach to software test-
ing on the basis of software architecture.
An architecture can let us generate a wide
variety of test plans, test cases, and other
test artifacts. For code that originates in
the architecture (such as implementations
of connections and interaction mecha-
nisms), automatic testing is possible. A
strong model of architecture-based testing,
backed by formal reasoning and easy-to-
use tooling, could have a major economic
impact on software system development.

■ Organizing architectural knowledge to
create reference materials. Mature engi-
neering disciplines have handbooks and
other reference materials that give engi-
neers access to the field’s systematic
knowledge. Cataloging architectural pat-
terns26 is a first step in this direction, but
we also need reference materials for do-
main-specific architectures and for analysis
techniques. Grady Booch’s handbook on
software architecture (www.booch.com/

architecture/index.jsp) can provide impor-
tant exemplars, but engineers also need
reference material that organizes what we
know about architecture into an accessi-
ble, operational body of knowledge.

■ Developing architectural support for sys-
tems that dynamically adapt to changes in
resources and each user’s expectations and
preferences. As computing becomes ubiq-
uitous and integrated in everyday devices,
both base resources such as bandwidth
and information resources such as loca-
tion-specific data change dynamically.
Moreover, each user’s needs change with
time, and different users have different
needs. Dynamically adapting to these
changes would help to maximize the ben-
efit to each user. Achieving this will re-
quire not only adaptive architectures but
also component specifications that reflect
variability in user needs as well as the
component’s intrinsic properties.

I t will be interesting to see how these ideas
fare over the next 10 years or—more
likely—what ideas now undreamed of

will have emerged. But one thing seems clear.
The last decade and a half has seen a phenom-
enal growth of software architecture as a disci-
pline. It started in the late 1980s as an aca-
demic idea aimed at understanding and
codifying system descriptions observed in in-
dustrial practice. From there it has grown to a
relatively mature engineering discipline com-
plete with standard and repeatable practices, a
rich catalog of prepackaged design solutions,
an enormous commercial market supplying
tools and components, and a universal recog-
nition that software architecture is an indis-
pensable part of software system development.

A “golden age” is a period of prosperity
and excellent achievement, often marked by
numerous advances that rapidly move the
technology from speculative to dependable.
The last 15 years or so—roughly the middle
four stages of the Redwine-Riddle model—
truly have been software architecture’s golden
age. Like the golden age of air travel in the
1930s, it’s been an exciting time of discovery,
unfettered imagination, great progress, great
setbacks, and a sense of the possible.

But all golden ages come to a close, and as
software architecture moves from being novel

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 3 7

The last 15
years or so—

roughly the
middle four
stages of the

Redwine-Riddle
model—truly

have been
software

architecture’s
golden age.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

3 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

to being indispensable, its golden age is reced-
ing. This is as it should be, because software
architecture is entering a period where it can be
taken for granted. We rely on it, we can’t imag-
ine our technological culture without it, and
we’re compelled to continually refine and im-
prove it. This is the hoped-for fate of all suc-
cessful technologies, and it’s a time for deep
satisfaction. It doesn’t mean that the time for
research, innovation, and improvement has
passed. On the contrary, the excitement is now
that of adulthood rather than of childhood:
The strong foundations laid by the early phases
of software architecture maturation, coupled
with ongoing research to make new ideas prac-
tical, will enable even more breathtaking sys-
tem-building capabilities in the future. For us,
the intriguing question is this: What new soft-
ware engineering technology and its golden age
will the solidly established field of software ar-
chitecture help to usher in?

Acknowledgments
We thank the ICSE 2001 program committee for

stimulating this article’s original version3 and Judy
Stafford and Henk Obbink for commissioning this up-
date. Sheila Rosenthal and Isaac Councill provided in-
valuable assistance in helping us gather and analyze ci-
tation counts. Thanks to David Garlan and Jonathan
Aldrich for helpful comments. Mary Shaw’s work is
supported by the Software Industry Center, the AJ
Perlis Chair of Computer Science, and the US Na-
tional Science Foundation under grant CCF-0438929.
The Software Engineering Institute is sponsored by
the US Department of Defense.

An extended version of this article is available as a
Carnegie Mellon University technical report.2

References
1. S. Redwine and W. Riddle, “Software Technology Mat-

uration,” Proc. 8th Int’l Conf. Software Eng., IEEE CS
Press, 1985, pp. 189–200.

2. M. Shaw and P. Clements, The Golden Age of Software
Architecture: A Comprehensive Survey, tech. report
CMU-ISRI-06-101, Inst. for Software Research Int’l,
Carnegie Mellon Univ., Feb. 2006.

3. M. Shaw, “The Coming-of-Age of Software Architec-
ture Research,” Proc. 23rd Int’l Conf. Software Eng.,
IEEE CS Press, 2001, pp. 656–664a.

4. D.L. Parnas, P.C. Clements, and D.M. Weiss, “The
Modular Structure of Complex Systems,” IEEE Trans.
Software Eng., vol. SE-11, no. 3, 1985, pp. 259–266.

5. N. Delisle and D. Garlan, “Formally Specifying Elec-
tronic Instruments,” Proc. 5th Int’l Workshop Soft-
ware Specification and Design, ACM Press, 1989, pp.
242–248.

6. E. Mettala and M. Graham, eds., The Domain-Specific
Software Architecture Program, tech. report CMU/SEI-
92-SR-9, Software Eng. Inst., Carnegie Mellon Univ.,
1992.

7. G. Andrews, “Paradigms for Process Interaction in Dis-
tributed Programs,” ACM Computing Surveys, vol. 23,
no. 1, 1991, pp. 49–90.

8. H.P. Nii, “Blackboard Systems,” AI Magazine, vol. 7,
no. 3, 1986, pp. 38–53, and vol. 7, no. 4, 1986, pp.
82–107.

9. M. Shaw, “Toward Higher-Level Abstractions for Soft-
ware Systems” (invited), Proc. Tercer Simposio Interna-
cional del Conocimiento y su Ingenieria, Rank Xerox,
1988, pp. 55–61. Reprinted in Data and Knowledge
Eng., vol. 5, no. 2, 1990, pp. 119–128; http://portal.
acm.org/citation.cfm?id=87367.

10. M. Shaw, “Elements of a Design Language for Software
Architecture,” position paper for IEEE Design Automa-
tion Workshop, Jan. 1990.

11. M. Shaw, “Heterogeneous Design Idioms for Software
Architecture,” Proc. 6th Int’l Workshop Software Speci-
fication and Design, IEEE Press, 1991, pp. 158-165.

12. D. Garlan and M. Shaw, “An Introduction to Software
Architecture,” Advances in Software Engineering and
Knowledge Engineering, vol. 1, World Scientific, 1993,
pp. 1–39.

13. D.E. Perry and A.L. Wolf, “Foundations for the Study
of Software Architecture,” ACM SIGSOFT Software Eng.
Notes, Oct. 1992, pp. 40–52.

14. N. Medvidovic and R.N. Taylor, “A Framework for
Classifying and Comparing Architecture Description
Languages,” Proc. 6th European Software Eng. Conf.,
LNCS 1301, Springer, 1997, pp. 60–76.

15. J. Magee and J. Kramer, “Dynamic Structure in Soft-
ware Architectures,” Proc. ACM SIGSOFT 96, 4th Symp.
Foundations Software Eng. (FSE4), ACM Press, 1996,
pp. 3–14; http://portal.acm.org/citation.cfm?id=239104.

16. D.C. Luckham et al., “Specification and Analysis of
System Architecture Using Rapide,” IEEE Trans. Soft-
ware Eng., vol. 21, no. 4, 1995, pp. 336–355.

17. R. Allen and D. Garlan, “A Formal Approach to Soft-
ware Architectures,” Proc. IFIP 92, Elsevier, 1992, pp.
134–141.

18. G. Abowd, R. Allen, and D. Garlan, “Formalizing Style
to Understand Descriptions of Software Architecture,”
ACM Trans. Software Eng. and Methodology, vol. 4,
no. 4, 1995, pp. 319–364.

19. K. Sullivan, M. Marchukov, and D. Socha, “Analysis of
a Conflict between Interface Negotiation and Aggrega-
tion in Microsoft’s Component Object Model,” IEEE
Trans Software Eng., vol. 25, no. 4, 1999, pp. 584–599.

20. C. Locke, “Software Architecture for Hard Real-Time Ap-
plications: Cyclic Executives vs. Fixed Priority Executives,”
J. Real-Time Systems, vol. 4, no. 1, 1992, pp. 37–53.

21. M.R. Macedonia et al., “NPSNET: A Network Software

About the Authors

Mary Shaw is the Alan J. Perlis Professor of Computer Science, codirector of the Sloan
Software Industry Center, and member of the Institute for Software Research International and
the Computer Science Department at Carnegie Mellon University. Her research interests include
software engineering and programming systems, particularly value-driven software design, sup-
port for everyday users, software architecture, programming languages, specifications, and ab-
straction techniques. She received her PhD in computer science from Carnegie Mellon University.
She received the Stevens Award for instrumental contributions in the development and recogni-
tion of software architecture as a discipline and the Warnier prize for contributions to software
engineering. She is a fellow of the ACM, the IEEE, and the American Association for the Ad-

vancement of Science. She’s also a member of the IFIP Working Group 2.10 (Software Architecture). Contact her at the Inst.
for Software Research Int’l, Carnegie Mellon Univ., Pittsburgh, PA 15213; mary.shaw@cs.cmu.edu; www.cs.cmu.edu/~shaw.

Paul Clements is a senior member of the technical staff at Carnegie Mellon University’s
Software Engineering Institute, where he has led or co-led projects in software product line engi-
neering and software architecture documentation and analysis. His most recent book is Software
Architecture in Practice (2nd ed., 2003). He received his PhD in computer sciences from the Uni-
versity of Texas at Austin. He’s a member of the IFIP Group 2.10 (Software Architecture). Con-
tact him at the Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA 15213; clements@sei.
cmu.edu.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

Architecture for Large Scale Virtual Environments,”
Presence, Teleoperators, and Virtual Environments, vol.
3, no. 4, 1994, pp. 265–287.

22. P. Kruchten, “The 4+1 View Model of Software Architec-
ture,” IEEE Software, vol. 12, no. 6, 1995, pp. 42–50.

23. M. Shaw and P. Clements, “A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for
Software Systems,” Proc. COMPSAC 97: Int’l Computer
Software and Applications Conf., IEEE CS Press, 1997,
pp. 6–13.

24. R. Kazman et al., “Classifying Architectural Elements
as a Foundation for Mechanism Matching,” Proc.
COMPSAC 97: Int’l Computer Software and Applications
Conf., IEEE CS Press, 1997, pp. 14–17.

25. F. Buschmann et al., Pattern-Oriented Software Architec-
ture—A System of Patterns, John Wiley & Sons, 1996.

26. M. Shaw and D. Garlan, Software Architecture: Perspec-
tives on an Emerging Discipline, Prentice Hall, 1996.

27. C. Smith, “Performance Engineering,” Encyclopedia of
Software Eng., vol. 2, John Wiley & Sons, 1994, pp.
794–810.

28. R. Kazman et al., “SAAM: A Method for Analyzing the
Properties of Software Architectures,” Proc. 16th Int’l
Conf. Software Eng. (ICSE 94), IEEE CS Press, 1994,
pp. 81–90.

29. D. Soni, R. Nord, and C. Hofmeister. “Software Archi-
tecture in Industrial Applications,” Proc. 17th Int’l
Conf. Software Eng., ACM Press, 1995, pp. 196–207.

30. D. Garlan, R. Monroe, and D. Wile, “Acme: An Archi-
tecture Description Interchange Language,” Proc. CAS-
CON 97, ACM Press, 1997, pp. 169–183.

31. N.R. Mehta, N. Medvidovic, and S. Phadke, “Towards
a Taxonomy of Software Connectors,” Proc. 22nd Int’l

Conf. Software Eng. (ICSE 00), IEEE CS Press, 2000,
pp. 178–187.

32. R. Allen, D. Garlan, and J. Ivers, “Formal Modeling
and Analysis of the HLA Component Integration Stan-
dard,” Proc. 6th Int’l Symp. Foundations of Software
Eng., ACM Press, 1998.

33. R. Kazman et al., “Experience with Performing Archi-
tecture Tradeoff Analysis,” Proc. 21st Int’l Conf. Soft-
ware Eng. (ICSE 99), IEEE CS Press, 1999, pp. 54–63.

34. L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, Addison-Wesley, 1998; 2nd ed., 2003.

35. C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture, Addison-Wesley, 1999.

36. P. Clements, R. Kazman, and M. Klein, Evaluating Soft-
ware Architectures: Methods and Case Studies, Addi-
son-Wesley, 2001.

37. P. Clements et al., Documenting Software Architectures:
Views and Beyond, Addison-Wesley, 2002.

38. M.R. Barbacci, M.H. Klein, and C.B. Weinstock, Prin-
ciples for Evaluating the Quality Attributes of a Soft-
ware Architecture, tech. report CMU/SEI-96-TR-036,
Software Eng. Inst., Carnegie Mellon Univ., 1996.

39. F. Bachmann, L. Bass, and M. Klein, Preliminary De-
sign of ArchE: A Software Architecture Design Assis-
tant, tech. report CMU/SEI-2003-TR-021, Software
Eng. Inst., Carnegie Mellon Univ., 2003.

40. C. Szyperski, Component Software—Beyond Object-
Oriented Programming, Addison-Wesley, 1997.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 3 9

IEEE Software is soliciting con-
tributions to a Special Issue on
Software Engineering Curriculum
Development to be published in
Nov./Dec. 2006. Themes include

• Curriculum standards and
model curricula

• Distinctions between computer
science and software engineer-
ing programs (and graduates)

• International perspectives on
software engineering curricula

• Comparative analyses of ex-
isting software engineering
programs, especially across
national boundaries

• Effects of accreditation
processes on software
engineering programs

C A L L

F O R

A R T I C L E S
Software Engineering Curriculum Development

Manuscripts must not exceed 5,400 words includ-
ing all text, figures, and tables (count figures and
tables as 200 words each). Submissions in excess
of these limits may be automatically rejected with-
out refereeing. The articles deemed to be within the
issue's scope will be peer-reviewed and are subject
to editing for magazine style, clarity, grammar, or-
ganization, flow, directness, and space. We reserve
the right to edit the title of all submissions. Be sure
to indicate the thematic area your paper addresses.
For more information on our author guidelines, go
to www.computer.org/software/author/htm.

Guest editors:
Michael J. Lutz, Rochester Inst. of Technology; mjl@se.rit.edu
Donald J. Bagert, Rose-Hulman Inst. of Technology; Don.Bagert@
rose-hulman.edu

For author guidelines and submission details, write to software@computer.org or go to
http://cs-ieee.manuscriptcentral.com/index.html. For information about the issue’s focus or an
article proposal, contact the guest editors.

For the complete call, go to www.computer.org/software/
edcal.htm.

PUBLICATION DATE: November/December 2006
SUBMISSION DEADLINE: 15 May 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:51:29 UTC from IEEE Xplore. Restrictions apply.

