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PPDM-YOLO: A Lightweight Algorithm for SAR
Ship Image Target Detection in
Complex Environments

Hongjie He, Tianwen Hu, Sheng Xu

Abstract—To address the critical challenges in synthetic aperture
radar (SAR) ship target detection, including complex background
speckle noise interference and the difficulty in balancing model
lightweight design with detection accuracy, this article proposes an
innovative PPDM-YOLO model. Through modular architecture
design, we establish a four-part technical framework: First, a
lightweight feature extraction module named PCA is developed
to reduce computational complexity by analyzing feature map
redundancy, effectively mitigating feature degradation caused by
noise. Second, the noise-resistant enhancement module, PSA-G,
integrates the multiscale adaptive gradient threshold module with
a dynamic spatial attention mechanism. This integration enhances
target feature representation while effectively suppressing noise
interference. Third, DySample technology is employed in place of
conventional upsampling methods to improve the quality of feature
reconstruction and preserve spatial details. In addition, a multi-
scale fusion small target detection network is introduced to boost
small object detection through cross-layer feature interaction. Ex-
perimental results on HRSID and SSDD datasets demonstrate
that PPDM-YOLO achieves 93.7% mAP50 and 70.3% mAP50-95
on HRSID, while reaching 99.4% mAP50 and 78.7% mAP50-95
on SSDD, showing significant advantages over mainstream detec-
tion models. With 34.7% fewer parameters than YOLOv11n, our
model achieves optimal balance among noise suppression, model
lightweighting, and detection accuracy. This research provides an
efficient and reliable technical solution for real-time SAR ship
detection in complex marine environments.

Index Terms—Deep learning, synthetic aperture radar (SAR),
ship detection, YOLOv11n.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) plays a pivotal role in
maritime surveillance, particularly in vessel detection, due
to its all-weather and all-lighting imaging capabilities. Unlike
optical sensors, SAR is independent of weather conditions,
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enabling the stable acquisition of high-resolution images. This
allows for precise capture of vessel shapes and structural fea-
tures, providing reliable support for marine safety and traffic
monitoring. Through its multimode observation capabilities,
SAR can efficiently achieve dynamic monitoring of vessels
across different sea areas, making it a key technology for military
reconnaissance and marine control [1], [2], [3], [4].

Conventional SAR ship detection approaches predominantly
utilize the constant false alarm rate (CFAR) algorithm and its
improved variants [5]. For example, Zeng et al. [6] combined
CFAR processing with dual-polarization data to leverage the
rich feature representation of dual-polarization and the inten-
sity suppression of background noise by CFAR. This method
improves the ability to detect small-scale maritime targets and
emphasizes potential ones. Li et al. [7] proposed a two-step
CFAR detection architecture that focuses on identifying target
superpixels through a combination of global and local detec-
tion mechanisms. The statistical properties of superpixels were
described using weighted information entropy, enabling better
differentiation between target and clutter superpixels. CFAR
detection operates by exploiting the scattering differences be-
tween targets and background. This method is effective for
strong scattering targets when prior target information is un-
available. However, it faces limitations in adapting to complex
sea conditions, with issues such as a high false-negative rate for
diminutive targets and poor detection stability, which restrict its
practical application.

In recent times, the swift progress in deep learning tech-
nologies has led to neural network-based detection methods
gradually outperforming traditional CFAR algorithms. Deep
learning detection technologies are typically divided into two
primary categories: single-stage detectors [8] and two-stage
detectors [9]. Among them, you only look once (YOLO) [10]
and single shot multibox detector (SSD) [11] are the most
prevalent single-stage detectors, while region-based convo-
lutional neural networks (R-CNN) [12], fast R-CNN [13],
and faster R-CNN [14] are typical representatives of two-
stage detectors. Two-stage detectors offer higher accuracy but
face significant bottlenecks in ship recognition speed. In con-
trast, single-stage detectors strike a better balance between
detection speed and accuracy, delivering enhanced real-time
performance.

SAR ship target detection across multiple scales remains a
prominent research focus. Zhao et al. [15] incorporated the
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convolutional block attention module (CBAM) focus mecha-
nism into the feature pyramid network (FPN) to boost multiscale
ship detection in complex SAR environments.Wang et al. [16]
combined asymmetric pyramid nonlocal blocks and SimAM
attention to mitigate nearshore background clutter. After the C3
module output, a channel transformation enhanced interchannel
communication, boosting the detection of multiscale targets
and small object accuracy. Zhu et al. [17] proposed DB-FPN,
which improves the multiscale detection capability of ships by
enhancing the integration of spatial and semantic data and by
fully utilizing feature maps from different locations through
featurereuse. Sietal. [18] put forward an optimized bidirectional
feature fusion network architecture during the feature fusion
stage. By integrating bidirectional cross-layer pathways (top-
down and bottom-up), this framework dynamically fuses mul-
tiscale features through adaptive weighting, thereby achieving
significant improvements in ship detection accuracy under mul-
tiscale scenarios. Liangjun et al. [19] introduced MSFA-YOLO,
which integrates the DenseASPP module to enhance feature
extraction for large ships with a larger receptive field, strength-
ening the model’s adaptability to multiscale features. Huang
et al. [20] developed alpha IOU, which introduces a weighted
combination into the traditional IOU calculation, allowing for
flexible adjustment of the loss function, enabling the model
to better adapt to variations in object scale and shape. Wang
et al. [21] proposed MSDNet, which effectively utilizes ship
target information from low-level feature maps, allowing the
detector to better concentrate on tiny vessels. The fused multi-
scale features retain abundant contextual details. Hong et al. [22]
combined visible light images with SAR ship images for mul-
tiscale detection, boosting the model’s robustness in detecting
multiscale targets. Zhang et al. [23] combined deep networks
with internal scattering features of ship targets to make better
use of scattering information, thereby improving the ability to
represent global features. Gong et al. [24] introduced the SSPNet
network, based on FPN and faster R-CNN, which achieved
excellent results in extracting multiscale features. Liu et al. [25]
proposed DSMF-Net, which enhances the feature fusion stage
by integrating a selective feature fusion (SFF) module with the
MSCA attention mechanism. This design enables the network
to flexibly align high-level semantic features with low-level
spatial features, thereby improving detection performance under
complex backgrounds and for multiscale ship targets in SAR
imagery. Sun et al. [26] proposed two feature balancing modules:
the MSLK-Block and the DFF-Block. The MSLK-Block inte-
grates large-kernel convolutions with partitioned heterogeneous
operations to enable efficient extraction of multiscale features.
The DFF-Block employs a dynamic adaptive mechanism to
fuse features across spatial and channel dimensions, effectively
enhancing feature representation and discrimination. Together,
these modules significantly improve the detection performance
of ship targets in SAR imagery.

As the demand for real-time detection in practical applications
continues to grow, lightweight detection models have emerged
as a significant research focus in recent years. Feng et al. [27] put
forward NLCNet, which uses the depthwise separable convolu-
tion (DSC) introduced in MobileNetV1 as the basic building
block, reducing the model size and improving detection speed.
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Mao et al. [28] put forward the hierarchical feature fusion and
attention network (HFFANet), which achieves fast, automatic,
and high-accuracy ship target detection results through more ef-
ficient feature extraction and effective multilevel feature fusion.
Xiong et al. [29] enhanced the C3 backbone of YOLOv5n by
embedding squeeze-and-excitation (SE) and CBAM attention
mechanisms, resulting in the C3SE and C3CBAM modules.
These units adaptively recalibrate channelwise and spatial fea-
ture responses, achieving a balance between speed of com-
putation and accelerated inference performance in real-time
scenarios. Guo et al. [30] put forward the DBA module, which
integrates DSC, batch normalization (BN) layers, and ACON
activation functions. Through lightweight architectural design
and dynamic parameter optimization strategies, this module
effectively reduces model complexity while significantly accel-
erating convergence during training. Yin et al. [31] optimized
the pointwise convolution component in DSC by replacing it
with grouped pointwise convolution. In addition, integrating
a channel attention mechanism into the convolutional unit de-
sign enables the method to achieve model lightweighting while
marginally improving object detection accuracy. Cui et al. [32]
suggested a lightweight TNN network with an optimal segmen-
tation approach, using the harmonic mean of precision and recall
to segment ship targets. This model enables rapid ship detection
in large-scale SAR images. Li et al. [33] reorganized the feature
extraction network in faster-RCNN by employing a preliminary
architecture, thereby decreasing network complexity and param-
eter quantity while amplifying the effect of multiscale feature
fusion. Hao and Zhang [34] redesigned a lightweight network
module, MobileNetV3S. Combining MobileNetV3S with the
cross stage partial network created a lightweight backbone net-
work, achieving a slight accuracy improvement while signifi-
cantly reducing the number of parameters. Xu et al. [35] intro-
duced a lightweight cross-stage partial module, which reduces
computational complexity and optimizes model compactness
through integrated network pruning techniques. Tang et al. [36]
proposed BESW-YOLO, which integrates a lightweight EMSC-
C2f module into the feature extraction network. This module
enhances feature extraction for targets of varying scales through
multiscale convolution, while significantly reducing computa-
tional overhead. As a result, it improves both the efficiency and
effectiveness of multiscale ship detection in SAR imagery. Man
and Yu [37] proposed the NSFE module based on SPDConv
and MobileNetV3 to enhance feature extraction capability. In
addition, they designed the MECA attention mechanism, which
integrates both global and local information. This design ef-
fectively strengthens multiscale perception and maintains de-
tection accuracy, while significantly reducing the number of
parameters and computational cost. Hao et al. [38] proposed a
lightweight backbone network, CSP-MobileNetV3_UP, which
significantly reduces the number of parameters and computa-
tional complexity while maintaining strong feature extraction
capabilities. In addition, the designed MSFE-SAR module com-
bines dilated convolution, attention mechanisms, and a feature
pyramid structure to expand the receptive field and enhance
multiscale feature fusion with minimal computational over-
head, enabling efficient detection of multiscale targets in SAR
imagery.
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In addition, arising from the unique imaging mechanism of
SAR, speckle noise is inevitably generated, which significantly
impacts targets, particularly nearshore ship targets and those in
close proximity to one another. This results in more severe false
negatives and false alarms. To address this issue, The N-YOLO
framework developed by Tang et al. [39] incorporated a SAR
target potential area extraction module, which synergistically
combines the CA-CFAR algorithm with morphological dilation
operations to ensure the comprehensive extraction of suspected
target regions in SAR imagery. The detection module optimizes
subsequent detection processes by fusing the original image
with extracted potential regions, generating a low-noise recon-
structed image for enhanced analysis. Zhao et al. [40] proposed
a simplified morphological denoising module, Sim-Mor, which
effectively suppresses speckle noise with minimal computation,
enabling the module to be integrated into the backbone. This
allows the network to concentrate more on the features of the
target. Zhao et al. [41] also introduced an imaging preprocessing
structure that combines deep morphological networks, providing
the detection network with features that contain edge informa-
tion and reduced noise. Dai et al. [42] proposed DenoDet, a
network that focuses more on high-frequency transformation
calibration convolutional biases. It forms a natural multiscale
subspace representation for target detection from the perspective
of denoising across multiple subspaces.

Despite significant advancements in multiscale detection
techniques for SAR ship target recognition, several critical
challenges remain in optimizing detection performance.

1) Target feature loss: Inherent speckle noise in SAR images
causes the model to lose critical ship features, such as
edge sharpness, scatter point distribution, and structural
information, during training, leading to degraded feature
representation capability.

2) Insufficient feature extraction: The low signal-to-noise
ratio environment hinders CNNs from capturing complete
features—speckle noise obscures target textures, small
targets suffer from feature degradation due to network
downsampling, and background noise introduces feature
interference.

3) Efficiency-accuracy trade-off: While existing lightweight
models reduce parameter complexity, they often exacer-
bate shallow feature loss, further compromising detection
performance.

These challenges are interrelated: the first two directly limit
detection accuracy, while the third restricts practical deploy-
ment. Therefore, developing a noise-robust feature extraction
framework that balances accuracy and efficiency remains a
critical research frontier in SAR target detection.

To address the aforementioned technical challenges, this
study innovatively proposes the PPDM-YOLO lightweight de-
tection architecture. Through synergistic optimization of mul-
tiple modules, it achieves an optimal balance between com-
putational efficiency and detection accuracy. Extensive exper-
imental validation on representative SAR ship datasets such
as HRSID [43] and SSDD [44] has demonstrated its superior
performance. The main technical contributions of this work are
manifested in the following aspects:
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1) To effectively mitigate feature loss caused by speckle
noise in SAR images and reduce the computational bur-
den introduced by redundant information, we propose a
redundancy-aware PCA module. By integrating partial
convolution (PConv) with a channel attention mechanism,
this module enhances noise robustness while compressing
redundant features, enabling lightweight and efficient fea-
ture extraction.

2) To balance noise robustness and feature representation in
SAR images, this article introduces the PSA-G module.
It constructs a 3-D gradient space based on multiscale
adaptive gradient threshold (AGT), employs a lightweight
threshold generator alongside normalized soft thresholds
to suppress noise, and integrates a dynamic point-state
attention block (DPSA) to model feature dependencies.
Through gradient-domain noise suppression and dynamic
calibration mechanisms, the PSA-G module significantly
enhances the accuracy and anti-interference capabilities
of SAR small target detection in complex sea conditions.

3) We replace the original YOLOvI1n upsampling layer
with the DySample module in the neck, enabling flex-
ible point-based interpolation. This enhances multiscale
feature reconstruction and better preserves spatial details
for small target localization.

4) We propose multiscale fusion small target detection net-
work (MSTFNet) module, a lightweight multiscale fusion
framework that integrates high-level semantics and low-
level detail features. It improves detection performance for
dense and small ships while keeping computational cost
low—suitable for real-time SAR scenarios.

II. RELATED WORK
A. YOLOvlIIn

The YOLOvV11n [45] architecture consists of three core com-
ponents: a backbone network, a neck network, and a head
network. The backbone employs deep convolutional operations
to extract hierarchical features from input images, while the
neck optimizes cross-layer feature fusion by adaptively integrat-
ing multiscale features from the backbone, thereby enhancing
the efficiency of semantic information propagation. The head
performs the tasks of object classification and localization. As
shown in Fig. 1, YOLOvl1In introduces a novel architectural
design in these three parts, with the most notable innovations
being the C3K2 convolution mechanism and the C2PSA module.
The C3K2 module is integrated into multiple channels within
the head to handle multiscale features across different depths.
Its structure adapts based on the C3K parameter: when C3K
= False, it functions similarly to the C2f module, employing a
standard bottleneck design. Conversely, when C3K = True, the
bottleneck structure is substituted with the C3 module, facilitat-
ing deeper and more complex feature extraction. Key attributes
of the C3K2 block include improved efficiency—by replacing
a single large convolution with two smaller ones, computa-
tional overhead is minimized, accelerating feature extraction.
In addition, YOLOvVI 1n introduces architectural improvements
to the C2 module by integrating pointwise spatial attention
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Fig. 1. ' YOLOvlIn algorithm framework.

(PSA) to construct the C2PSA module, significantly enhancing
core feature extraction capabilities. Building upon the multihead
attention mechanism design strategy, this module demonstrates
notable improvements in small-scale object recognition and de-
tection accuracy in complex scenarios. The decoupled detection
head at the network’s terminal has been structurally optimized
through the incorporation of dual DSC module. This enhance-
ment effectively reduces parameter size and computational com-
plexity while maintaining model compactness, achieving an
optimal balance between detection efficiency and computational
resource utilization.

B. Partial Convolution

PConv is an improved convolution operation designed for
image inpainting and missing data handling. Its core idea is
to adaptively focus on the valid pixel regions through a dy-
namic mask update mechanism [46]. Let the input feature map
be X € RE*HXW with the corresponding binary mask M &
{0, 1}7*W (where 1 indicates valid pixels and 0 indicates miss-
ing pixels), the convolution kernel weights be W € RF*kxCxC"
and the bias be b € R®". The output ¥ and the updated mask M’
of the PConv are calculated as follows:

Y(p) =
iy Wij'X(futqi(’ﬂi)h-)l\/f(pﬂ,pﬂ) + b, if sum(Mygen) > 0
0, otherwise

(D

g Input/output
g Filter

%k Convolution

wessipe-  [dentity

Fig. 2. PConv.

where p represents the output position coordinates, and denotes
the mask region within the current convolution window. The
normalization factor sum(Mpqch) ensures that the output value
is not affected by the number of valid pixels. After each convo-
lution, the mask is updated as follows:

1
M/ — )
(p) 0

if sum > 0
(2)

otherwise.

The updated mask is passed to the next layer, gradually
reducing the influence of noise regions. Specifically, PConv
selectively applies standard convolution operations to a subset
of input channels for spatial feature extraction, while simulta-
neously maintaining the original feature representations of the
unprocessed channels. This design significantly reduces com-
putational complexity. Moreover, by reducing memory access,
PConv is more suitable for I/O-constrained devices. Fig. 2
describes the working principle of PConv: it applies the filter
only to a few input channels while keeping the other channels
unchanged, thereby achieving efficient computation.
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III. PROPOSED METHOD

A. Overview of the Algorithm

This article introduces a more efficient SAR ship detection
network framework, PPDM-YOLO, based on YOLOv11n, as
shown in Fig. 3. The input is a 640 x 640 SAR ship image.
In the backbone network feature extraction, we propose a more
efficient PCA module that selectively strengthens the effective
features of ship targets while ignoring noise and irrelevant
information to reduce channel redundancy, thereby reducing
both parameters and computational complexity. In addition, to
further improve the feature extraction capabilities of PCA, we
adopt the efficient channel attention (ECA) network [47], which
provides an optimized balance between model complexity and
channelwise feature calibration capability. Building on this, we
integrate the PSA-G module for effective noise suppression and
efficient feature fusion, enhancing the overall feature represen-
tation. The introduction of DySample [48] focuses more on the
fine details of small targets in SAR ship images, avoiding the
potential target information loss and inefficient feature learn-
ing typically found in traditional upsampling structures. The
proposed methodology significantly enhances the identification
accuracy of small-scale maritime targets amidst cluttered marine
environments while mitigating interference from heterogeneous
background elements. MSTFNet, combined with the PCA and
DySample modules, for enhanced precision in detecting smaller
ship targets, with the final detection processed by the head
network.

B. PCA Module

Ship targets in large-scale scenes are often interfered with by
sea surface clutter, lighting pollution, and other disturbances,
especially when docked near coastal piers where the ship’s

J
Concat

—>» Concat

40*40*128

l 80*80*64 I'
| DySample |

40%40%128 —» Prediction

80*80*64 — Prediction

—> Concat ———————>

Y 160%160%36 — Prediction

>

outline is similar to that of the dock structures. The subtle feature
differences can easily be lost during information transmission.
Traditional convolution operations compute pixel values over
the entire convolution kernel, but when some regions of the
image have missing data (such as occlusions or noise), traditional
convolutions may produce inaccurate results. To overcome this
issue, we propose replacing traditional convolution with PConv
and designing a lightweight feature extraction module, PCA,
that integrates the ECA mechanism, as shown in Fig. 4. In the
PCA module, the in.ut feature map is originally handled for
preliminary feature extraction, followed by halving the number
of channels to effectively reduce computational load. The re-
maining spatial features are extracted using PConv operations.
The ECA attention mechanism is applied at the front end of
the PConv to enhance the feature representation. Finally, the
features extracted by PConv are concatenated with the retained
features along the channel dimension and fused using a point-
wise convolution, further reducing the computational load and
generating the final output. The PCA module enhances feature
extraction capability for ship targets while ensuring efficiency,
particularly in scenarios with noise or missing data.

C. PSA-G Module

To address the challenges posed by speckle noise interference,
multiscale feature representation difficulties of ship targets, and
high false alarm rates caused by complex ocean backgrounds
in SAR images, this article proposes a PSA-G module based
on adaptive gradient thresholding and dynamic attention. The
proposed framework establishes an optimal equilibrium be-
tween noise robustness and feature discrimination in SAR ship
detection through gradient-domain noise suppression, feature
decoupling learning, and dynamic calibration mechanisms. As
shown in Fig. 5, at the network architecture level, we introduce
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amultiscale AGT module. This module constructs a 3-D feature
space using fixed-parameter Sobel operators for horizontal, ver-
tical, and diagonal gradients. A lightweight threshold generator
dynamically predicts spatially adaptive thresholds, and a max-
normalized soft-thresholding function is employed to truncate
noise gradients. Given an input feature map X € RE*H*W,
the AGT module constructs a 3-D gradient space using a fixed-
parameter Sobel operator set {V; }3_;

-1 0 1
Vi=|-2 0 2| (horizontal)
-1 0 1
-1 -2
Vo=|0 0 0 (vertical) (3)
12 1
[0 1 2
Va=|-1 0 1| (diagonal).
2 -1 0

The multiscale gradient features are as follows:

G = [V1X, VX, V3X] € R3OHW, 4)

G is processed by a lightweight threshold generator to predict
spatially adaptive thresholds:

7 = c(Wa(ReLUW; (@)))) ®)

where Wy € R3¢%C/4 and W, € RE/43C are 1 x 1 convo-
lution layers, and o represents the Sigmoid function. Finally,
noise suppression is achieved through a max-normalized soft-
thresholding function as follows:

S(gijx) = sign(gijx) - ReLU <|gijk| — Tijk 'mgX(\gich)
(6)

Next, during the feature processing stage, we introduce a DPSA
Block. After the input feature map undergoes multihead self-
attention processing, the generated attention output is scaled by
a learnable factor . This scaling factor is optimized through
backpropagation, allowing the model to automatically adjust
the influence of the attention mechanism during training. This
adaptability enhances the model’s ability to accommodate the
diversity and complexity of targets in SAR images. The pro-
cessing of an input feature map B € RE*"*W is able to be
formulated as follows:

DPSA(B) = B + a - MHA(B). @)

During the feature fusion stage, a dual-stream decoupled
learning strategy is employed, where the dimension-reduced
feature space is orthogonally decomposed into a low-frequency
contextual branch (Branch a) and a high-frequency detail branch
(Branch b). Branch a utilizes DSC to preserve the overall
structure of the target, while Branch b enhances local saliency
features through a DPSA sequence. Finally, cross-scale feature
interaction is achieved via grouped convolution. This module
effectively addresses the diversity and challenges of SAR ship
images, demonstrating superior performance and enhanced sta-
bility, particularly in complex background detection tasks.

D. DySample Module

The upsampling method used in YOLOv1 1n, nearest neigh-
bor interpolation (NNI), is commonly applied to enlarge the
feature map dimensions. However, due to its fixed rule, it
cannot adaptively adjust sampling, limiting its performance in
complex tasks. Although dynamic upsampling methods, such as
content-aware reassembly of features (CARAFE) [49], efficient
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upconvolution block (ECUB) [50], and SAPA [51], can enhance
performance, they often require complex dynamic convolutions
or additional subnetworks, which increase computational and
memory overhead, thus limiting practical applications.

To improve efficiency and reduce computational resource
consumption, we introduce the lightweight DySample module
in the feature extraction of the neck network. Unlike traditional
dynamic upsampling methods, DySample redefines the upsam-
pling process from a point-based sampling perspective, avoiding
the complex computations that rely on convolutional kernels. By
generating offset positions to sample feature points, it enhances
the input features and effectively reduces computational com-
plexity.

The core concept of DySample is to return to the essence of
upsampling—point sampling—to simulate geometric informa-
tion in the feature map. For an upsampling scale factor s and a
feature map X of size C' x H x W, a linear layer transforms
the input with C' channels into an output with 2 s channels,
generating an offset O of size 2 s. This offset is then reshaped
into2 x sH x sW through pixel transformation. To increase the
flexibility of the offset, a linear projection of the input features is
used to generate pointwise “dynamic range factors.” By applying
the sigmoid function and a static factor of 0.5, the dynamic scope
maps values within the range [0, 0.5] to a static value centered at
0.25. As shown in Fig. 6, the bottom box illustrates the version
with the “static range factor,” where the offset is generated
through a linear layer. The top box presents the “dynamic range
factor” version, in which the range factor is first derived and
then used to adjust the offset. The symbol ¢ denotes the sigmoid
function. The sampling set .S is obtained by adding the offset O
to the original sampling grid G, approach as follows:

X = grid_sample(X, S) 8)

S=0+G C))
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O =0.5-o(linerl(X) - liner2(X)). (10)

The introduction of DySample places greater emphasis on the
fine details of small targets in SAR ship images, addressing the
issues of target information loss and inefficient feature learning
that often occur with traditional upsampling structures. This
results in improved performance for small ship target detection
in complex backgrounds.

E. MSTFNet Module

In our approach, we propose a MSTFNet that considers
features from both the same level and adjacent levels. This
approach allows high-level information to be transferred to lower
level features, thereby retaining rich semantic information. We
introduced an ultrasmall 160 x 160 target detection layer in
the head network to address the loss of small target information
in high-level features. In addition, considering that large ship
targets are less common in SAR images, we made adjustments
for large target detection by removing the original large target
detection head for the 20 x 20 feature map and replacing it with a
mid-sized target detection head for the 40 x 40 feature map. This
change allows for the detection of both large and medium targets
while maintaining stable accuracy and reducing the number of
parameters.

As shown in Fig. 7, we introduce a lateral fusion strategy
among multiscale feature maps to enhance the detection capabil-
ity for targets of varying scales. Specifically, the medium-scale
detection head with a resolution of 40 x 40 is enhanced by
concatenating features from PCA3, PCAS, and Convo6, thereby
improving the recognition of medium and large ships. The
small-scale detection head with aresolution of 80 x 80 integrates
features from PCA2, PCAG6, and ConvS5 to improve the percep-
tion of small ships. In addition, by concatenating DySample3
with PCA1, we introduce a new ultrasmall object detection
head to strengthen the model’s performance in detecting high-
resolution, fine-grained small targets. Ultimately, three detection
heads are formed with the following specific functions:

PCA7: A newly added ultrasmall object detection head de-
signed for 160 x 160 high-resolution feature maps, specifically
aimed at improving the detection accuracy of ultrasmall ships
in SAR images.

PCAS: A small object detection head based on 80 x 80 reso-
lution feature maps, providing enhanced capability for detecting
small ships.

PCA9: A medium-to-large scale object detection head
operating on 40 x 40 resolution feature maps, primarily used
for detecting common medium and large ships.

This method optimizes cross-scale feature connectivity and
enhances the model’s ability to effectively capture and utilize
hierarchical information, while also extracting shallower convo-
lutional features to capture the fine details of small ship targets.

PCA7 = concat(DySample3, PCA1) (11)
PCA8 = concat(PCA2, PCA6, Conv5) (12)
PCA9 = concat(PCA3, PCA5, Conv6) (13)
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Fig. 7. MSTFNet Module.

IV. EXPERIMENTAL RESULTS AND THE ANALYSIS
A. Experimental Detail

All experiments were conducted on the same computer con-
figuration, utilizing Python 3.9 and the PyTorch 2.1.2 frame-
work. The hardware setup includes an Intel Core i7-12700F CPU
@ 2.10 GHz and an Nvidia GeForce RTX 4060 Ti GPU. The
experimental results of YOLOvI11n were used as the baseline.
During the training phase, the initial learning rate was set to 0.01,
momentum was set to 0.9, and the AdamW optimizer (Adam
with weight decay) was chosen to optimize the parameters
of the neural network, enhancing stability and incorporating
weight decay to reduce overfitting. The batch size was set to
16, and k-means clustering was employed to obtain multiscale
anchor points matching the specific characteristics of the dif-
ferent datasets. The training ran for 300 epochs. During the
testing phase, nonmaximum suppression (NMS) and confidence
thresholds were configured at 0.45 and 0.25, respectively.

To enhance the scientific rigor and stability of model selection,
our methodology incorporates an early stopping mechanism
while maintaining a fixed upper limit of 300 training epochs
to mitigate overfitting risks. The training automatically termi-
nates when neither the mAP50 nor mAP50-95 validation met-
rics show improvement for 30 consecutive epochs. The model

PCA7

JE——

weights achieving peak validation performance (measured by
both mAP50 and mAP50-95) are retained for final evaluation.

B. SAR Ship Dataset

The HRSID and SSDD datasets are two major SAR im-
age datasets for remote sensing ship detection. The HRSID
dataset, released by Wei et al. [43] in 2020, consists of 5604
high-resolution images (800 x 800 pixels, 0.5-3 m resolution)
collected from TerraSAR-X, Sentinel-1, and TanDEM-X satel-
lites. The dataset contains 16 951 annotated ship instances, with
small (54.5%), medium (43.5%), and large (2%) ship bounding
boxes covering 0%—0.16%, 0.16%—1.5%, and more than 1.5% of
the image area, respectively, making it particularly challenging
for small object detection. The SSDD dataset contains 1160
SAR images (500 x 500 pixels, resolution 1-15 m), integrating
data from Sentinel-1, TerraSAR-X, and RadarSat-2 satellites,
with a focus on small object detection in complex marine
environments. Both datasets, with multisource data fusion and
fine annotations, provide a multiscale, multiscenario benchmark
platform for SAR-based ship detection algorithms.

In this experiment, the input image sizes for HRSID were set
to 640 x 640, and for SSDD, they were set to 500 x 350. The
data were randomly allocated to training and test groups in an
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TABLE I
CONFUSION MATRIX

Truth Forecast results
Positive example  Counter example
Positive example TP FN
Counterexample FP TN

8:2 proportion, and the model’s performance was evaluated on
small object detection and multiscale SAR ship detection tasks.

C. Evaluation Metrics

To analyze the results of object detection training, the model
is evaluated based on the following metrics: mean average preci-
sion (mAP), Precision (P), Recall (R), the number of parameters
(Params), frames per second (FPS), and the confusion matrix.
The confusion matrix summarizes the true and predicted labels
in a matrix form, as shown in Table I. The elements of the
confusion matrix are defined as follows.

TP (True Positive): A correct identification of a positive
instance by the model;

FN (False Negative): The model misses a true positive in-
stance;

FP (False Positive): The model incorrectly flags a negative
instance as positive;

TN (True Negative): A correct identification of a negative
instance by the model.

1) Precision: The proportion of samples predicted as positive
by the detection model that are actually positive. The formula
for calculation is as follows:

P= TP .
TP + FP

2) Recall: The proportion of actual positive samples that are
correctly detected as positive. The formula for calculation is as
follows:

(14)

TP
=i (15)
3) mAP: The average AP (average precision) value across
multiple categories. The AP for each category is calculated first,
and then the average value is taken as the overall performance
metric. The formula for calculation is as follows:

1 C
AP = — AP; 16
m C; (16)

where c is the number of categories.

D. Comparison Experiments

To evaluate the strong detection capability of PPDM-YOLO
for SAR images, we performed a comparative analysis under
the same conditions and parameter settings with eight widely
used SAR ship detection models: SSD [11], faster R-CNN [14],
YOLOvV5n [52], YOLOv8n [53], YOLOvlln [45], LMSD-
YOLO [30], MSFA-YOLO [19], and BESW-YOLO [36]. Two
datasets, HRSID and SSDD, were used for performance evalu-
ation. The comparison results are shown in Tables II and III.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

We conducted initial experiments using the HRSID dataset.
Table II provides a detailed comparison of the accuracy for each
model. Clearly, our model achieved the best performance, with
an mAP50 of 93.7%. PPDM-YOLO improved the accuracy by
3.1% compared to YOLOv11n. We visualized near-shore targets
in the HRSID dataset to demonstrate PPDM-YOLQ'’s precise
detection of these targets. As shown in Fig. 8, we selected three
images with dense objects in complex scenes, which presented
significant detection challenges. Despite these complexities,
PPDM-YOLO consistently demonstrated its superior ability by
accurately detecting objects in these challenging scenarios. The
specific detection results for ship targets under different methods
are shown in Table IV.

In the visualization results on the HRSID dataset, signif-
icant differences in the detection performance of the three
baseline models were observed in complex near-shore back-
grounds. In label Image 1, which contains 13 ship targets,
the experiment shows that YOLOvS5n produces four FP de-
tections, while YOLOv8n and YOLOv11n both control the
number of FP detections to three. In label Image 2, with
nine targets, YOLOvS5n results in 1 FP detection, but exhibits
target splitting, where a single true target is misidentified as
two separate targets. YOLOv8n produces two FP detections,
and YOLOvl1n optimizes the performance to only one FP
detection. In the densely packed small target scene of la-
bel Image 3, which contains 11 targets, both YOLOv5n and
YOLOvl11ln show one FN detection and one FP detection,
while YOLOvV8n maintains a relative advantage with only 1 FP
detection.

Next, we conducted comparative experiments on the SSDD
dataset. Compared to the HRSID dataset, the background in
the SSDD dataset is relatively simpler. As shown in Table III,
each model demonstrated high accuracy. Our model achieved
a slight advantage with a mAP50 of 99.4%. In addition, the
model’s parameter count is 1.71 M, and its size is only 4.2 MB.
Despite the minor accuracy differences, our model is the lightest
while also achieving a moderate FPS. Similarly, as shown in
Fig. 9, we visualized the near-shore targets in the SSDD dataset.
Table V presents the detailed detection results of ship targets on
the SSDD dataset under different methods.

In the visualization analysis of the SSDD dataset, notable
differences were observed in the target detection performance
of the seven models under complex near-shore backgrounds. In
Label Image 1, which contains six ship targets, YOLOv5n ex-
hibited the highest number of missed detections, producing four
FN detections. YOLOvVS8n showed slightly better performance
with two FN detections, while YOLOvI11n further improved
by reducing the FN detection to one but introduced two FP
detections. In contrast, our model demonstrated the best perfor-
mance, detecting nearly all targets with only one FN detection.
In label Image 2, which consists of 11 ship targets, a similar
trend was observed. YOLOv5n performed the worst, generating
six FN detections, while YOLOv8n reduced one FN detection.
YOLOVI11n performed relatively well, producing only one FP.
In label Image 3, which contains three ship targets, all three
baseline models, YOLOv5n, YOLOv8n, and YOLOV1 1n, failed
to achieve perfect detection, each producing one FP detection.
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COMPARISON OF TARGET DETECTION WITH OTHER METHODS ON HRSID

TABLE II
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Model Dataset P(%) R(%) mAP50(%) mAP50-95(%) Params(M) FLOPs(G) FPS Size(MB)
SSD [11] HRSID 92.3 58.7 79.9 64.0 — - 21 -
Faster R-CNN [14] HRSID 87.2 89.1 89.1 56.1 — - 9 -
YOLOvV5n [52] HRSID 90.7 82.9 90.8 66.7 2.18 5.8 333 5.5
YOLOVS8n [53] HRSID 90.8 85.1 91.7 67.4 3.01 8.2 322 6.3
YOLOvI11n [45] HRSID 90.9 82.3 90.6 66.7 2.62 6.3 294 5.5
MSFA-YOLO [19] HRSID 92.4 86.0 92.7 67.1 - - - -
LMSD-YOLO [30] HRSID 92.7 86.4 93.9 - 3.50 6.6 68 7.6
BESW-YOLO [36] HRSID 92.3 81.2 90.0 - 1.70 6.9 - -
Ours HRSID 93.4 86.0 93.7 70.3 1.71 7.5 169 4.2
TABLE III
COMPARISON OF TARGET DETECTION WITH OTHER METHODS ON SSDD
Model Dataset P(%) R(%) mAP50(%) mAP50-95(%) Params(M) FLOPs(G) FPS Size(MB)
SSD [11] SSDD 93.2 72.8 94 .4 57.0 — - 21 -
Faster R-CNN [14] SSDD 81.0 94.2 97.1 61.0 — - 9 -
YOLOV5n [52] SSDD 97.9 96.5 99.3 77.5 2.18 5.8 333 5.5
YOLOV8n [53] SSDD 98.4 96.8 99.2 78.4 3.01 8.2 322 6.3
YOLOvl11n [45] SSDD 96.8 97.6 99.3 77.6 2.62 6.3 294 5.5
MSFA-YOLO [19] SSDD 97.7 98.0 98.7 66.2 - - - -
LMSD-YOLO [30] SSDD 96.5 94.1 98.0 - 3.50 6.6 68 7.6
BESW-YOLO [36] SSDD 95.2 92.2 97.3 69.6 1.70 6.9 — -
Ours SSDD 98.4 97.8 99.4 78.7 1.71 7.5 169 4.2

Fig. 8. Our method compares the visualization results with YOLOvSn and YOLOvVS8n in HRSID. (a) Ground truth (GT) image. (b) PPDM-YOLO. (c) YOLOv5n.
(d) YOLOVS8n. (e) YOLOv11n. Note that green boxes represent ground truth annotations, red boxes represent true positive ship targets, blue boxes represent FN
ship targets, and yellow boxes represent FP ship targets.
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TABLE IV
PERFORMANCE EVALUATION OF DIVERSE SHIP DETECTION APPROACHES ON HRSID
Method Imagel Image2 Image3
GT TP FN FP GT TP FEN FP GT TP FN FP

YOLOv5n 13 13 0 4 9 8 1 3 11 10 1 1

YOLOv8n 13 13 0 3 9 9 0 2 11 11 0 1

YOLOvlIn 13 13 0 3 9 9 0 1 11 10 1 1

Ours 13 13 0 0 9 9 0 0 11 11 0 0
Fig.9. Our method compares the visualization results with YOLOv5n and YOLOvVS8n in SSDD. (a) GT image. (b) PPDM-YOLO. (c) YOLOv5n. (d) YOLOv8n.

(e) YOLOvI11n. Note that green boxes represent GT annotations, red boxes represent TP ship targets, blue boxes represent FN ship targets, and yellow boxes

represent FP ship targets.

TABLE V
PERFORMANCE EVALUATION OF DIVERSE SHIP DETECTION APPROACHES ON SSDD

Method Imagel Image2 Image3

GT TP FN FP GT TP FN FP GT TP FN FP
YOLOV5n 6 2 4 0 11 5 6 0 3 3 0 1
YOLOv8n 6 4 2 0 11 10 1 0 3 3 0 1
YOLOv11n 6 5 1 2 11 11 0 1 3 3 0 1
Ours 6 5 1 0 11 11 0 0 3 3 0 0

In our model, the PCA and PSA-G modules address issues
such as target feature loss and insufficient feature extraction
caused by speckle noise in SAR ship images with complex
backgrounds. In addition, the introduction of MSTFNet and
DySample significantly improves the detection accuracy of
small targets. Furthermore, our model reduces the number of
parameters, offering significantly better performance compared
to other models.

E. Verification of Complex Background Dense SAR Images

To validate the performance of our method in dense target
detection, we conducted comparative experiments using dense
SAR ship images from two typical maritime scenarios: coastal

TABLE VI
COMPARISON RESULTS OF DIFFERENT MODELS FOR DENSE TARGETS IN
HRSID UNDER OPEN SEA BACKGROUND

Method GT TP FN FP P(%) R(%)
YOLOv5n 51 44 8 1 97.8 84.6
YOLOv8n 51 48 7 4 923 87.3
YOLOvlln 51 45 9 3 93.8 83.3
Ours 51 49 2 0 100 96.1

and open-sea environments. Figs. 10 and 11 present the visual
detection results for coastal and open sea SAR scenarios.
Tables VI and VII systematically compare the detection
metrics between our method and three typical CNN models.
In open-sea large-scene multitarget detection (see Table VI),
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Fig. 10.
targets, and blue boxes represent FN ship targets.

Fig. 11.

Detection results of dense targets in SAR images of open sea scenarios. Note that green boxes represent GT annotations, red boxes represent TP ship

Detection results of dense targets in SAR images for coastal scenarios.Note that green boxes represent GT annotations, red boxes represent TP ship

targets, blue boxes represent FN ship targets, and yellow boxes represent FP ship targets.

our method successfully detected 49 ships with zero FP detec-
tions and only two FN detections, achieving 100% precision
and 96.1% recall. This significantly outperforms comparison
methods, demonstrating superior anti-interference capability in
complex sea clutter environments. As shown in Table VII,
our method maintains its leading position in more challenging
high-resolution coastal SAR scenarios with 94.4% precision
and 91.1% recall, benefiting from optimized feature extraction

module and effective noise suppression strategy. However, three
FN detections and five FP detections remain in coastal scenarios.

It should be emphasized that coastal detection presents signifi-
cantly greater challenges than open-sea conditions. Quantitative
analysis reveals performance degradation across all four models
in coastal scenarios, attributable to two main factors: 1) Strong
scattering interference from terrestrial structures and port fa-
cilities reduces target contrast; 2) Occlusion effects from dock
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TABLE VII
COMPARISON RESULTS OF DIFFERENT MODELS FOR DENSE TARGETS IN
HRSID UNDER OPEN SEA BACKGROUND

Method GT TP FN FP P(%) R(%)

YOLOV5n 53 40 16 3 93.0 71.4

YOLOvV8n 53 39 20 6 86.7 66.1

YOLOvlIn 53 41 15 3 93.2 73.2

Ours 53 51 5 3 94.4 91.1
TABLE VIII

PARAMETERS OF THE TWO MODELS ARE COMPARED ON THE BACKBONE

backbone YOLOv1ln PPDM-YOLO11
Module Params Module Params
1 Conv 464 Conv 464
2 Conv 4672 Conv 4672
3 C3K2 6640 PCA 4864 (-1772)
4 Conv 36 992 Conv 36,992
5 C3K2 26 080 PCA 18 496 (-7584)
6 Conv 147 712 Conv 147,712
7 C3K2 87 940 PCA 47 232 (-40 708)
8 Conv 295 424 Conv 295 424
9 C3K2 346 112 PCA 185 600 (-160 512)
TABLE IX

COMPARATIVE RESULTS OF DIFFERENT ATTENTION MECHANISM MODELS

Method P(%) R(%) mAP50(%) mAP50-95(%)
SE 914  82.1 91.5 66.9
CA 915 839 91.3 66.8
CBAM 907 827 90.7 67.2
PCA 927  86.0 92.5 68.4

installations or large vessels lead to incomplete target morphol-
ogy, complicating feature identification. Our proposed algorithm
addresses these challenges through multiscale feature fusion and
context-aware modules, demonstrating stronger environmental
adaptability than traditional CNN approaches.

F. Ablation Experiments

1) Effect of PCA Module: Furthermore, we investigated the
lightweight design of the PCA module by comparing PPDM-
YOLO based on the backbone with YOLOvI1n. Table VIII
shows that, in the first five layers, the advantage is not sig-
nificant due to the lower number of channels. However, as
the number of channels increases, our model demonstrates a
substantial improvement in efficiency, particularly in the 7th
and 9th layers, where it reduces 40 708 and 160 512 parame-
ters, respectively. Overall, our model contains 1.71 M param-
eters, achieving a 34.7% reduction compared to YOLOvI1In
(2.62 M).

To further assess the effectiveness of the PCA model, we
performed a comparative analysis with three alternative attention
mechanism models: SE [54], coordinate attention (CA) [55], and
CBAM [56]. The detailed experimental results are presented in
Table IX.
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TABLE X
COMPARATIVE RESULTS OF DIFFERENT UPSAMPLING MODULES

Method P(%) R(%) mAPS0(%) mAP50-95(%)
NNI 90.9 82.3 90.7 66.7
EUCB 91.0 82.5 90.7 66.8
CARAFE 90.8 83.1 90.9 66.2
DySample  91.9 82.8 915 67.1

The data shows that, compared to the baseline model, mAP50
increased to 92.5%, and mAP50-95 increased to 68.4%, demon-
strating the effectiveness of the lightweight network structure of
the designed PCA module.

2) Effectof PSA-G Module: InExperiment 3, we investigated
the role of the PSA-G module. Fig. 12 illustrates the changes
in mAP50 and mAP50-95 values during training for both the
baseline and our method. As shown by the blue curve for PSA-G,
the mAP50-95 increased by 0.9%, and the mAP50 increased
by 1%.

3) Effect of DySample Module: Table X presents the ex-
perimental results of different upsampling modules based on
YOLOVI1 In. Compared with three mainstream upsampling ap-
proaches, CARAFE, EUCB, and NNI, our proposed method
demonstrates significant improvements on the HRSID ship
dataset. Specifically, it achieves a 1% increase in precision, 0.5%
enhancement in recall, 0.8 % gain in mAP50, and 0.4% improve-
ment in mAP50-95 over the baseline model. The DySample
module enables the model to concentrate on pivotal regions
through dynamic feature adaptation, thereby boosting overall de-
tection performance. Comparative analysis reveals that DySam-
ple not only outperforms existing upsampling techniques but
also exhibits robust feature extraction capabilities and remark-
able adaptability to diverse ship recognition scenarios, partic-
ularly in complex maritime environments with scale variations
and occlusions.

4) Effect of MSTFNet Module: In Experiment 4, we inves-
tigated the role of the MSTFNet module. The data indicates
that this module increased mAP50-95 by 3%, with mAP50
increased by 1.9%, while simultaneously reducing the parameter
count by 0.66 M. The module employs lightweight feature fusion
techniques to enhance efficiency and reduce computational load.

5) Summary: Finally, we combined all modules and con-
ducted an ablation study on the HRSID dataset. As shown in
Table XI, we used YOLOv11n as the baseline model to evaluate
the effectiveness and impact of the PCA, PSA-G, DySample, and
MSTFNet modules. The contribution of each module is marked
with a “v".” Compared to YOLOvV11n, our model reduced the
parameter count by 34.7%, increased mAP50 by 3%, mAP50-95
by 3.6%, while maintaining a moderate FPS. These ablation
studies highlight the significance of each module within the
PPDM-YOLO framework, emphasizing their complementarity
and their effectiveness in improving YOLOvV1 1n performance.

V. DISCUSSION

With the growing demand for lightweight models and high-
precision object detection, the proposed PPDM-YOLO in this
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TABLE XI
ABLATION STUDIES OF MODEL COMPONENTS ON HRSID

Methods DySample PCA PSA-G MSTFNet mAP50(%) wmAP50-95(%) Params(M) FPS
YOLOvlIn 90.7 66.7 2.62 294
1 v 91.5 67.1 2.63 312
2 v 92.5 68.4 2.02 212
3 v 91.7 67.6 2.60 263
4 v 92.6 69.7 1.96 156
5 v v v v 93.7 70.3 1.71 169

article provides an effective solution for SAR ship detection
tasks, achieving a strong balance between accuracy and compu-
tational constraints. The model addresses common challenges
in SAR images, such as speckle noise interference, significant
variations in target sizes, and densely distributed small targets,
by constructing a detection framework that features multimodule
collaboration, strong feature representation, and suitability for
resource-constrained environments.

First, the PCA module analyzes redundancy relationships
among feature map channels and integrates the ECA attention
mechanism to compress redundant features while enhancing
critical information. This module not only effectively reduces
model parameters and computational overhead but also im-
proves the efficiency and robustness of feature extraction. Sec-
ond, to tackle the severe noise interference in SAR images, the
PSA-G module is proposed, combining AGTs with dynamic
spatial attention mechanisms. This approach suppresses invalid
noise interference while preserving detailed features, achiev-
ing synergistic optimization between feature decoupling and
dynamic calibration, further enhancing the model’s adaptability
to complex backgrounds.

In the feature reconstruction and upsampling stage, the
DySample module is introduced. Compared to traditional up-
sampling methods, DySample employs a “single-point dynamic
dispersion into multiple points” mechanism, focusing more
on the fine structures of small target regions and avoiding
common issues such as feature loss and inefficient learning,
thereby significantly improving feature restoration quality. The
MSTFNet module adopts a cross-layer feature fusion strategy,
integrating adjacent layer features while enhancing information

flow between different semantic levels. This allows high-level
abstract semantics to propagate to low-level detailed informa-
tion, substantially improving the model’s detection capabil-
ity for small targets and spatial localization accuracy. Exper-
imental results demonstrate that PPDM-YOLO achieves lead-
ing performance on two public datasets, HRSID and SSDD.
On HRSID, it attains 93.7% mAP50 and 70.3% mAP50-95,
while on SSDD, it reaches 99.4% and 78.7%, respectively.
Compared to YOLOv11n, the model reduces parameters by
34.7% while surpassing it in accuracy, fully validating its com-
prehensive advantages in lightweight design, precision, and
robustness.

Visualization results show that PPDM-YOLO deliv-
ers strong detection performance across various complex
maritime backgrounds, particularly excelling in scenarios
with densely distributed small targets. Notably, although
the model has significantly reduced overall computational
costs, there remains room for optimization in memory
usage for extremely resource-constrained edge computing
devices.

Future research will focus on further reducing model
complexity and deployment costs. We plan to incorporate
lightweight techniques such as model distillation and neural
network pruning to compress and optimize the model structure,
making it suitable for a broader range of real-time applications.
In addition, we will explore multisource SAR image train-
ing, cross-platform deployment adaptation, and end-to-end joint
training mechanisms for noise suppression and detection, aiming
to provide more efficient and robust solutions for SAR image
intelligent processing.
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VI. CONCLUSION

Currently, a significant portion of research focuses on
improving experimental accuracy through large-scale models,
often overlooking the lightweight requirements associated
with deployment. SAR ship imagery is characterized
by complex backgrounds due to speckle noise and the
presence of small, densely clustered targets. To address these
challenges, we propose PPDM-YOLO, a lightweight SAR ship
detection algorithm designed for complex environments. By
integrating PCA, PSA-G, MSTFNet, and DySample modules,
PPDM-YOLO not only demonstrates robust feature extraction
capabilities but also effectively fuses multiscale features,
excelling particularly in detecting densely distributed small
objects. Compared to existing methods such as YOLOv1In,
our approach achieves higher accuracy while significantly
reducing the number of parameters. Extensive experiments on
two benchmark datasets validate the effectiveness of the PCA,
PSA-G, MSTFNet, and DySample components. PPDM-YOLO
is well-suited for deployment on hardware across diverse and
complex SAR ship detection scenarios.
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