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ABSTRACT Adverse weather conditions such as haze, rain, and snow degrade images captured by uncrewed
aerial vehicles (UAVs) during transmission line inspections and severely affect the detection of corrosion
defects in transmission line fittings. To address this challenge, we propose LARNet-SAP-YOLOv11, a uni-
fied end-to-end model that integrates lightweight image restoration and defect detection. The proposed model
comprises LARNet, a lightweight all-in-one image restoration network, and SAP-YOLOv11, an enhanced
object detector based on YOLOvI11. LARNet is built upon the DehazeFormer architecture and introduces a
Triplet Attention Block (TAB) to improve adaptability to various weather degradations. SAP-YOLOv11
enhances the baseline YOLOvI11n by incorporating a Shallow Robust Feature Downsampling (SRFD)
module, an Adaptive Fine-Grained Channel Attention (AFGCAttention) mechanism, and a Pixel-level
Cross-Attention Feature Fusion (PCAFFusion) module, significantly improving corrosion area perception.
Experimental results show that LARNet achieves an average PSNR of 30.43 dB and SSIM of 0.951 across
different conditions. For defect detection, SAP-YOLOv11 improves the mAP@50 by 2.1% compared to
the original YOLOv11n. When jointly applied, LARNet-SAP-YOLOv11 achieves an mAP@50 of 88.6%,
outperforming the baseline YOLOvI11n by 12.1% in challenging weather conditions. This unified model
offers an efficient and reliable solution for UAV-based intelligent inspection of transmission lines under
diverse environmental conditions.

INDEX TERMS Adverse weather, corrosion defect detection, LARNet, transmission line fittings, UAV
inspection, YOLOv11.

I. INTRODUCTION

Overhead transmission lines are critical infrastructure in
power systems, responsible for delivering electricity from
power stations to load centers, thereby meeting both indus-
trial and residential energy demands. With the continuous
expansion of the power grid, transmission lines now span
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vast geographic areas and are increasingly exposed to harsh
environmental conditions such as high humidity, strong
winds, and frequent rain or snow. Common transmission line
fittings—such as suspension clamps, anti-vibration hammers,
U-shaped hanging loops, and triangular joint boards—are
particularly susceptible to corrosion due to long-term expo-
sure to mechanical stress and environmental erosion. Corro-
sion significantly weakens the mechanical strength of these
components, increasing the risk of failures such as conductor
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breakage and short circuits, which may severely compromise
the safe and stable operation of the power system. Therefore,
regular inspection of transmission lines, especially corrosion
monitoring of critical fittings, is essential for infrastructure
safety [1].

With advancements in smart grids and artificial intelli-
gence, uncrewed aerial vehicles (UAV) and deep learning
technologies have been increasingly applied in power line
inspection tasks. UAV equipped with high-definition cam-
eras can efficiently capture visual data of transmission line
fittings, enhancing the automation and accuracy of inspec-
tions [2]. However, in regions prone to adverse weather like
haze, rain, and snow, UAV-captured images suffer signifi-
cant degradation—haze reduces contrast and blurs details,
raindrops cause occlusions and refractions, and snowflakes
obscure critical textures—severely impairing defect detection
performance. Moreover, corroded transmission line fittings
face higher risks of damage and failure in adverse weather,
and relying solely on clear-weather inspections is insufficient
for regions with prolonged exposure to haze, rain, or snow.
Conducting inspections under adverse conditions is essential
to ensure timely fault detection and reduce failure risks,
necessitating robust image restoration to enable accurate
defect identification.

To address the challenges posed by adverse weather con-
ditions, researchers have proposed various methods that inte-
grate image restoration with object detection. For instance,
Qiu et al. [3] proposed the IDOD-YOLOv7 model, which
combines an image dehazing module (IDOD) with the
YOLOV7 detector to significantly enhance detection accu-
racy under low-light conditions. Wang et al. [4] focused on
image degradation in battlefield scenarios and developed an
image restoration method based on a physical imaging model,
which was integrated with the YOLOVS5 detector to enable
clearer imaging and improved target detection under such
conditions. In the field of transmission line defect detection
under diverse weather conditions, Jia et al. [5] introduced
an adaptive hybrid network based on the YOLOvV8 model to
improve the detection of foreign objects on transmission lines
in adverse weather. However, the method lacked an image
restoration module, limiting its ability to enhance input image
quality for the detector. Song et al. [6] employed an improved
dark channel prior algorithm to preprocess hazy images
before inputting them into the YOLOvV5 model, improv-
ing detection precision for fittings under hazy conditions;
nevertheless, this two-stage approach involved cumbersome
preprocessing. These studies offer valuable insights into
the integration of image restoration and object detection.
However, most of them focus on single-weather scenar-
ios and lack adaptability to different weather conditions.
Deng et al. [7] integrated multiple image restoration models
with an enhanced YOLOV7 detector to improve the detection
of insulator defects under hazy and rainy conditions. Their
approach, however, required weather classification during
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preprocessing, resulting in a more complex pipeline and
reduced scalability.

In summary, current approaches integrating image restora-
tion with object detection still face significant limitations.
For instance, existing methods primarily focus on combining
single-weather restoration models with object detection mod-
els [3], [4], [7], lacking research on integrating multi-weather
restoration models with object detection, which results in
limited generalization across diverse adverse weather condi-
tions. Additionally, current inspection tasks for transmission
line fittings typically rely on acquiring clear images under
sunny conditions [5], [6]. In regions with frequent haze, rain,
or snow, this constraint severely impacts image quality and
fault identification rates, leading to frequent missed and false
detections.

To address these limitations, we propose LARNet-SAP-
YOLOV11, an end-to-end joint model for image restoration
and corrosion defect detection of transmission line fittings
under multiple adverse weather conditions. The restora-
tion module effectively removes haze, rain, and snow from
images, providing clear inputs to an enhanced YOLOv11
model, which significantly improves detection accuracy
across diverse weather conditions, thereby enhancing inspec-
tion reliability.

Main contributions of the paper are as follows:

1. We develop a lightweight all-in-one restoration net-
work (LARNet) based on an improved DehazeFormer
architecture, which demonstrates strong image enhance-
ment capabilities across hazy, rainy, and snowy conditions.
Additionally, we design a defect detection model—SAP-
YOLOv11—based on the YOLOvI11n backbone, incorpo-
rating Shallow Robust Feature Downsampling (SRFD) and
Deep Robust Feature Downsampling (DRFD), adaptive
fine-grained channel attention (AFGCAttention), and pixel-
level cross-attention feature fusion (PCAFFusion) to boost
the detection performance for various corroded transmission
line fittings.

2. We construct an integrated LARNet-SAP-YOLOv11
model that jointly optimizes image restoration and defect
detection in an end-to-end manner, eliminating the need for
complex preprocessing. This pipeline ensures high-precision
identification of transmission line fittings and efficient infer-
ence under adverse weather

3. We build a multi-weather corrosion defect dataset for
transmission line fittings, covering three representative types
of degradation: haze, rain, and snow. This dataset provides a
solid foundation for model training and evaluation of gener-
alization ability.

The remainder of this paper is organized as follows:
Section II reviews related work on image restoration and
object detection; Section III describes the proposed model
and its key modules; Section IV presents the experimental
setup and result analysis; and Section V concludes the paper
and discusses future work.
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Il. RELATED WORK

A. IMAGE RESTORATION TASKS

1) RESTORATION METHODS IN SINGLE COMPLEX WEATHER
CONDITIONS

Early studies on image restoration predominantly focused
on modeling under specific weather conditions. Classic
dehazing approaches typically rely on atmospheric scattering
models and prior knowledge to estimate transmittance and
scene radiance, enhancing visibility in hazy images [8], [9].
However, such methods are limited in handling haze with
varying density and complexity. Rain removal techniques
often involve image decomposition, frequency-domain fil-
tering, and traditional machine learning methods [10], [11].
These approaches perform reasonably well in light rain but
struggle with complex rain streaks and raindrops. Simi-
larly, snow removal methods based on image-guided filtering
and texture priors...)) [12], [13] can recover snow-covered
regions, yet they show limited robustness when facing diverse
snowflake shapes and distributions.

With the advancement of deep learning, substantial
progress has been made in image restoration. For instance,
the Dehazing Enhancement and Attention Network (DEA-
Net) [14] and Dehazing Transformer (DehazeFormer) [15]
incorporate atmospheric scattering priors and attention
mechanisms into end-to-end neural networks, significantly
improving both restoration quality and semantic understand-
ing under hazy conditions. In the rain removal domain,
models such as Dual Attention Mixed Network (DAMNet)
[16], Deep Wavelet Transform Network (DWTN) [17], and
Using Enhanced Transformer (UC-former) [18] combine
Transformer structures with convolutional neural networks
(CNN:s), leveraging multi-scale feature fusion to adaptively
suppress rain artifacts. For snow removal, models includ-
ing DesnowNet [19], the Global Windowing Transformer
Network for Snow Removal (SGNet) [20], and Wavelet
Transform Frequency Snow Removal (WaveFrSnow) [21]
introduce multi-stage architectures and global context mod-
eling to effectively handle snow patterns while maintaining
computational efficiency. Despite their strong performance
in isolated scenarios, these methods lack the ability to gen-
eralize to mixed-weather environments and often involve
large model sizes, which limit their deployment in real-world
applications.

2) IMAGE RESTORATION UNDER MULTIPLE ADVERSE
WEATHER CONDITIONS

To address the real-world challenges of UAV-based inspec-
tion under diverse adverse weather, researchers have pro-
posed restoration methods tailored for multiple complex
conditions. These methods can be broadly categorized into
multi-stage strategies and unified restoration models.

In multi-stage strategies, weather-specific features are sep-
arately modeled and learned to enhance restoration across
diverse degradation types. For example, Zhu et al. [22]
proposed a unified model adopting a two-stage training
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strategy. The first stage captures shared weather features,
while the second stage fine-tunes parameters for specific
weather types, improving model adaptability and restora-
tion accuracy. Chen et al. [23] introduced a multi-teacher
multi-student model incorporating knowledge distillation and
review mechanisms. Each teacher network is trained on a spe-
cific weather condition, and the student network learns a gen-
eralized restoration policy by integrating multi-source knowl-
edge. Zhu et al. [24] proposed a multi-weather Transformer
architecture that uses a hyper-network to extract weather
features in the first stage, followed by condition-specific
image restoration in the second stage. This design enables
controllable and adaptive restoration across multiple weather
types. Similarly, Patil et al. [25] first propose an instance-level
domain translation with a multi-attentive feature learning
approach. This method trains separate domain transla-
tion networks for different weather conditions to obtain
various weather-degraded variants of the same scenario.
Cheng et al. [26] propose a novel multi-weather distribution
diffusion blind restoration model (WeaFU). Through a multi-
stage strategy, the model trains a Latent Semantic Mapper,
a Conditional Distribution-Aware Transformer, and a Diffu-
sion Distribution Generator, followed by joint fine-tuning,
creatively utilizing a diffusion model to perceive and extract
different weather distributions.

Although multi-stage methods offer high restoration accu-
racy, they tend to involve complex network designs with
substantial model sizes, resulting in low training and infer-
ence efficiency. Moreover, some of these approaches require
explicit classification of input weather types, increasing
deployment complexity.

In contrast, unified restoration approaches have attracted
significant attention due to their simplicity and scalabil-
ity. Models such as TransWeather [27], PromptIR [28],
TANet [29], UVRNet [30] and MW-ConvNet [31], adopt
single-architecture designs that learn both general and
weather-specific degradation features, enabling effective
restoration under various weather conditions within a single
model. Furthermore, Xu et al. [32] propose a semi-supervised
learning framework that leverages vision-language models
to enhance restoration performance under diverse adverse
weather conditions, utilizing vision-language models to
assess pseudo-labels and incorporating weather prompt learn-
ing to improve image clarity across different weather scenar-
ios.

These unified models exhibit excellent scalability and
potential for real-world deployment. However, they still face
challenges related to model size and parameter efficiency,
necessitating further optimization to enhance generalization
performance while maintaining adaptability to diverse appli-
cation scenarios.

B. TRANSMISSION LINE DEFECT DETECTION TASKS
With the rapid advancement of deep learning-based object
detection techniques, the field has evolved from two-stage
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detection models [33], [34], [35], [36], to single-stage detec-
tors such as SSD [37] and the YOLO series [38], [39],
[40], [41], [42], [43], [44], which offer faster inference and
superior real-time performance. These single-stage models
have been widely adopted in practical applications, including
UAV-based inspection tasks. More recently, the introduction
of Detection Transformers (DETR) [45] has incorporated
Transformer architectures into object detection, enabling end-
to-end learning and expanding the boundaries of the field.

In the context of transmission line defect detection,
Guo et al. [46] applied an enhanced Faster R-CNN model
with feature amplification mechanisms to detect corrosion
defects in transmission line fittings. Experimental results
demonstrated the model’s effectiveness in terms of precision
and recall. However, its large computational complexity and
model size limited real-time performance. Tan et al. [47] pro-
posed a fast and efficient method for insulator classification
and defect recognition based on YOLOvS8n, which also per-
forms well under complex scenarios. Yu et al. [48] integrated
a novel lightweight backbone with YOLOVS, combining
denoising and object detection for accurate identification of
insulator defects in aerial images captured under challenging
conditions. Wang et al. [49] enhanced the YOLOv7 model
by incorporating Transformer architecture, triplet attention
mechanisms, and a smooth Intersection over Union (SIoU)
loss function, achieving real-time and high-accuracy detec-
tion of transmission line defects.

Despite these advancements, two major limitations remain:
Due to the lack of dedicated visible-spectrum remote sensing
datasets for corroded transmission hardware, most existing
studies have focused on typical defects such as insulators,
missing components, and foreign object intrusions, with lim-
ited research targeting corrosion-specific detection models.

Most detection models are designed for clear-weather con-
ditions with high visibility. As a result, their performance
degrades significantly under adverse weather conditions such
as haze, rain, or snow, which severely restricts the applicabil-
ity of UAV-based transmission line inspection systems.

To address these challenges, a dedicated dataset of aerial
remote sensing images for corroded transmission line fit-
tings was constructed. Furthermore, a lightweight all-in-one
image restoration model was integrated with a defect detec-
tion model, enabling high-accuracy corrosion detection under
multiple adverse weather conditions. This approach signifi-
cantly enhances the robustness and practical utility of UAV
inspection systems in real-world environments.

IIl. OVERALL MODEL ARCHITECTURE

We propose an end-to-end joint inference model named
LARNet-SAP-YOLOvV11, designed to achieve efficient cor-
rosion defect detection of transmission line fittings under
various adverse weather conditions. This model integrates a
lightweight all-in-one restoration network (LARNet) with an
enhanced object detection model (SAP-YOLOv11), enabling
collaborative processing for image enhancement and defect
identification. Specifically, the LARNet model is first
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employed to restore degraded images caused by haze, rain,
and snow, generating images with clearer structures and
sharper edges. These enhanced images are then passed into
the SAP-YOLOvV11 model to precisely locate and detect cor-
roded fittings.

As illustrated in Fig. 1, the LARNet-SAP-YOLOv11
model consists of two primary stages. In the first stage,
image restoration is conducted using a lightweight end-to-
end network to reduce atmospheric interference and improve
texture and edge details. In the second stage, high-quality
features are extracted from the restored images by the detec-
tion module, allowing accurate and robust defect detection
of corroded components. This joint optimization approach
effectively mitigates the negative impacts of weather-induced
degradation on inspection images. Moreover, the end-to-end
architecture significantly improves inference efficiency and
enhances adaptability in multi-scenario deployments.

A. LARNet DESIGN

To address efficient image restoration under multiple adverse
weather conditions, we design a lightweight all-in-one
restoration model named LARNet, based on the Dehaze-
Former architecture [15]. LARNet features a compact struc-
ture with low memory usage and fast inference speed, while
also maintaining strong generalization capability for both rain
and snow scenes. Additionally, its high compatibility with the
YOLOvV11 model facilitates seamless integration for end-to-
end joint inference under harsh conditions.

The overall architecture of LARNet is illustrated in Fig. 2.
As shown, the model is built upon the DehazeFormer-b
baseline, enhanced by embedding a Triplet Attention Block
(TAB) to extract semantic and texture features under various
adverse weather conditions. In the encoder stage, LARNet
first employs a convolutional layer to extract key features,
followed by multiple DehazeFormer modules and down-
sampling operations to compress features, enhance channel
information, and prepare for subsequent feature fusion. In the
decoder stage, the first TAB module is incorporated at the
beginning of the decoder, where the input features have
the highest embedding dimension and the smallest spatial
resolution, making it ideal for capturing global context and
optimizing features. The second TAB module is added after
a Selective Kernel Fusion (SKFusion) feature fusion step
and a DehazeFormer module, at which point spatial details
begin to recover. This placement enhances mid-level fea-
tures, improving the model’s focus on local weather artifacts,
such as rain streaks or snow patches. Finally, at the end of
the decoder, a soft reconstruction module facilitates image
reconstruction and adjustment, producing clear images under
diverse weather conditions.

The TAB module includes three sub-attention mecha-
nisms: Local Pixel-wise Attention (LPA), Global Strip-wise
Attention (GSA) and Global Distribution Attention (GDA).
LPA and GSA are responsible for mitigating occlusions
caused by spatially non-uniform degradations, while GDA
addresses atmospheric-induced color distortions and contrast
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FIGURE 2. LARNet model architecture.

degradation [29]. By learning shared noise patterns across
weather conditions, TAB enhances the model’s robustness
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and provides stable, reliable features for corrosion defect
detection.

In the TAB module, the input feature map is first processed
through a convolutional layer, and then separately passed into
LPA, GSA modules, and an additional convolutional branch.
This produces three sets of sub-features, which enhance the
model’s perception of degraded regions.

F~ = LPA (Conv (Conv (F)))
FO = GSA (Conv (Conv (F))) @))
FC€ = Conv (Conv (F))

where F, F-, FO and F€ e RBXCxHxW Tpe symbol
RBXCxHXW  represents feature information with a shape
characterized by a batch size of B, channel number of
C, height of H, and width of W. Among them, F is the
input feature map; F“, FC and FC denote the sub-feature
branches, and Conv represents the convolution operation.
These three sub-features are concatenated and then fused
through a convolutional operation, followed by a residual
connection to generate the multi-scale attention feature F M
which is designed to address non-uniform degradation in the
input image.

FM = Conv (Concat (FL, FG, FC))

@)
F® = GDA (FV)
where FM ¢ RBXCxH*W iq the fused feature; Concat denotes
the concatenation operation across multiple feature maps; and
GDA refers to the Global Distribution Attention. To address
color distortion and contrast attenuation caused by scattering
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FIGURE 3. Architecture of the SAP-YOLOv11 model. Gray blocks denote
original YOLOv11n modules, purple blocks indicate replaced modules,
and orange blocks represent newly introduced modules.

effects, FM is passed through the GDA sub-module to obtain
FP . Then, a double residual connection is applied to globally
adjust the feature distribution, further enhancing the restora-
tion quality.

FoU' = FP + FM 4 Conv (F) 3)

where FO" e RBXCxHxW iq the final output of the TAB
module.

B. SAP-YOLOv11 DESIGN

To improve the detection of corrosion defects on transmis-

sion line fittings under adverse conditions, we develop an

improved object detection model named SAP-YOLOvI11,
based on the YOLOvIl model. As a representative
lightweight detector, YOLOvlln demonstrates a well-
balanced performance in terms of accuracy and efficiency
on our corrosion dataset, making it suitable for deploy-
ment on resource-constrained embedded UAV systems. Thus,

YOLOvl11n is selected as the base structure, upon which

we implement modular enhancements to construct the robust

SAP-YOLOv11 model.

As shown in Fig. 3, the SAP-YOLOv11 architecture com-
prises three components: backbone, neck, and detection head.
We introduce the following three major improvements:

(1) Shallow Robust Feature Downsampling (SRFD) and
Deep Robust Feature Downsampling (DRFD) mod-
ules [50] are used to replace the original downsam-
pling layers in both the backbone and neck, improving
multi-level feature extraction.

(2) Adaptive Fine-Grained Channel Attention (AFGCAtten-
tion) [51] is introduced at the end of the backbone to
enhance local detail extraction and global context aware-
ness.
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(3) Inspired by the Convolution and Attention Fusion Mod-
ule (CAFM) from HCANet and PixelAttention from
DEA-Net [14], [52], we design a novel Pixel-Level
Cross-Attention Feature Fusion (PCAFFusion) module,
positioned between the neck and the detection head. This
module improves multi-scale feature fusion capabilities.

The SAP-YOLOvVI1 model significantly improves the
detection accuracy and robustness for various types of trans-
mission line fitting corrosion defects while maintaining
efficient inference performance.

1) SRFD AND DRFD MODULES

To enhance feature extraction across different semantic lev-
els, we replace the original YOLOvVI 1n downsampling mod-
ules with the proposed SRFD and DRFD components. SRFD
focuses on shallow-layer local detail enhancement, such
as texture and edges, while DRFD strengthens deep-layer
semantic abstraction and fusion.

The SRFD module adopts a two-stage downsampling
structure. In the first stage, a large 7 x 7 convolutional
kernel is applied to expand the receptive field and enhance
the expressiveness of the input features. This is followed
by a multi-branch combination of Cut-slice Downsampling
(CutD), Depthwise Separable Convolutional Downsampling
(DWConvD), and Group Convolution (GConv) to strengthen
edge representation and maintain fine-grained texture infor-
mation. The initial multi-branch downsampling stage pro-
cesses the original feature map to produce a fused output
with enhanced feature details. In the second stage, multi-
scale features are further integrated, and a 3 x 3 convolution
refines the fused information. Maxpooling Downsampling is
then applied to preserve prominent spatial structures while
reducing resolution, yielding the final downsampled feature
map.

The DRFD module adopts a structure similar to the second
stage of SRFD. The key difference lies in the use of the Gaus-
sian Error Linear Unit (GELU) activation function within the
DWConvD block, which enhances the non-linear modeling
capacity of the feature extraction process.

These improvements collectively enable the model to bet-
ter capture fine-grained corrosion features and enhance the
robustness and precision of defect detection under diverse
visual conditions.

2) AFGCATTENTION
To enhance the model’s capability in identifying corrosion-
prone areas on transmission line fittings, AFGCAttention
module is incorporated at the end of the backbone network.
This module operates based on a channel-level weighting
mechanism, significantly improving feature selection and
contextual modeling.

First, global average pooling is applied to compress spa-
tial dimensions and concentrate on global channel-wise
information:

x = AvgPoolyy (X) @)
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FIGURE 4. Schematic of the pixel-level cross-attention feature
fusion(PCAFFusion) module, illustrating the integration of the CAFM unit
and pixel-wise weighting for adaptive feature fusion.

where X € REXCXHXW represents the input feature map,

and x € RBXCXIXI denotes the feature obtained after global
average pooling.

Next, the pooled feature is processed through two parallel
paths to generate intermediate features. One path applies
a one-dimensional convolutional layer with a dynamic ker-
nel size, while the other employs a 1 x 1 convolutional
layer after a transpose operation to align matrices, followed
by the removal of singleton dimensions. These operations
produce two intermediate feature representations. Forward
and backward attention scores are then calculated through
dual-direction attention mechanisms, using matrix multi-
plication to compute channel attention, followed by an
unsqueeze operation to restore tensor dimensions for broad-
casting. The resulting forward attention score and backward
attention score are fused via a Mix operation, followed by
a sigmoid activation to generate the final attention-guided
output. The process can be expressed as (5):

Y = X - Sigmoid (Conv1d (Mix Sy, 55))")  (5)
where ¥ e RBXCXHXW represents the final output fea-
ture map after applying channel-wise attention weighting. Sy
and S, represent the forward and backward attention scores,
respectively, T denotes the transpose operation applied to
feature vectors, and Conv1d refers to a one-dimensional con-
volutional layer.

By introducing the AFGCAttention module, the YOLO-
vl1ln model exhibits significantly enhanced sensitivity to
small corrosion regions, effectively reducing both missed
detections and false positives.

3) PCAFFUSION
To optimize the feature transmission and fusion between the
neck and the detection head of the network, we introduce the
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PCAFFusion module at this junction, as shown in Fig. 4. This
module leverages a pixel-level cross-attention mechanism to
integrate multi-level features, thereby enhancing the repre-
sentation of corrosion regions.

Specifically, the PCAFFusion module first receives two
feature maps at different scales and performs an initial fusion:

F=X+Y (6)

where X and ¥ e REXCXHXW denotes the input feature
maps; F € RBXCxHxW s the initially fused representation.
ubsequently, the CAFM (Convolution and Attention Fusion
Module) submodule employs a multi-head self-attention
mechanism combined with deep convolutional layers to per-
form global modeling on F:

part; = CAFM (F) )

where part; € REXCXH*W g the output feature map after
processing x3 through the CAFM module. Next, pixel-wise
Attention is applied to extract fine-grained local feature
weights, highlighting the salient characteristics of the cor-
roded regions. A sigmoid activation is then used to produce
the adaptive weighting factor:

party; = Sigmoid (PA (F, part;)) ®)

where part; € REXCXH*W g the weighted result produced

by pixel attention and activation; PA denotes the pixel atten-
tion mechanism. The initially fused and weighted features are
then adaptively combined:

result = F + party - X + (1 — partp) - Y ©)]

where result € REXCxH*W jq the final result after multi-scale

feature integration. Finally, a 1 x 1 convolution is applied
for channel adjustment and feature refinement, generating the
final output:

Z = Convjx (result) (10)

where Z € REXCXH*W g the output feature map; Convy
represents the 1 x 1 convolution operation.

By integrating the PCAFFusion module, the object detec-
tion model can adaptively combine both local and global
multi-scale information. This enhances the receptive field of
the detection head, improves the quality of incoming fea-
tures, and significantly strengthens the model’s capability and
robustness in detecting complex, textured corrosion defects.

IV. EXPERIMENTS AND RESULTS

To comprehensively evaluate the effectiveness and robustness
of the proposed joint model in both image restoration and
defect detection tasks, we trained the image restoration and
object detection models independently and performed infer-
ence jointly during the test stage. Additionally, comparative
experiments were conducted by combining various all-in-one
image restoration methods with the baseline and improved
detection models.
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A. DATASET

The original dataset used in this study was constructed using
high-resolution images of transmission lines captured by
UAVs under clear weather conditions. To ensure comprehen-
sive data collection, a two-side round-trip flight strategy was
employed for UAVs, which avoids incomplete data acquisi-
tion caused by capturing images from a single angle while
maximizing the reduction of occlusions and shadows. During
image acquisition, to ensure the safety of UAV operations
near transmission lines and to enhance the resolution of
captured images, the distance between the UAV and the trans-
mission lines or towers was dynamically adjusted between
5 and 25 meters based on different targets, with a flight speed
maintained below 6 m/s.

1) MULTI-WEATHER DEGRADED TRANSMISSION LINE
DATASET

This dataset was generated by applying image processing
software to 4,156 original clear images to simulate weather
effects such as haze, rain, and snow. Among them, 3,739
synthetic images were used for training, and 417 images were
used to generate the test set for each of the three weather
conditions, resulting in 1,251 test images under different
weather conditions. The test set was completely excluded
from training to ensure objectivity and support generalization
assessment, yielding a total of 4,990 degraded images. Exam-
ples of the custom-built multi-weather degradation dataset are
illustrated in Fig. 5.

As shown in Fig. 5, subfigures (a)—(c) present clear images
with distinguishable features, enabling easy identification of
key fittings and their potential corrosion defects. In contrast,
subfigures (d)—(f) exhibit weather-degraded images affected
by haze, rain, or snow, with evident occlusions, blurring, and
feature loss, which hinder accurate recognition of defects and
compromise detection effectiveness.

2) CORRODED TRANSMISSION LINE FITTINGS DATASET
This dataset comprises 4,156 UAV images containing cor-
roded transmission line fittings, captured under clear weather
conditions and manually annotated for defect types and corro-
sion conditions. The dataset was split into training, validation,
and test sets at a ratio of 8:1:1. Sample images are shown in
Fig. 6. Fig. 6 illustrates normal fittings in subfigures (a)—(d),
which exhibit smooth surfaces and intact structural fea-
tures. In contrast, the corroded fittings shown in subfigures
(e)—(h) display visible surface degradation and structural
damage, indicating potential safety hazards.

3) PUBLIC MULTI-WEATHER IMAGE RESTORATION DATASET
For the restoration tasks under haze, rain, and snow con-
ditions, we selected subsets of three public datasets for
restoring images affected by different weather conditions,
namely: hazy (“RESIDE-OTS” [53]), rainy (“Rain1400”
[54]), and snow (“‘Snow100k-L” [19]). To ensure sample
balance and enhance the generalization of the restoration
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model, we uniformly selected 5,000 images from each of the
three weather-specific datasets, totaling 15,000 images for
training, and evaluation was conducted on the corresponding
test sets: 1,000 for RESIDE-SOTS, 1,400 for Rain1400, and
1,681 for Snow100k-L.

4) PUBLIC OBJECT DETECTION DATASET

To validate the generalization performance of the object
detection module, we selected the Visual Object Classes
(VOC) (20074-2012) as the public object detection dataset.
This dataset includes 16,551 images for training, 8,333 for
validation, and 4,952 for final testing, covering 20 different
object categories. The VOC dataset serves as an important
benchmark in the field of computer vision, providing rich
image and annotation data for tasks such as object detection
and image segmentation.

B. EXPERIMENT DETAILS

All experiments in this paper were conducted on a Win-
dows 10 operating system with an Intel i7-11700k CPU
and an NVIDIA GeForce RTX 3090 GPU (24 GB VRAM).
The deep learning framework was PyTorch 1.13; the pro-
gramming language was Python 3.8; and the accelerated
computing framework was CUDA 11.6. For the LARNet-
SAP-YOLOv11 model, we separately trained the LARNet
image restoration submodel and the SAP-YOLOVI11 object
detection submodel, with specific parameter settings as
described in the following two subsections. In addition,
implementation details of different experiments are elabo-
rated in the corresponding parts of Subsection D.

1) PARAMETER CONFIGURATION OF IMAGE RESTORATION
TASKS

The input size of images was set to 256 x 256 pixels, with
a learning rate of 2 x 10.4. The optimizer was Adam with
weight decay fix (AdamW), with a weight decay of 0.0005.
The loss function adopted was L1Loss, with automatic mixed
precision training (AMP) enabled. The batch size was 4, the
total training duration was 400 epochs, and validation was
performed after each epoch.

2) PARAMETER CONFIGURATION OF OBJECT DETECTION
TASKS

The input size of images was set to 640 x 640 pixels. The
learning rate was 0.01, and the optimizer was Stochastic Gra-
dient Descent (SGD) with a momentum of 0.9 and a weight
decay of 0.0005. The loss function consisted of BCEWith-
Logits loss (cross-entropy loss) and Complete Intersection
over Union (CIoU) [55] loss function, where object confi-
dence loss and classification loss used cross-entropy loss,
and regression loss used CloU loss, with automatic mixed
precision training (AMP) enabled. The batch size was 32,
and the training duration was 300 epochs, with validation per-
formed after each epoch. The validation confidence threshold
was set to 0.001, and the Non-Maximum Suppression (NMS)
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Intersection over Union (IoU) threshold was set to 0.7. Addi-
tionally, Mosaic data augmentation was disabled in the final
10 epochs to enhance the fitting ability and accuracy on real
data.

C. EXPERIMENTAL METRICS

1) IMAGE RESTORATION METRICS

We evaluated the performance of the image restoration mod-
els using multiple metrics, including Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM),
Natural Image Quality Evaluator (NIQE), Learned Perceptual
Image Patch Similarity (LPIPS), and Deep Image Structure
and Texture Similarity (DISTS). In addition to the com-
monly used PSNR and SSIM, NIQE, LPIPS, and DISTS
were introduced to provide a more comprehensive evalua-
tion of perceptual quality. Specifically, NIQE measures the
naturalness of restored images, with lower scores indicating
better visual quality. LPIPS evaluates perceptual similarity
based on deep features extracted from pre-trained networks,
where lower values correspond to closer alignment with
human perception. DISTS assesses both structural and textu-
ral similarity using deep features, with lower scores reflecting
higher perceptual consistency. These metrics together enable
an objective and perceptual evaluation of restoration quality
under hazy, rainy, and snowy conditions.

In addition to restoration performance, we used Model
Size, Parameters (Params), and Floating-Point Operations
Per Second (FLOPS) to comprehensively assess the models’
lightweight characteristics and computational efficiency.

2) OBJECT DETECTION METRICS

For evaluating the object detection models, we used the
mean Average Precision (mAP) at IoU thresholds of 0.5
(mAP@0.5) and 0.5:0.95 (mAP@0.5:0.95), as well as Pre-
cision (P), Recall (R), and Parameters. mAP@0.5 quantifies
detection performance at a fixed IoU threshold of 0.5, while
mAP@0.5:0.95 averages performance across thresholds from
0.5 to 0.95 with a step of 0.05. Precision reflects the ability
to avoid false positives(FP), and Recall measures the ability
to detect all relevant instances. The number of parameters
reflects the complexity of the network and its inference effi-
ciency. These metrics provide a comprehensive evaluation of
object detection performance.

D. EXPERIMENTAL RESULTS AND ANALYSIS

1) IMAGE RESTORATION RESULTS

To evaluate the performance of the proposed image restora-
tion model, LARNet, we conducted comparative experiments
with several state-of-the-art models, including all-in-one
restoration models—TransWeather [27], PromptIR [28],
TANet [29], MWFormer [24]. Additionally, the state-of-
the-art dehazing model ChalR [56] and the baseline model
DehazeFormer [15] were included for comparison on the
SOTS test set. All models were evaluated under identical ini-
tial conditions using the same training and test sets, with input
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images uniformly resized to 256 x 256 pixels. Each model
was trained for 400 epochs following its respective origi-
nal settings. The comparative results on the multi-weather
degraded transmission line dataset are presented in Tables 1
and 2, while those on the public multi-weather image restora-
tion dataset are provided in Tables 3 and 4.

As shown in Tables 1 and 2, LARNet demonstrates
superior restoration capabilities across different weather
degradation scenarios. Specifically, in Table 1, LARNet
achieves the highest peak signal-to-noise ratio (PSNR) values
in hazy, rainy, and snowy conditions, reaching 28.53 dB,
33.17 dB, and 29.59 dB, respectively, with an overall aver-
age of 30.43 dB. Moreover, the SSIM scores under haze
and rain conditions reached the highest values of 0.950 and
0.962, respectively. Notably, the model size of LARNet
is only 12.5 MB, with a parameter count of 2.968M,
significantly smaller than MWFormer, PromptIR, and Tran-
sWeather, while its computational complexity (FLOPS) is
considerably lower than that of PromptIR and TANet.
These results confirm that LARNet delivers high-quality
image restoration with low resource consumption and excel-
lent lightweight characteristics, making it highly suitable
for deployment on resource-constrained UAV inspection
platforms.

In Table 2, we further present the performance comparison
of LARNet and other models on perceptual metrics for image
restoration on the multi-weather degraded transmission line
dataset. As shown in Table 2, LARNet achieves superior
values for NIQE, LPIPS, and DISTS under hazy, rainy, and
snowy conditions. Ultimately, LARNet obtains the best over-
all LPIPS and DISTS scores across haze, rain, and snow
conditions, with values of 0.0623 and 0.0607, respectively.
These results indicate that LARNet’s restorations align more
closely with human visual perception, producing images
more consistent with the human visual system.

To further assess the generalization ability of LARNet,
we conducted experiments on the public multi-weather
image restoration dataset described in Section IV, Subsection
A, Point 3. The results are summarized in Tables 3
and 4.

As shown in Tables 3 and 4, LARNet exhibits consistently
strong performance across all three public datasets, achieving
superior values for multiple metrics on hazy, rainy, and snowy
public datasets. These results further validate its domain
generalization capability and adaptability in diverse weather
conditions.

2) DEFECT DETECTION RESULTS

To evaluate the effectiveness of object detection models
in the task of transmission line fitting corrosion detection,
we conducted systematic experiments on our custom cor-
rosion fitting dataset using various mainstream detection
models. The evaluated models include lightweight versions
from the YOLO series: YOLOv5n, YOLOv6n, YOLOV7-
tiny, YOLOv8n, YOLOv9t, YOLOv10n, YOLOvI1n, and
our proposed SAP-YOLOvI11. In addition, SSD, Faster R-
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()

FIGURE 5. Sample images of degraded transmission lines under various weather conditions. Subfigures
(a), (b), and (c) show clear images under haze-free, rain-free, and snow-free conditions, respectively,
while subfigures (d), (e), and (f) illustrate the corresponding degraded images with added haze, rain, and
snow effects.
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FIGURE 6. Sample images of corroded transmission line fittings. Subfigures (a), (b), (c), and (d) represent the normal conditions of
suspension clamps, anti-vibration hammers, triangular joint boards, and U-shaped hanging loops, respectively. Subfigures (e), (f), (g). and
(h) show the corresponding components in corroded conditions.

CNN, and RT-DETR-r18 were included as larger-model As seen in Table 5, YOLOv11n achieves a good balance
baselines for comparison. The experimental results are shown between detection performance and model efficiency, with
in Table 5. a mAP@50 of 87.5%, precision of 83.9%, and model size
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TABLE 1. Comparison of image restoration performance on the multi-weather degraded transmission line dataset.

Haze Rain Snow Mean value .
Model PSNR__ SSIM___PSNR___SSIM___PSNR___SSIM__ PSNR ssiM__ Model Size Params(M) FLOPS(G)
Transweather 19.53 0.771 24.08 0.780 22.16 0.778 21.92 0.776 145.3 MB 38.05 6.14
PromptIR 22.99 0.864 29.51 0.906 24.23 0.925 25.58 0.898 406.3 MB 35.59 158.14
TANet 27.36 0.940 32.70 0.955 28.53 0.930 29.53 0.941 37.8 MB 8.97 50.06
Dehazeformer-b 28.00 0.948 32.55 0.958 29.27 0.935 29.94 0.947 10.7 MB 2.51 25.79
ChalR 28.09 0.952 33.35 0.968 28.38 0.930 29.94 0.950 57.6 MB 15.02 141.04
MWFormer 28.01 0.949 33.86 0.961 29.17 0.950 30.34 0.953 649+47.7MB 182.81 20.87
LARNet 28.53 0.950 33.17 0.962 29.59 0.941 30.43 0.951 12.5 MB 2.97 27.03
Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.
TABLE 2. Comparison of image restoration performance using perceptual metrics on the multi-weather degraded transmission line dataset.
Model Haze Rain Snow Meanvalue
ode NIQE LPIPS DISTS NIQE LPIPS DISTS NIQE LPIPS DISTS NIQE LPIPS DISTS
Transweather 53701 03460 0.2865 5.5533 03944 0.3102 5.5599 0.4081  0.2803 5.4944 0.3828 0.2923
PromptIR 6.9981  0.1291  0.0959  7.6206  0.1269  0.0933  7.8828  0.1782  0.1000 7.5005 0.1447 0.0964
TANet 6.9876  0.0775 0.0899  7.5404 0.0718 0.0825 7.5158 0.0726  0.0707 7.3479 0.0739 0.0810
Dehazeformer-b 6.3819  0.0528 0.0584 6.1420 0.0491 0.0616 6.2720  0.0938  0.0745 6.2653 0.0652 0.0648
ChalR 5.7822  0.0573 0.0603 5.4626 0.0381 0.0422 55001 0.1196  0.0759 5.5817 0.0717 0.0595
MWFormer 4.5387 0.1534  0.1404 5.0556 0.1337 0.1034 4.6764 0.1033  0.0792 4.7569 0.1301 0.1077
LARNet 6.4065  0.0508 0.0573 6.1536  0.0465 0.0560 62771  0.0888  0.0692 6.2791 0.0620 0.0608

Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.

TABLE 3. Image restoration results on the public multi-weather image restoration dataset.

Haze1000 Rain1400 Snow1681 Multiple Weather4081 .
Model PSNR___SSIM__PSNR___SSIM__PSNR___SSIM__ PSNR ssiM__ Medel Size Params(M) FLOPS(G)
Transweather 19.56 0.680 26.41 0.829 23.11 0.722 23.37 0.749 145.3 MB 38.05 6.14
PromptIR 19.31 0.722 2591 0.807 19.66 0.709 21.72 0.746 406.3 MB 35.59 158.14
TANet 22.07 0.704 31.64 0.937 30.10 0.906 28.66 0.867 37.8 MB 8.97 50.06
Dehazeformer-b 21.29 0.701 31.46 0.929 27.70 0.877 27.42 0.840 10.7 MB 2.51 25.79
ChalR 22.17 0.716 30.69 0.917 30.08 0913 28.35 0.866 57.6 MB 15.02 141.04
MWFormer 22.78 0.770 32.59 0.921 30.20 0.902 29.20 0.876 649+47.7MB 182.81 20.87
LARNet 22.20 0.710 32.30 0.938 28.86 0.897 28.40 0.865 12.5 MB 2.97 27.03
Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.
TABLE 4. Image restoration results using perceptual metrics on the public multi-weather image restoration dataset.
Model Haze1000 Rain1400 Snow1681 Multiple Weather4081
NIQE LPIPS DISTS NIQE LPIPS DISTS NIQE LPIPS DISTS NIQE LPIPS DISTS
Transweather 45192  0.3457 02429 3.7966 0.3494 02736  3.7805 0.4256  0.3053 3.9726 0.3805 0.2796
PromptIR 74896  0.1998 0.0718 8.5058 0.2172  0.1190 7.6486  0.3534  0.1801 7.9149 0.2696 0.1329
TANet 3.8385 0.1673 0.0623  3.3438 0.0990 0.0608 3.6513 0.1424  0.0788 3.5917 0.1336 0.0686
Dehazeformer-b 43961  0.1497 0.0645 3.8725 0.0566 0.0689 4.2173  0.1247 0.1001 4.1428 0.1075 0.0807
ChalR 41553  0.1557  0.0607 4.2475 0.0909 0.0802 4.1635 0.1284  0.0813 4.1309 0.1222 0.0759
MWFormer 3.8681 0.1676  0.0622 3.6744 0.1225 0.0712  3.6453 0.1602  0.0933 3.7152 0.1493 0.0777
LARNet 44412  0.1552 0.0704 3.7004 0.0673 0.0682 3.8916 0.1413 0.1116 3.9607 0.1193 0.0866

Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.

of 2.58M parameters—making it well-suited for deploy-
ment in engineering applications. Based on this model, the
proposed SAP-YOLOv11 achieves significant performance
gains: mAP@50 increases to 89.6% (a 2.1% improvement),
precision reaches 93.0%, and mAP@50:95 rises to 65.9%,
which is just slightly lower than RT-DETR-r18 (66.2%),
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despite the latter’s much larger model size. These results
indicate that SAP-YOLOv11 achieves superior detection
accuracy and robustness while maintaining a lightweight
architecture.

To further validate the effectiveness of the proposed
improvements, we conducted ablation experiments on the
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TABLE 5. Performance comparison of different object detection models on the corroded transmission line fittings dataset.

Model mAP@50(%) mAP@50:95(%) P(%) R(%) parameters
Faster-RCNN 80.8 49.5 64.0 82.7 28,480,228
SSD 87.4 59.5 87.8 82.6 26,285,486
RT-DETR-r18 88.5 66.2 91.6 85.7 19,882,032
YOLOvVSn 87.1 59.9 91.0 80.9 1,774,741
YOLOv6n 82.5 59.8 91.0 76.5 4,630,596
YOLOvV7-tiny 86.7 59.4 83.9 87.5 6,026,538
YOLOvV8n 87.3 64.1 91.4 80.8 2,685,928
YOLOVYt 84.5 60.4 86.6 82.0 2,662,016
YOLOv10n 87.3 63.3 88.4 83.9 2,697,536
YOLOvlIn 87.5 64.0 83.9 86.3 2,583,712
SAP-YOLOv11 89.6 65.9 93.0 83.0 3,604,441
Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.
TABLE 6. Ablation study results of the SAP-YOLOv11 model on the corroded transmission line fittings dataset.
Model mAP@50(%) mAP@50:95(%) P(%) R(%) Parameters
YOLOvlIn 87.5 64.0 83.9 86.3 2,583,712
YOLOvI11n+SRFD 87.7 64.3 91.3 82.9 2,555,392
YOLOvV11n+PCAFFusion 87.5 64.2 88.8 82.4 3,507,827
YOLOvVI1 In+AFGCAttention 87.6 63.5 91.5 81.3 2,649,510
YOLOVI1 1n+SRFD+PCAFFusion 88.9 66.3 92.0 84.0 3,538,643
YOLOvVI1 In+SRFD-AFGCAttention 88.7 65.0 88.4 85.9 2,621,190
YOLOvVI1 In+PCAFFusion-AFGCAttention 88.2 65.7 90.0 83.6 3,573,625
SAP-YOLOv11 89.6 65.9 93.0 83.0 3,604,441

Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.
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FIGURE 7. Comparison of training performance for different combinations of the proposed improvement
modules. Subfigures (a), (b), (c), and (d) show the curves of mMAP@50, mAP@50:95, precision, and recall,
respectively.

three modules introduced in SAP-YOLOv11: SRFD, AFG-
CAttention, and PCAFFusion. A total of eight experiments

were conducted, and the results are summarized in Table 6.
As seen in Table 6, each of the three modules contributes to
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TABLE 7. Ablation study results of the SAP-YOLOv11 model on the VOC dataset.

Model mAP@50(%) mAP@50:95(%) P(%) R(%) Parameters
YOLOvlIn 79.3 59.5 80.9 71.0 2,583,712
YOLOvI1 1n+SRFD 79.4 59.4 80.4 71.9 2,555,392
YOLOvVI1 1n+PCAFFusion 80.8 60.8 79.7 73.6 3,507,827
YOLOvVI IntAFGCAttention 79.2 59.1 79.7 71.7 2,649,510
YOLOv11n+SRFD+PCAFFusion 80.4 60.2 80.2 73.8 3,538,643
YOLOvV11n+SRFD+AFGCAttention 80.0 60.3 80.3 71.9 2,621,190
YOLOvV!1 1n+PCAFFusion+AFGCAttention 80.5 60.8 79.7 733 3,573,625
SAP-YOLOv11 80.8 60.6 80.5 73.3 3,604,441

Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.

TABLE 8. Performance comparison of joint models under various weather conditions.

Model Datasets(mAP@50(%)) Inference Detection
Hazy Rain Snow Multiple weather times(ms) distance
No Image Restoration -YOLOvVI1 1n 63.4 82.9 85.7 76.5 10.12
TransWeather-YOLOvVI1 In 83.7 83.3 83.8 83.4 —
PromptIR-YOLOvI11n 85.4 86.5 86.5 85.7 —
TANet-YOLOv11n 86.0 87.5 87.4 86.7 —
MWFormer-YOLOvVI1n 86.0 87.7 87.0 86.6 —
ChalR-YOLOv11 85.3 86.5 86.3 85.9 —
Dehazeformer-b-YOLOv11n 86.5 87.7 87.5 86.9 62.43
LARNet-YOLOv11n 86.4 87.3 87.4 86.7 65.41
No Image Restoration -SAP-YOLOv11 69.6 83.3 86.5 78.8 15.93 Sm-25m
TransWeather-SAP-YOLOv11 84.7 83.3 85.3 84.2 —
PromptIR-SAP-YOLOv11 86.5 87.2 86.9 86.6 —
TANet-SAP-YOLOv11 87.5 89.0. 88.2 88.2 —
MWFormer-SAP-YOLOv11 87.3 89.7 89.3 88.4 —
ChalR-SAP-YOLOv11 87.0 87.9 88.5 87.7 —
Dehazeformer-b-SAP-YOLOVI1 1 87.9 89.2 88.6 88.3 69.46
LARNet-SAP-YOLOv11 88.0 89.1 88.9 88.6 74.87

Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.

TABLE 9. Ablation study on the impact of individual components on final detection performance under adverse weather conditions.

Exp. No. Model mAP@50(%) mAP@50:95(%) P(%) R(%) Parameters
1 YOLOvlIn 76.5 52.8 82.7 71.7 2,583,712
2 YOLOvI1 In+SRFD 77.1 53.7 84.0 72.3 2,555,392
3 YOLOvVI1IntPCAFFusion 76.5 533 86.1 68.8 3,507,827
4 YOLOvV11n+AFGCAttention 76.0 52.5 86.8 67.6 2,649,510
5 YOLOvV1 In+SRFD+PCAFFusion 77.2 54.2 85.9 70.3 3,538,643
6 YOLOvVI1 In+SRFD+AFGCAttention 78.0 53.8 86.5 72.0 2,621,190
7 YOLOvVI1 In+PCAFFusion+tAFGCAttention 78.7 54.3 85.0 73.5 3,573,625
8 SAP-YOLOv11 78.7 54.5 84.6 74.0 3,604,441
9 LARNet-YOLOv11n 86.8 62.7 85.7 84.2 5,551,982
10 LARNet-YOLOv1In+SRFD 86.6 63.1 89.9 82.4 5,523,662
11 LARNet-YOLOv11n+PCAFFusion 86.1 62.9 89.3 81.2 6,476,097
12 LARNet-YOLOvV1 In+AFGCAttention 86.0 62.0 90.8 79.6 5,617,780
13 LARNet-YOLOv11n+SRFD+PCAFFusion 88.3 64.5 91.9 81.8 6,506,913
14 LARNet-YOLOv1 1n+SRFD+AFGCAttention 87.9 63.4 91.6 83.3 5,589,460
15 LARNet-YOLOv1 In+PCAFFusion+tAFGCAttention 87.8 64.2 89.9 83.6 6,541,895
16 LARNet-SAP-YOLOvI11 88.6 64.7 89.6 84.0 6,572,711

Note: Values that are both bold and underlined denote the best in each column; bold values indicate the second-best.

improvements in mAP and precision, enhancing the model’s
ability to detect corroded fittings. The full SAP-YOLOv11
model, which integrates all three modules, achieved the
best performance across all metrics: mAP@50 of 89.6%,

mAP@50:95 of 65.9%, and precision of 93.0%.
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Fig. 7 clearly presents the training performance of various
combinations of the three enhancement modules in terms
of mAP@50, mAP@50:95, precision, and recall. As illus-
trated, the detection performance progressively improves
with the inclusion of additional modules, and the complete
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FIGURE 8. Detection results on hazy transmission line images after restoration using different restoration models. (Red dashed circles and green dashed
rectangles denote missed and false detections, respectively. YOLO represents SAP-YOLOv11.)
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FIGURE 9. Detection results on rainy transmission line images after restoration using different restoration models. (Red dashed circles and green dashed

rectangles denote missed and false detections.)

SAP-YOLOV11 configuration achieves the most stable and
superior results.

To further assess the generalization ability of the improve-
ment modules in broader detection scenarios, the same
ablation experiments were reproduced on the visual object
classes (VOC) (2007+42012) public dataset. As shown in
Table 7, the full model integrating all three modules also
achieved the best performance in terms of comprehensive
metrics, confirming its strong cross-dataset generalization
capabilities. These ablation experiments confirm the effec-
tiveness of the SRFD, AFGCAttention, and PCAFFusion
modules integrated into SAP-YOLOv11.
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3) JOINT INFERENCE PERFORMANCE COMPARISON

To further validate the effectiveness of image restoration
in enhancing object detection performance, we conducted
joint inference experiments on a test set of corroded
transmission line fittings under adverse weather condi-
tions. Specifically, we evaluated combinations of different
image restoration models—No Image Restoration, Tran-
sWeather, PromptIR, TANet, MWFormer, DehazeFormer-b,
and LARNet—with two detection models, YOLOv11n and
SAP-YOLOV11, to assess their detection performance under
various weather scenarios. In addition, to evaluate inference
efficiency, we specifically compared the processing speeds
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FIGURE 10. Detection results on snowy transmission line images after restoration using different restoration models. (Red dashed circles and green

dashed rectangles denote missed and false detections.)
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FIGURE 11. Impact of Individual components on final performance without considering the LARNet restoration submodel. (Red dashed circles and green
dashed rectangles denote missed and false detections, respectively. In (e), (f), (g) and (h), S, P, and A represent SRFD, PCAFFusion, and AFGCAttention,

respectively.)

of DehazeFormer and LARNet, both of which feature a rela-
tively lightweight architecture.

The results of the joint inference experiments are pre-
sented in Table 8. As shown, with a data collection range
of 5-25m, the LARNet-SAP-YOLOvV11 achieved the best
detection performance across the multi-weather test set,
reaching a mAP@50 of 88.6%. Compared to the baseline
YOLOv1 1n without any restoration module, this represents a
12.1% improvement, significantly reducing missed and false
detections and demonstrating strong adaptability to various
adverse weather conditions.
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Although the restoration step in joint inference increases
the overall inference time due to the added pre-processing, the
delay remains within an acceptable range for practical engi-
neering applications. Overall, this joint strategy effectively
balances inference speed with detection accuracy, offering
considerable deployment value and practical utility.

To clearly demonstrate the impact of each component
on the overall performance of the joint model LARNet-
SAP-YOLOv11, which exhibited the best comprehensive
performance in Table 8, we conducted further ablation experi-
ments on each component of LARNet-SAP-YOLOv11 using
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FIGURE 12. Impact of Individual components on final performance with the LARNet restoration submodel. (Red dashed circles and green dashed
rectangles denote missed and false detections, respectively. In (e), (f), () and (h) S, P, and A represent SRFD, PCAFFusion, and AFGCAttention, respectively.)

the transmission line dataset under adverse weather condi-
tions. The results are presented in Table 9. From experiments
Exp. No. 1-8 in Table 9, it is evident that, without consid-
ering the LARNet image restoration submodel, adding the
SRFD, AFGCAttention, and PCAFFusion modules improved
various detection metrics. However, due to the absence
of the image restoration submodule, the overall detection
accuracy remained low, with relatively higher instances of
missed and false detections. In experiments Exp. No. 9-12,
we evaluated the impact of the LARNet image restoration
submodel on final detection performance and conducted
another set of ablation experiments on the SRFD, AFG-
CAttention, and PCAFFusion modules, fully considering the
influence of each component in LARNet-SAP-YOLOvI11 on
overall performance. The results show that incorporating the
LARNet image restoration submodel significantly enhanced
the ability of the SRFD, AFGCAttention, and PCAFFusion
modules to extract detailed features, substantially reducing
false detections. Furthermore, in experiments Exp. No. 13—
15, all metrics surpassed those achieved with individual
modules, indicating that further combining modules con-
tinued to improve the model’s detailed feature extraction
capability. The final joint model, LARNet-SAP-YOLOv11,
achieved optimal values for mAP@50 and mAP@50:95,
reaching 88.6% and 64.7%, respectively, with a Precision
of 89.6% and a near-optimal Recall of 84.0%. Compared to
the YOLOv11n baseline model, these metrics improved by
12.1%, 11.9%, 6.9%, and 12.3%, respectively, demonstrating
significant enhancements and confirming the impact of each
component on detection performance.

In Figures 11 and 12, we selected one representative
image for each of haze, rainy, and snowy weather condi-
tions to demonstrate the impact of individual components on
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overall performance with and without the influence of the
LARNet restoration submodel. As shown in Figure 11, with-
out integrating the LARNet submodel, the overall detection
performance is relatively low. In Figure 11(a), the base-
line YOLOv11 model exhibits numerous missed and false
detections under hazy and rainy conditions. In Figures 11(b)—
(h), gradually adding improved modules effectively mitigates
missed and false detections, though these issues persist.
In Figure 12, it is evident that incorporating the LAR-
Net restoration submodel significantly enhances the overall
detection performance of individual components under hazy,
rainy, and snowy conditions. In Figure 12(h), the final joint
model, LARNet-SAP-YOLOV11, achieves high confidence
scores for various targets across different weather conditions,
validating the effectiveness of each component on over-
all performance and demonstrating the generalization and
robustness of the LARNet-SAP-YOLOv11 model.

4) VISUALIZATION OF DETECTION RESULTS

The visual comparison of detection performance under hazy,
rainy, and snowy conditions using LARNet-SAP-YOLOv11
is illustrated in Figs. 8, 9, and 10, respectively. These figures
compare the detection results on degraded images before and
after applying various restoration methods.

As observed in Figs. 8(a), 9(a), and 10(a), the origi-
nal degraded images suffer from issues such as blurred
object edges and missing details due to haze, rain streaks,
or snow particles. These degradations lead to significantly
fewer detection boxes and generally low confidence scores,
mostly below 0.7. Numerous missed and false detections are
evident—especially in hazy conditions where small objects
are almost completely undetectable—confirming the adverse
impact of weather on detection accuracy.
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FIGURE 13. Comparison of feature focus before and after restoration under hazy,
rain, and snow conditions. Red boxes indicate the target feature regions. Subfigures
(a), (b), and (c) show the visible images and corresponding heatmaps under hazy,
rainy, and snowy conditions, respectively, while (d), (e), and (f) show the restored
visible images and heatmaps under the same weather conditions.

After image restoration, as seen in Figs. 7(b—g), 8(b—g),
and 9(b—g), the target boundaries become clearer, texture
details are recovered, and the number of missed and false
detections is drastically reduced. The results are more com-
plete and accurate, with some confidence scores exceeding
0.8. These improvements demonstrate that image restora-
tion effectively enables the detection model to perform at
its full potential. The LARNet-SAP-YOLOv11 model shows
excellent performance across all three weather conditions,
further validating its robustness and efficiency in complex
environments.

These visual results confirm that the image restora-
tion module significantly mitigates the negative impact
of weather-induced degradation on feature extraction,
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enhancing the stability and reliability of the detection sys-
tem in real-world inspection scenarios. For UAV-based
transmission line inspections, this approach offers sub-
stantial improvements in detection reliability and safety.
Additionally, the restoration-enhanced detection capability
demonstrates broad adaptability to other complex environ-
ments, providing a promising direction for future system
optimization.

5) VISUALIZATION OF FEATURE ATTENTION

To further investigate the effect of image restoration on the
feature extraction process in object detection, we conducted
a visual analysis of the attention maps generated by the
LARNet-SAP-YOLOv11, as shown in Fig. 13.
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As seen in the figure, the attention maps generated from
original degraded images exhibit scattered and unfocused
patterns, with significant deviations from the actual tar-
get locations. This is especially noticeable under hazy and
snowy conditions, where the attention regions deviate from
the corroded fitting targets—indicating that weather-related
interference hinders effective feature learning.

In contrast, after image restoration, the object edges
and texture features become significantly clearer. The
high-response regions in the heatmaps concentrate around
the actual targets, reflecting improved attention focus and
enhanced discriminative ability of the detection model. These
findings affirm the positive role of image restoration in
improving detection performance and strengthening feature
representation.

In conclusion, the joint inference model not only improves
detection accuracy but also refines the model’s focus on
critical features. This demonstrates significant advantages
in terms of efficiency and reliability for detection tasks in
complex and adverse environments.

V. CONCLUSION

To address the problem of image degradation during trans-
mission line inspection under adverse weather conditions
(haze, rain, and snow), we propose a lightweight and unified
joint inference model: LARNet-SAP-YOLOv11. This model
integrates an enhanced image restoration network, LARNet,
and a high-accuracy object detection model, SAP-YOLOv11,
for efficient and robust detection of corroded fittings. Specifi-
cally, the LARNet model is based on the lightweight dehazing
network DehazeFormer, and achieves excellent restoration
performance across various weather scenarios. On the multi-
weather test dataset, the model achieves an average PSNR of
30.43 dB and SSIM of 0.951, indicating strong robustness and
generalization ability.

SAP-YOLOV11 is built upon the YOLOv11n model and
incorporates three critical modules—SRFD, AFGCAtten-
tion, and PCAFFusion—which significantly improve the
model’s accuracy in detecting corrosion defects. On the cor-
rosion fitting test set, SAP-YOLOv11 achieves top results
with mAP@50 of 89.6%, mAP@50:95 of 65.9%, and pre-
cision of 93.0%, outperforming existing methods.

The proposed end-to-end joint inference model—
LARNet-SAP-YOLOv11—effectively performs simultane-
ous restoration and detection under adverse weather condi-
tions. It achieves a mAP@50 of 88.6% across multi-weather
test scenarios, showcasing strong adaptability and superior
detection capability.

Despite its effectiveness, the proposed LARNet-SAP-
YOLOvVI11 model has certain limitations. While the model
supports end-to-end inference, the training phase requires
separate training of the image restoration (LARNet)
and object detection (SAP-YOLOvI11) submodels, which
increases the initial workload. This separate training process
involves additional efforts in hyperparameter tuning and
data alignment for the restoration and detection datasets,
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potentially complicating model optimization. Addressing
this limitation could enhance training efficiency and model
scalability.

Future work will focus on addressing the limitations of
the LARNet-SAP-YOLOv11 model and further enhancing
its performance. To streamline the training process, we plan
to explore balanced loss function designs to optimize the
integration of restoration and detection tasks, as well as
efficient data input strategies for adverse weather and detec-
tion datasets. Additionally, we aim to leverage restoration
model weights as pre-trained weights for the detection phase
to achieve fully end-to-end training, validation, and testing.
Beyond training optimizations, we will address challenges
posed by continuous rainfall and snowfall regions, where
accumulated water and snow on transmission lines can impact
defect detection. Accumulated water often alters the refrac-
tive index of light, imposing stricter requirements on data
capture angles, while snow tends to obscure larger areas of
feature information, demanding higher restoration capabil-
ities from the image restoration model. These efforts will
further enhance the intelligence and reliability of transmis-
sion line inspection systems.
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