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Abstract—Modern engineering and scientific systems are usu-
ally equipped with abundant sensors to collect large-dimensional
time series for monitoring and operations. In this article, we
develop a novel principal predictor analysis (PPA) framework
with reduced-dimensional dynamics to obtain parsimonious pre-
dictor models of large-dimensional time series data. Principal
predictors are obtained by maximizing the variance of predictions
from their past values. Unlike classical principal component
analysis (PCA), which reduces the dimensionality without empha-
sizing the prediction, PPA focuses on extracting latent variables
with the maximum predictive capability. The PPA application to
dynamic process monitoring is performed with predictive moni-
toring indices to account for variations in the predictors and the
unpredicted residuals, which can be subsequently modeled with
PCA. PPA-based monitoring and diagnosis are demonstrated
in an illustrative closed-loop system and the industrial Dow
Challenge Problem and an extension to include known first-
principles relations to show their effectiveness.

Index Terms—Data reconstruction, dimensionality reduction,
fault diagnosis, principal component analysis (PCA), principal
predictor analysis (PPA), sustainable process operations.

I. INTRODUCTION

RINCIPAL component analysis (PCA) has been one of
Pthe most popular analysis methods for more than a
century [1], [2], [3]. A plethora of PCA extensions, such as
probabilistic, kernel, neural networks, and autoencoders, are
still in active development [4], [5], [6], [7], [8], [9], [10],
[11], which are suitable for anomaly detection and process
monitoring [12], [13], [14], [15], [16], [17]. These PCA
models perform low-dimensional mappings with maximum
variance, but do not focus on extracting the predictable content
of the data, as illustrated in the literature and in the Lorenz
attractor example in [18].

Recent deployment of the Industrial Internet of Things
(IToT) for intelligent and autonomous systems yields abundant
large time series data. Dimensionality reduction is often
necessary for the use of massive data for the monitoring,
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prediction, and decision-making of the system. On the other
hand, many industrial manufacturing processes already have
large-dimensional operation data that can be used for process
data analytics. These data series tend to have both cross-
correlation among variables and serial correlation over time,
which is referred to as co-moving dynamics or co-dynamics
in this article. In the recent decade, the problem of data co-
dynamics has been treated systematically as latent dynamic
modeling tasks [19], [20], [21], [22], [23], [24], [25]. Relevant
work is found in econometrics and financial data analysis as
dynamic factor models (DFM) [26], [27], [28] and in machine
learning as slow and predictable factor analysis [29], [30].
A recent review of these methods and their relationships is
available in [31].

Using univariate latent dynamics, dynamic inner PCA
(DiPCA) and dynamic inner canonical correlation analy-
sis (DICCA) have been developed with latent univariate
autoregressive (AR) models [21], [22], [32]. Univariate latent
models promote self-predicting dynamic latent variables
(DLV) in the data, which are convenient for the extraction of
oscillatory factors and troubleshooting [33]. To overcome the
limited representability of these univariate AR models, a latent
vector AR (LaVAR) model is developed in [18], [34], [35]
with a canonical correlation analysis (CCA) objective and
oblique projections to capture the predictable content in a
multivariate time series. The LaVAR-CCA algorithm solves all
DLVs simultaneously with an iterative algorithm. Nonlinear
extensions with kernel functions are developed in [36]. The
LaVAR-CCA DLVs are extracted in descending order of
predictability, and each DLV requires the past values of
all other DLVs to make a prediction. Since these methods
with CCA objectives to extract DLVs focus on the angles
between prediction vy and projected values vi, they ignore the
magnitude of the variance of the DLVs.

Based on the aforementioned work, a new principal pre-
dictor analysis (PPA) is proposed in this article to compress
large-dimensional data to a number of DLVs with the most
predictable variances from their past values. The compression
loading matrix is made orthonormal to retain the variance
information in the DLVs, whereas the prediction models of
the DLVs are implemented with vector AR (VAR) models for
simplicity. It is possible to implement other forms of latent
dynamic models, such as state-space models [37], [38].

The PPA model aims to achieve the maximum predicted
variance of the principal predictors. After the predictable
variations are extracted with a number of DLVs, the prediction
residuals are essentially independent over time, which can
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be further analyzed with PCA. As a consequence, the PPA
model followed by PCA is used to develop a global index for
dynamic process monitoring that accounts for variations in the
prediction residuals and the principal predictors.

Denoting y; € AP as the measurement vector of p variables
in a time series, the PPA model is to find £ < p DLVs
vie € RY to capture the most predictable variations in Vi
using the past vx. A unique advantage of PPA is that the
predictor model for vy is self-dependent and parsimonious.
In addition, the excessive dimensions orthogonal to the co-
dynamic factors have little serial dependence and are useful
for fault monitoring.

The remainder of this article is organized as follows.
The next section defines the PPA of latent dynamic data
with orthonormal loadings compared to traditional full-
dimensional predictor models. In Section III the PPA algorithm
is developed with a maximum likelihood (ML) formulation
which has an interpretation to maximize the predicted vari-
ances of the predictors. In Section IV, an overall predictive
monitoring index is developed that accounts for the prediction
residuals and principal predictors. PPA integrated with first-
principles relations and reconstruction-based contributions
(RBC) are developed for PPA based fault diagnosis. The
developed PPA analysis and monitoring algorithms are illus-
trated in Section V in a simple closed-loop control system
and the Dow Challenge process data set [39] to show the
effectiveness of the proposed method compared to other state-
of-the-art methods. The last section gives conclusions.

II. DYNAMIC LATENT VARIABLE MODELS
A. Full-dimensional Dynamic Series Modeling

Let y, € %P be the measurement vector of variables in time
k of a dynamic system, which forms a time series {yk}kN:J“ls with
E{y,} = 0. The series is considered to be serially correlated if
EUky,I_j} # 0 for some j > 0. In this article, we consider time
series of reduced-dimensional dynamicss (RDDss), which was
defined in [18] and is given as follows.

Definition 1: A serially correlated time series {y;} is
referred to as a RDDs series if there exists a # 0 € 9 such
that aTy, is serially uncorrelated. Otherwise, it is termed as a
full-dimensional dynamic (FDD) series [18].

Traditional FDD series modeling has been studied inten-
sively, e.g., [40]. In general, a FDD series can be represented
by its best prediction y, and the unpredictable innovation ey
as follows:

(D

where §; € R depends on the past data {yk}k__o(]J but e does
not. The predictor y, can be implemented with a suitable
model, such as state space or an AR integrated moving average
(ARIMA). For a VAR model, which is popular in many
applications, the prediction y, € NP depends on finite past
data {y;_;};_;, which is

Vi =Y + ek

N
Fe=) A ©))
j=1
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where A;’s can be found using the ML or least squares
methods.

B. Principal Predictors

A full-dimensional predictor y, always has the same
dimension as the observation vector y;. A principal dynamic
predictor ¥ has a smaller dimension than the measurement y;
and can be represented as

3)

where ¥, € R, [ < p, is the principal predictor estimated from
past data, i.e., P = f(Ve_1» -+ s Viegs - - -» ), P € RP*E has full
column rank, and e; € N” is the residual whose covariance is
to be minimized. Premultiplying the Moore—Penrose pseudo-
inverse P on (3) gives the DLV

v =P + e

“4)

where €, = PTey. It is clear that ¥ is a predictor of v, =
P*y,, which is in the principal predictor subspace (PPS).
Remark 1: A PCA model is given as follows:

v =Py, = 0p + Plep = by + &

yi =Pty +e;

where #; = PTy, has the maximum variances with an
orthonormal P, which differs from the PPA loadings in (3).

The PPA model (3) involves two simultaneous tasks, that is,
the estimation of the loading matrix P and that of the predictor
Vi from past DLV values.

In practice, the dimension ¢ is unknown, so we need to
find its estimate £. If £ > £, vi could include all dynamics in
¥ but this leads to over-parameterization, while ? < ¢ leads
to under-parameterization. When i = ¢ the dynamics y; is
properly included in v; and the innovation e, € NP is not
correlated with the previous data, that is, E{eky,Lj} = 0 for
all j > 0.

The principal predictor model for vy can be any linear,
nonlinear, or a recurrent neural net function of its past, i.e.,

&)

To parameterize this predictor model, the works in [21], [32]
used univariate AR models. [18] used a latent VAR model,
while [37] used a state space model and [38] used a state space
model with a deterministic control sequence {u;} for latent
system identification.

Our work is different from many existing works in econo-
metrics and statistics, such as [28], that used the original data
¥ to predict the DLV, i.e.,

Vi = Efviln}21) =F s Pk o)

which loses the reduced dimensional parameterization, and
thus is nonparsimonious. In this article, we specifically con-
sider a latent VAR predictor as

s
1'3]( = Z ijk—j~
J=1

However, other models, such as the state space Kalman
predictor [37] can be used.

o0

Vi =EWwd v} 21} = g0k—1, oo Vs o).

(6)
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C. Orthonormal Loadings for Principal Predictors

Since the DLV innovation e; in (4) is part of the y,
innovations, we define the following transformation:

- _ - ek
e =Pey +Pg =[P P] [EJ (7)
where P has full column rank and [P _l_)] is invertible. This
transformation always exists since [P P] is invertible, which
makes & and & uncorrelated in time. With the above relation,
the predictor form (3) has the following form:

yi =P+ Pep + Pz = Py + P&, 8)

which is referred to as the data generation process.

It is clear that the loadings P cannot be uniquely identified
due to the bilinear form with v;. We give the following theorem
to represent all possible realizations of data y, generated by (8)
and a specific orthonormal realization.

Theorem 1: For any nonsingular M; € %R**‘, M, ¢
RP—OxP=0 and any N € R*P~0 data y, generated by (8)
can be equivalently realized by

yi =PV, + P 9)
where
P =PM;', v, =M +N&)

P = (P-PN)M,', & =Mé.

Furthermore, we have the following orthonormal realization:

[P P]'[P P]=1 (10)

if N = (PTP)"'PTP, M; = (PTP)%5 and M, = ((P —
PN)T(P — PN))03.

The proof of this theorem is straightforward algebra. It
is clear that P’ and P represent the same column space.
Therefore, without loss of generality, we drop the prime in the
notation in the rest of this article to implement an orthonormal
P, ie. PTP = 1. As a consequence, the magnitude of the
predictable content is contained in Vg of (3). In the next
section, we show with Theorem 2 that the optimal orthonormal
P permits a diagonal covariance of V.

With (3) and (6), we obtain the following reduced-
dimensional VAR (ReDVAR) model [34]:

N N
=P By j+e=) PBPTy ;+e
j=1 j=1

Y

with vy = PTy, and the VAR parameter matrices {A; =
PB;PT} having reduced rank compared to (2). Therefore, PPA
is equivalent to the ReDVAR model (11).

III. PRINCIPAL PREDICTOR ANALYSIS
A. PPA Objective and Optimal Solution

The PPA modeling aims to find orthonormal loadings P €
NP*¢ to make the latent vector vy € R’ most predictable.
From (4) and (8), it is seen that the PPA model projects y, to
a lower dimension v; and then makes v; the most predictable
from its past values. We assume e, ~ N (0, .), which is more

general than the probabilistic PCA formulation [41] which
assumes an identity covariance for ey.

The ML solution amounts to minimizing the following
likelihood function [35]:

s+N
D =Nin|Z|+ Y (e—Po)" S, (3 — Ph) (12)
k=s+1
= NIn|Z.|
s+N s T s
+ Z (yk - ZPijkj) Ee_l (yk - ZPijkj) . (13)
k=s+1 Jj=1 Jj=1

Differentiating (13) with respect to (PB;) and setting it to zero
lead to

s+N K
Z <.Yk - ZPBivk_,-)v,Ij =0, j=1,...,s. (14

k=s+1 i=1

Premultiplying PT on (14) and using PTP =1 and v, = PTy,,
we obtain

s+N s
> <vk—ZBivk_i)v,{_j =0, j=1,....,s. (I5)
k=s+1 i=1

Differentiating (12) with respect to P by including PTP =1
with Lagrange multipliers and setting it to zero lead to

s+N

3 (3 — Pi)] = 0.

k=s+1

(16)

Further, differentiating (12) with respect to X, ! and setting it
to zero lead to

1 s+N
Te=y D7 e —Poi) (e — P (17)

k=s+1

Denoting
V = [Vs1 Vsoz -+ Vo (18)
B=[B; By Bg|" (19)
Vi= [vis1 vis2 - vien] T = YiP (20)
Yi = [yir1 Yiva - yien]" i=0,1,....s

Vi = [Psg1 Psp2 - Py T 1)

where Y; and V; are submatrices of

Y=[y1y v Yean]
Vz[vl vZ...vN...vS+N:|T

respectively. The solution for B given P can be found
from (15) as

B = (VTV)"'VTV, = V*V, (22)

where V1 is the Moore—Penrose pseudo-inverse. It should be
noted that (22) coincides with the least squares solution for
B, which does not require the assumption of the probability
distribution for e; in (3). The prediction of V; from (6) is

A

Vs = [Ps41 -+ bpv]T = VB = VV TV, (23)
which yields
VIV, = VIVVHVVTV, = VIVVHY, = VIV, (24)
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Algorithm 1 PPA Algorithm

1: Given data {yk}ivjf, form Yy € RYV>? and scale Y; to zero
mean and unit variance. Form Y € RV*+9>7 and scale Y
according to the scaling of Yj.

2: Perform SVD on Y; as

Y, = UD,VT

and initialize P = Vi (2, 1:£) for a selected £.
3. repeat ) .
Calculate V = YP and calculating V; by forming
V = [Vs-1 Vs2 -+ Vo] from V.
Perform EVD (25) and calculate P= W(, 1:0).
4: until convergence.

5. Choose P = W(:, ¢ + L:p).

because VVTV = V.

Note that the solution for B depends on knowing P, while
the solution for P from (16) depends on knowing B. Therefore,
we adopt an alternate optimization procedure following [18].
Further, if P is a solution, PO would also be a solution for
any orthogonal matrix O. Therefore, we have an opportunity
to rotate P such that ¥, has maximized variances with its
variances arranged in a nonincreasing order.

B. PPA Solution and Algorithm
We give the following theorem to solve for P to make
the entries of v, have maximized variances arranged in a
nonincreasing order. )
Theorem 2: With an initial P € %<’ to calculate V
from (22), perform an eigen-vector decomposition (EVD) on
YIV,VIY,/N = WAWT (25)
where A contains the eigenvalues in a nonincreasing order.
The solution
P =W, 1:0) (26)
makes the entries of ¥, have maximized variances arranged in
a nonincreasing order. Further

¥ = AL, 1:0) = diag(A1, A2, ..., Ag)

27)
contains the variances of the £ DLVs with in a nonincreasing
order.

The proof of the theorem is given in Appendix A. To
estimate the data generation model (8), we can choose P =
W(:, £+1:p). To initialize the algorithm, we choose P to be the
first £ principal component (PC) loadings of Y. The complete
PPA algorithm is summarized in Algorithm 1.

Remark 2: Another simple approach to initializing
Algorithm 1 is to first build univariate AR models for each
variable in y;. Then rank-order the variables according to their
univariate predictability in descending order and choose the £
most predictable variables in y; as the initial vy.
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C. Analysis and Extension With Known Relations

Denoting Iy = VS\A/:F as an orthogonal projection matrix,
(25) is equivalent to the EVD of Y{IIyY,/N, which is the
projection of Y onto the column space of \73. Recall that PCA
performs EVD on Y] Y /N. Therefore, the projection of Y by
Iy is a key difference between PPA and PC analysis (PCA).

Next, we compare PPA with the dynamic factor model

algorithm in Lam et al. [26], which performs EVD on
N

L=YT[Y Yo ,¥], | Y/N? = YTYYTY,/N?
j=1

and assign its leading ¢ eigenvectors as P, where Y =
[Ys—1 Ys—2 -+ Yo|. Note that the weight matrix YYT in the
middle is not a projection matrix. Therefore, [26] performs
merely SVD on a covariance matrix Y] Y/N, which does not
give an explicit latent predictor.

The convergence of Algorithm 1 can be secured using the
expectation-maximization (EM) interpretation [42]. The log-
likelihood function in (13) makes Algorithm 1 an EM solution
of the PPA model (3), where y, are the observed variables,
Vi the latent variables, and ({B;},P) the model parameters.
The existing EM convergence results in [42] guarantee that the
log-likelihood function (13) increases monotonically during
iterations and converges to a local solution. However, a global
optimum is not guaranteed unless (13) is unimodal.

In many engineering applications, it is often desirable to
retain first-principles relations or factors while exploring other
data-driven latent variables.

Remark 3: Given CTy, = 0 as a known first-principles
relation or CTy, is a known factor to be enforced, they can
be integrated in the PPA algorithm by transforming the data
matrix Y with

Y =Y(I-CC") (28)
and treat Y as the data matrix to be computed via Algorithm 1
to obtain the data-driven latent variables and predictors. The
case of CTy, = 0 is regarded as known static factors
that represent collinearity, while a known prior factor CTy,
represents a factor of physical significance.

D. Determining the Number of DLVs

The number of DLVs ¢ can be chosen to capture the most
predictable variations in the data by the DLVs so that there
are virtually no predictable variations left in the residuals.
For monitoring purposes, the work in [43] proposed using the
cumulative proportion of predicted variance (CPPV) to select
the number of DLVs for univariate DLV models. For PPA
models, the DLV relations are multivariate. Given ¥; and IA’ the
corresponding prediction is §; = Pp;. The predicted variance
with £ DLVs is

4
trace(ﬁj(ﬂ)) = trace(laflgfﬂ) = Zki

i=1
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which gives the total predictable variance when £ = p. We
define the proportion of total variance (PTV) of ¢ DLVs as

trace(fl;,(ﬂ)) Zle Ai

PTV(L) = ~ = —
trace<2y> trace(Ey)

(29)

Further, the proportion of predictable variance (PPV) of ¢
DLVs is defined as

trace(flj,(ﬂ)) Z{i_l A

PPV({) = - ==

trace(ZyA (p)) Dzt M

(30)

To determine the number of DLVs, one simple method is
to choose ¢ so that PPV({) accounts for, say, 95% of the
predicted variance using all p latent variables. A final model
with £ DLVs is built, which can be used for process monitoring
purposes.

IV. PPA FOR MONITORING
A. Impact of Faults on Prediction Residuals

The DLV prediction b, depends on the past v; as given
in (6), which further depends on the past y,. The prediction
error according to (11) is

N
ex =y, — Y PBPTy, ;.
=1

If a fault affects the data as
Y =Y +fi

where f is the actual fault and yj is the fault-free portion of
Yi- The impact of the fault on the residual is

N S
e =yi — ) PBPTY.;+fi— ) PBPTf
j=1 j=1
N
=+ |I- ZPBJ-PTq_l fi (31)
j=1

where e} is the fault-free portion of e and g~ is the

backward-shift operator. It is seen from (31) that the impact of
the fault on the prediction error is filtered, which can reduce
the sensitivity to detect it.

To illustrate the reduced sensitivity, we consider the follow-
ing simple example where s = 1, By = 0.5, P = [1 O0]T.
Equation (31) gives

-[3] [ 5 1)
ek e;k 0 1 f2k

If there is a step fault in fx, the impact magnitude on ey
is 0.5 at steady state, while its impact on y; is 1.0. Since
ik = 0.5y1 k—1 +e1x, we have var(y;) = (4/3)var(er). The
ratio of the magnitude of fi to the standard deviation of yj is

14 3
1/y/var(y)) =1/ gvar(el) = %_/\/var(el)

while the ratio of the magnitude of the fault in e is
0.5/+/var(er). Therefore, there is a reduction in fault sensi-
tivity when ey is used for fault detection, although it removes
autocorrelation in yy.

B. PPA-Based Monitoring

Many works dealt with the monitoring of faults based on
models from dynamic data with various degrees of effective-
ness. One approach is to build monitoring indices on vy —
br and static noise &c. The approach is sound since these
residuals are not serially correlated, but it can lose sensitivity
to faults, as shown in the previous example. In this work,
we propose an improved monitoring scheme based on (3),
including monitoring the prediction residuals {€;} in (32) and
the principal predictors {V;}.

1) Monitoring the Prediction Residuals: Given the PPA
model and the prediction

=Py (32)
we calculate the prediction error matrix ES =Y, — \A’SIA)T and
the prediction error &; =y, — P¥, and perform EVD on

3, = ETE;/N = W, AW, (33)

where A, = diag(Ae1,Ae2,...,Aep) is arranged in a
descending order and contains the variances of the PCs. By
selecting the number of PCs ¢, to capture, for example 95%
of the total variance in ES, we have the loadings of the PCs
P, = W,(:, 1:£,).

The monitoring of & can be performed using the principal
loadings P, to calculate the scores £, y = PJ]é, and residual

e = (I — PePJ)ék. (34)

We define the Hotelling’s index
Le
2 -12
Te = Z )“e,i te,ik
i=1

where ?, i is the i entry of ¢, . Te2 approximately follows
a x? distribution with [, degrees of freedom, which has an
upper control limit of X(f(le) with (1 — «) as the confidence
level.
The residual e, is monitored by the Q index as follows:
Q. = €] &. (35)
Assuming € is normally distributed with A, ; as the variance
of the i component, based on the theorem of Box [14], [44],
ge_lQe approximately follows a x2(h,) distribution with an
upper control limit of Xo% (he), where

2
p 2 P .
_ 2imt11 )‘e‘i ) _ ( i=C,+1 )»e,z)
AN > e P 2
i1 Ve, i—tet1 e,

Sometimes, it is preferred to monitor a combined index of
TZ and Q, rather than monitoring them separately, which has
been proposed for static process monitoring [14], [45]. Since
both T2 ~ x2(¢,) and g, ' Q, ~ x%(h,) follow x? distributions
and are independent, the combined index

b =T, + &' Qe ~ x*(Le + he) (36)

has a control limit XQZ, (Lo + h.) with confidence level 1 — «.
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2) Monitoring the Principal Predictors: From (3) it is seen
that the DLV prediction {¥;} should also be monitored. If a
fault occurs in the past data that are used to predict {v;}, it
can enhance the detection of such a fault.

The monitoring of {v} is straightforward due to Theorem 2.
Since the number of DLVs £ is chosen to include significantly
predictable ones, the covariance of the principal predictors
¥; = diag(A1, A2, ..., Ag) is well conditioned. The monitoring
of principal predictors can be implemented with the following
Hotelling’s index:

4
AT S —la 1~
T2=9%; #= § AR~ 20 (37)
i=1

where vy is the ith entry of ¥, which has a control limit Xg(Z)
with confidence level 1 — «.

Sometimes, it is desirable to implement an overall monitor-
ing index for both the prediction residuals and the principal
predictors. Using the fact that the principal predictors {V;} are
uncorrelated to their residuals, an overall index is calculated
by combining Tg with ¢, as

bo =T + e ~ x> (U + e+ h) (38)

which has a control limit X§ (£+4£,+ h,) with confidence level
1 —oa.

V. FAULT IDENTIFICATION AND RECONSTRUCTION

Assuming {y,} is fault-free up to time k and Fault i affects
the subsequent data {yk+j};": | as follows:

Yitj = )’;.:,_j + Eifk+j (39)

where y; : is the fault-free portion of the data and unknown
after the fault happened. We would like to estimate the fault
matrix E; € RP*Y from the faulty data. The PCA-based
reconstruction [46], [47] can be extended here. Denoting

Cktjlk = Yitj — Pk (40)

where Vi is the j-steps ahead prediction which is fault-free,
we have

~ Ak —
itk = €y + Eif iy (41)

where & = ¥; 4 PVitjik is fault free. Denoting

Ep = (i1 - ertmik]
En = [k - &pmpl

F,, = [fk+1 fk+m]

we have

E, =E! + &F,. (42)

When the fault magnitude f}, ; becomes significant, the normal
prediction residuals E’ are relatively insignificant, therefore,
&; and E,, approximately share the column space. By perform-
ing SVD on E,, = U,,D,, V., we can choose E; = U,,(:, 1:£;)
as the estimated fault directions.
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Fig. 1.

Flowchart of the PPA-based modeling and monitoring strategy.

We propose to select ¢; incrementally so that the residuals
E,,; in (42) can be reconstructed within its normal control limit.
Denoting the reconstruction of E* in (42) as

E, =E, - &F, (43)
the best reconstruction is to minimize ||E,rn||%, which leads to
(44)
(45)

F: = E]E,

E;, = (I- g8 )E,.

Denoting &, as the j” column of Ef, to calculate &,
using &, = (I — PePeT)é,erﬂk and ¢Z(k + j) using (36),
¢, (k + j) can be brought back to the normal control limit by
increasing ¢;. The smallest ¢; that brings ¢; (k 4 j) back to
the normal control limit is selected. This is the reconstruction-
based approach to selecting ;.

After the effective ¢; is determined, the columns of E; =
U,,(:, 1:¢;) can be used to define the RBC of the fault as

RBC = diag{&D2(1:4;, 1:¢,)E]} (46)

where diagf{-} denotes the diagonal elements of the matrix.
The elements of RBC serve as contributions to the fault of each
variable. Fig. 1 shows the flow chart of the offline modeling
and online monitoring strategy based on PPA.

VI. CASE STUDIES
A. Illustrative Example

We simulate a simple dynamic example with a process fault
as shown in Fig. 2. The process disturbance is measured as
vax ~ N(0, 1) . The measured control variable is

1 1 B 1
g AT I a g %

Yik =

Kg—!
1+ l_qqfl
It is straightforward to calculate that the variance of yy; is
(/11 -1 - K)z]) since the variance of yyx is one.

The measured time series of y, = [yix y2«]T is analyzed
with the proposed PPA for process monitoring. We use the
normal process gain of K = 0.5 to generate 100 fault-
free samples as training data to build a model for process
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Tllustrative example of a process fault under feedback control.
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Fig. 3. Monitoring charts of ¢, and ¢, using 2 DLVs compared to DiCCA
and PCA-based monitoring for the illustrative example.
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Fig. 4. ROC curves of DiCCA and PCA-based methods based on ¢, and

¢, monitoring indices for the illustrative example.

monitoring. A process gain fault occurs with K = 1.5 and
100 new fault samples are generated as a test set to test the
effectiveness of the PPA, dynamic inner CCA (DiCCA), and
PCA algorithms. We specifically design the change in K that
does not lead to a change in the variance of the process
output data. The PCA focusing on variance changes does
not detect any anomalies. Fig. 3 shows the fault monitoring
results of the example with the three methods. For better visual
representation, the monitoring indices using PPA, DiCCA, and
PCA have been transformed to a scale based on log;,. It is
clearly seen that both PPA and DiCCA are able to effectively
detect the fault, but PCA that focuses on variance only fails
completely.

It is further noted that the fault detection indices of PPA
and DiCCA in Fig. 3 can detect the process gain change
immediately after its occurrence, which requires few samples
to detect. This advantage of PPA and DiCCA makes them
practical since real-world operations typically have much

fewer anomalous data than normal data. The numerical result
of ¢eppa having a lower detection date than ¢,ppa verifies
the analysis in Section V(A), where dynamic residual-based
monitoring tends to reduce the sensitivity for fault detection,
although it removes temporal dependence. ¢,ppa should be
preferred to achieve high detection rates.

Although this fault detection problem is different from a
classification problem where two classes of data are used to
define a classifier, it is of interest to show receiver operating
characteristic (ROC) curves to assess the ability to separate
the normal and faulty samples based on the monitoring indices
generated with various models. Fig. 4 gives the ROC curves
to compare the area under the curve (AUC) values of PPA,
DiCCA, and PCA based on ¢, and ¢, monitoring indices,
revealing that the PPA model has the highest AUC values at
0.92 and 0.97 for ¢, and ¢,, respectively, followed by DiCCA
at 0.83 and 0.85, and PCA at 0.48 and 0.46.

B. Application to the Dow Challenge Data Problem

In this article, the Dow Challenge dataset [39] is adopted
to demonstrate the utility and test the effectiveness of the
proposed PPA for process monitoring. The process with three
distillation columns tends to accumulate impurities caused by
the aging of the catalyst. There are two data sets provided
for the Dow Challenge problem. One was collected from
December 2015 to January 2017 [39], while the other was
collected from February 2017 to October 2017. Changes in
operation mode and anomalies were evident in the datasets.
The data period from January 1, 2016 to May 31, 2016
contains few anomalies and is used to build models for
monitoring purposes. The subsequent 15 days are used for the
monitoring and diagnosis of anomalies and disturbances. The
data set contains missing values and outliers that need to be
preprocessed prior to building the normal models.

The flow diagram of the Dow Challenge process is depicted
in Fig. 5 with relevant flow variables labeled. The primary
column is chosen for the monitoring and diagnosis of faults
with the 15 variables shown in Table I. Four other variables
with virtually no variation are excluded. Based on the mass
conservation of the process in Fig. 5, we can calculate two
new variables

(47)
(48)

Disposal = xp4 - 1000 — Input with
Input = x3 + x4 + x23

where x3, x4, x23, and xp4 are the Input Flow to Primary
Column Bed 3, Input Flow to Primary Column Bed 2, Input
Flow to Secondary Column, and the Secondary Column Tails
Flow, respectively. The coefficient 1000 is used to scale all
variables with the same unit. The Disposal flow in (47) is
included in this case study.

1) Data Preprocessing for Dynamic Modeling: The train-
ing data in the Dow dataset have missing values and outliers.
For dynamic data modeling, we cannot simply delete the out-
lying or missing samples since we must maintain the integrity
of the time sequences. Therefore, we need to reconstruct or
regenerate the samples that are missing or outlying using a
dynamic model. In this article, the following steps are adopted
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Fig. 5. Dow Challenge process flow diagram with relevant flow variables.

TABLE I

15 MEASURED PROCESS VARIABLES OF THE PRIMARY COLUMN IN THE

DoOwW CHALLENGE DATASET

Variable | Description
1 Reflux Flow
To Tails Flow

s Feed Flow from the Feed Column (FC)

g Make Flow

T7 Base Level

Z10 Bedl DP

T11 Bed2 DP

T2 Bed3 DP

T13 Bed4 DP

T14 Base Pressure
T15 Head Pressure
T1s Bed 4 Temperature
19 Bed 3 Temperature
Tog Bed 2 Temperature
To1 Bed 1 Temperature

to preprocess and curate a refined training set for subsequent

mod

1y

2)

3)

eling.

Missing values are replaced by interpolating between
neighboring valid values.

An initial PCA model is built to generate the Q index
to detect outliers that exceed the control limit with
super-high confidence 99.9%, as shown in the top panel
of Fig. 6. It is evident in the figure that sporadically
high outliers are detected. These outliers are further
treated using the missing-value replacement procedure
in the previous step. There are also high Q values
in three segments from around 13-Feb, 07-Mar, and
01-Apr. These periods could be caused by normal
dynamics or disturbances. Subsequently, dynamic PPA
analysis is performed to decide if they are dynamics or
disturbances.

A PPA model is built on the PCA-preprocessed training
data with the ¢, index shown in the middle panel of
Fig. 6. It is seen that two periods of high Q values
from around 13-Feb, and 07-Mar appear normal, which
shows that the first two periods are normal dynamic
variations, but the period around O1-Apr remains high
and anomalous. A comparison between the predicted

Fig. 6.
confidence; (Middle panel) ¢, of PPA using the PCA-preprocessed training
data; (Bottom panel) ¢, of the PPA model using PPA-processed training data.
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(Top panel) Q-index of PCA for outlier detection with 99.9%

and actual values in Fig. 7 shows that the “Bed 4 DP”
values in this period are anomalous, since the actual and
predicted “Bed 4 DP” values deviate significantly after
a step change from around O1-Apr. Consequently, the
predicted “Bed 4 DP” values for the period from 01-
Apr are used as PPA-processed data to build a refined
PPA model for monitoring and diagnosis. The resulting
¢. index of the refined PPA model is shown in the
bottom panel of Fig. 6, which is normal except for some
sporadic outlying values, leading to an acceptable Type-I
error of 4.25%.

With the preprocessed data of the 16 variables, we conduct
the following two scenarios of fault detection and reconstruc-
tion and compare the results.

1) Apply the PPA based method in this article to the 16

variables.

2) Using the macro-balance of the process in Fig. 5,

1000 - (x5 — x¢) — Disposal =0

perform residual calculations using (47) and (28) with
C = [1000, —1000, —1] for x5, x¢, and Disposal
and other elements in C are 0. Then investigate the
effectiveness of PPA for fault detection and diagnosis.

2) Proportion of Predictable Variance and the Number of
DLVs: To illustrate the effectiveness of PPA in capturing the
highest PPVs in the data, we built PPA, LaVAR-CCA, and
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Fig. 7. PPA predicted values and true
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Fig. 8. PTVs and PPVs for PPA, LaVAR, and DiCCA models of the

Dow Challenge dataset: (Top panels) original variables; (Bottom panels)
residualized variables.

DiCCA models on the training data of the original variables
and residualized variables in the top panels and bottom panels
of Fig. 8, respectively. It is evident that PPA is capable of
achieving the highest PTV for the same number of DLVs
among the three methods. This result is due to the maximized

Tails Flow

Make Flow

" Base Pressure

Disposal

9187
TEN-LO
TEN-9T |
TENHT
1dy-10
1dy-01

values of the 16 variables using the PCA-preprocessed training data.

covariance objective in the PPA model, while in the other two
models the canonical correlations are maximized.

The number of PPA DLVs ¢ is chosen with PPV to account
for at least 95% of the total predictable variances. It is seen that
£ =4 is sufficient to account for 95% of PPVs for both PPA
models. For comparison, the PPV (¢) and PTV (¢) for LaVAR-
CCA and DiCCA are also shown in the figure.

3) Anomaly Detection and Diagnosis of the Test Data:
After the final PPA models and the corresponding monitoring
control limits are obtained, we apply them for the fault
detection and diagnosis on the test set from June 1 to June 15.
Fig. 9 shows the ¢, monitoring charts for the test set with the
original variables in the top panel and residualized variables
in the bottom panel. The ¢, indices have two periods of very
high values that exceed the respective control limits. They
are two periods of unknown disturbances that are detected
from the 16 process variables. To verify that these disturbances
have a significant impact on product impurity, Fig. 10 shows
the impurity samples of the training and test sets. The two
periods are labeled Disturbance 1 and Disturbance 2 for further
diagnosis.

For the two detected disturbance periods, we perform
the fault diagnosis with reconstruction using (46) and (45).
To determine the appropriate number of fault directions to
adequately reconstruct the monitoring index ¢,, Fig. 11 shows
the reconstructed ¢, and the original ¢, in logarithmic scale
for the two disturbances. It reveals that £; = 7 and ¢, = 7
are needed to reconstruct Disturbances 1 and 2 in the original
data, while ¢; = 5 and ¢, = 7 are sufficient to reconstruct
Disturbances 1 and 2 in the residualized data. The subtle
difference is due to the fact that the residualized data excluded
one mass conservation relation.
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Fig. 10. Training data and test data separated with a vertical dashed line. The
two PPA-detected disturbance periods are highlighted with different colors.

Fig. 12 shows the RBCs of Disturbances 1 and 2, with
the left panel for the original variables and the right panel
for the residualized variables. The two disturbances are seen
to have very different signatures. Disturbance 1 seems to
have uniform contributions from nearly all variables. On the
other hand, for Disturbance 2 “Make Flow” and “Base Level”
have dominant contributions using the original data, while
“Feed Flow” appears as another strong contributor for the
result using the residualized data. Since Feed Flow and Make
Flow are the process inlet and output flows that co-move
with the throughput, the diagnosis result with the residualized
variables in the right panel gives a complete picture of the
root cause in Disturbance 2. This result shows the advantage
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Fig. 12. RBC of each variable to Disturbances 1 and 2: (Left panel) using
PPA of the original variables; (Right panel) using PPA of the residualized
variables.

of incorporating first-principles relations in the PPA model for
diagnosis.

With the reconstructed values using (44), it is possible to
generate for what the normal operation data would look like if
there were no disturbances. Denoting a period of anomalous
data {yk+j}j”; | with Yy, = [¥441 -+ Yiyml, the reconstructed
data is

Y. =Y, — EF". (49)

We generate the reconstructed data for the detected disturbance
period in the training set as well as the two disturbances in the
test set, and compare them with their actual values as shown in
Fig. 13 with the PPA model of the original data and in Fig. 14
with the PPA model of the residualized data. It is clear that
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the original values for these three disturbances show a notable
discrepancy from their normal state, but the reconstructed
values in green share similar characteristics to the normal
data, demonstrating the effectiveness of the reconstruction
method for data generation and curation. Furthermore, the

anomaly periods in the training and test
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sets with the PPA model of the residualized data.

test data for Disturbance 1 show discrepancies in nearly
all variables, while those for Disturbance 2 show large dis-
crepancies in Feed Flow, Make Flow, and Base Level. This
detailed result verifies the result of the RBC-based diagnosis
in Fig. 12.
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VII. CONCLUSION

This article develops a PPA method and applies it to the
monitoring of multidimensional time series data. The maxi-
mum predicted variance of the latent predictors is achieved
with orthonormal loadings. The objective separates predictable
content from unpredictable content in multiple time series and
differs from the maximum-variance objective in PCA that does
not focus on predictions. The number of principal predictors
is selected to capture a high PPV for applications, such as
process monitoring. Using the Dow Challenge process data,
the PPA model is shown to capture more predicted variances
than other competing latent dynamic models with the same
number of latent variables.

The application of the PPA method to the Dow Challenge
process data shows its significant effectiveness in fault
detection and the reconstruction-based diagnosis. The real
application also shows that many practical issues must be
addressed in data-driven monitoring, including data cleaning
and preprocessing. The application to the Dow Challenge
data with incorporating first-principles relations shows the
advantage of the reconstruction-based contribution for the
diagnosis of root causes. In addition, the effectiveness of
dynamics-based monitoring over PCA-based monitoring is
clearly demonstrated with a closed-loop control example.

For future work, it is possible to extend PPA to deal
with missing data using either the EM framework or the
reconstruction technique proposed in the article. Furthermore,
the proposed PPA with orthonormal loadings is simpler than
our previous work [34], which implements oblique projections
to achieve uncorrelated dynamic and static noise terms. These
solutions represent different realizations based on Theorem 1.
Although their pros and cons are likely problem-dependent,
PPA achieves maximal predicted variances for a given number
of latent variables.

APPENDIX
PROOF OF THEOREM 2
Since
A A A N DU
V, =V, ViV, =VS<VSTVY) VIV,

we have from (24), (25), and (26),

%5 = VIV,/N =VIV/N = VIVVV/N

=PTYIV,V}Y,P/N = PTWAWTP. (50)

To maximize the diagonal elements of )A:;, the only choice
is P = W(;, 1:£), which leads to (27) with this choice. It is
also convenient to choose P = W(, £ + 1:p) that makes it
orthogonal to P.
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