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ABSTRACT Radar technology, particularly frequency-modulated continuous wave (FMCW) radar, has
garnered attention in the field of smart home monitoring owing to its high sensitivity, long-range surveillance
capabilities, and privacy-preserving characteristics. This study proposed a human motion state recognition
system to recognize motion states based on the spectra from radar signals in a home environment. The
velocity of a target is assessed by comparing a micro-Doppler signature against a velocity threshold, and
its height signature discerns between high and low postures against a height threshold. The horizontal
position of the target is determined using a range—angle map. The proposed threshold algorithm defines
the motion state using the velocity, height postures and indoor position. Subsequently, the performance of
the system is evaluated by conducting experiments on 10 subjects. The results demonstrate the efficacy of the
proposed method, achieving an accuracy of approximately 85%. In continuous-action experiments involving
sequences of movements, the system achieved recognition accuracy exceeding 90%.

INDEX TERMS FMCW radar, threshold comparing, smart home, motion recognition.

I. INTRODUCTION

In recent years, many countries have witnessed a rapid
increase in their aging populations, coupled with a grow-
ing concern for the well-being of disabled individuals.
Consequently, there is an increasing demand for indoor
single-room vital sign monitoring in both households and
facilities. Thus, monitoring movement is imperative for
individuals with limited mobility [1].

Previous studies have often relied on cameras or thermal
imagers to monitor indoor movement status. However, cam-
eras are heavily dependent on ambient light conditions [2],
making them less effective at night, when monitoring is cru-
cial. However, thermal imagers are highly sensitive to indoor
temperatures, which makes them susceptible to variations
caused by diurnal or seasonal changes. Moreover, cameras
pose significant privacy concerns, and even with blurred
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images to address this issue, the quality of research data is
compromised [3].

Radar sensors provide significant benefits in home health-
care. Radar sensors emit radio waves and detect their
reflections, which enables the noncontact monitoring of indi-
viduals [4] while ensuring privacy and eliminating the need
for physical contact or visual exposure. Additionally, radar
sensors are less affected by environmental factors, such as
lighting variations or physical obstructions, which makes
them suitable for monitoring in various home environments.
Moreover, radar sensors can penetrate certain materials,
thus enabling monitoring through walls or furniture and
further enhancing their versatility in home healthcare applica-
tions [5], [6]. Furthermore, radar sensors can capture motion
and vital signs with high accuracy, thereby allowing for the
continuous and real-time monitoring of activities, respiration,
heart rate, and sleep patterns [7], [8], [9].

Frequency-modulated continuous-wave (FMCW) radar is
an advanced technology that is gaining attention in home

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

134930

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 13, 2025


https://orcid.org/0009-0001-2211-1313
https://orcid.org/0000-0003-4812-8364
https://orcid.org/0000-0001-5639-3171

R. He et al.: Indoor Human Motion Recognition Based on FMCW Radar and Threshold Comparison Algorithm

IEEE Access

healthcare. An FMCW radar operates by continuously trans-
mitting a signal with a frequency that changes over time.
An FMCW radar measures the frequency shift of a returned
signal to determine the range, velocity, and other features of
an object or individual within its range [10]. This technology
offers several advantages for home healthcare applications,
including noncontact monitoring, the ability to penetrate
obstacles, and high accuracy in detecting movements and
vital signs [11].

Il. RELATED WORKS

A. EXISTING WORKS

This section highlights the advantages of our proposed
method over existing methods by presenting an overview of
the comparison between the proposed method and existing
methods, focusing on indoor target motion state recognition
via Doppler radar.

Recognition methods commonly found in the literature
typically analyze radar data as snapshots captured within a
finite time window and focus on a single activity or gait
without considering continuous, long-term motion, which
is particularly important for in-home monitoring. More-
over, motion states are often constrained in a predetermined
direction that is aligned with the line of sight of the
radar. Existing classification algorithms encompass tradi-
tional classifiers [12], such as support vector machines
(SVMs), K-nearest neighbors (KNNs), random forests [5],
and decision trees. Alternative approaches include autoen-
coders (AEs) [13], convolutional neural networks (CNNs)
[14], [15], and recurrent neural networks (RNNSs), partic-
ularly long short-term memories (LSTMs) [16], [17] and
superimposed gated recurrent units (SGRUs) [18].

Shamsfakhr used an FMCW radar platform to collect
data on human localization and walking trajectories as
well as performed target identification and tracking for
long-term motions using a combined trajectory-oriented
multi-hypothesis tracking (TOMHT) + extended Kalman
filter approach and an expectation maximization (EM)-based
approach, respectively [19]. Rana et al. used a ultrawideband
(UWB) radar as a non-invasive biosensor that was designed
to be applied in real home environments and connected via
an Internet of Things (IoT) platform. This system brought
greater intelligence and understanding to recognize the con-
dition of a person over time and could remotely access control
when needed [20], [21].

The common, existing methods used in these studies
mainly involve machine learning algorithms and neural net-
works for classification. Machine learning-based approaches
have shown high accuracy in human motion recogni-
tion tasks, but they generally require high computational
resources and extensive training data [22]. On the other
hand, although the combination of feature extraction and
SVM can achieve higher classification accuracy and can be
implemented in real time on low-cost embedded process-
ing devices, it still requires a certain amount of training
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resources, and the analysis of generalization ability is not
rigorous enough [23]. There are also detection algorithms
that do not use machine-learning algorithms and instead use
threshold comparators. This method uses a detector based
on the standard deviation estimation of the peak amplitude
differences and a threshold comparator to distinguish small
body movements and perform breath detection [24]. Yoo pro-
posed a non-learning, three-stage sleep-detection algorithm
using a 61 GHz FMCW radar sensor. The breathing and
motion information characteristics of each sleep stage were
extracted from the radar signals acquired by the subject dur-
ing the sleep state and used as a characterization factor against
the study target for non-learning-based, three-stage sleep
detection using estimated thresholds and biometric informa-
tion [9]. Zhao and Xue detected human signals using a UWB
radar that automatically identified the location of human
and mechanical vibrations using a constant false alarm rate
algorithm. New features are then extracted by calculating the
half-height width of the target wavelet entropy to distinguish
between humans and animals as well as humans and moving
objects [25], [26].

Radar Signal )8— (¢

Support Vector distance, velocity,
Machine height, position
Threshold
Comparison
Recognition

Results of Motion
Recognition

I
I
I
I
Results of Motion I
I
I
I
1

Existing method Proposed method

FIGURE 1. Comparison of the existing and proposed methods. This figure
illustrates the overall workflow of conventional machine learning-based
methods versus the proposed threshold comparison method. It highlights
the differences in data processing, including the input of RD maps and
micro-Doppler signatures, and emphasizes the reduced complexity and
improved efficiency of our approach.

B. COMPARISON WITH EXISTING WORKS

In Fig. 1, existing methods primarily involve feeding the
RDmap or Doppler spectrum obtained from the radar into
neural networks or SVM to derive classification models
for motion recognition. However, although achieving higher
accuracy, typically involve significantly greater computa-
tional overhead and resource consumption, which restricts
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FIGURE 2. Motion monitoring system overview. The diagram presents the complete system architecture for indoor motion
monitoring using FMCW radar. It details the flow from raw radar signal acquisition, through feature extraction (velocity,
height, and position), to the final threshold-based motion classification, with annotations on key processing steps and

threshold criteria.

their practical deployment in real-time edge computing
scenarios. Recent threshold-based methodologies, primar-
ily utilized micro-Doppler features for motion recognition.
Despite their low computational load, these methods have
limitations in robustness when dealing with varied human
motions or environmental disturbances.

Considering practical indoor environments characterized
by diverse room layouts, varying physical characteristics of
monitored subjects, and constraints related to energy con-
sumption and processing time, this study proposes a method
for indoor target motion state monitoring using an FMCW
radar based on the threshold comparison shown in Fig. 2.
Moreover, this study compares the proposed method with
existing machine learning techniques.

1) REDUCED COMPLEXITY

No training datasets, models, or procedures are required,
which leads to a simplified implementation process that is
expected to be implemented in smaller processing units.

2) LOWER RESOURCE REQUIREMENTS

The method proposed in this study eliminates the need for
large amounts of labeled data for training, thereby reducing
data collection. This is particularly advantageous in scenarios
in which annotated data are scarce or expensive to acquire.

3) INCREASED ROBUSTNESS

By relying on direct feature extraction from the RDmap and
RAmap, the proposed method was found to be less suscep-
tible to noise, variations in environmental conditions, and
target features. This robustness ensures reliable motion state
monitoring, even in challenging indoor environments.

IIl. PRINCIPLE
Frequency-modulated continuous-wave (FMCW) radar is a
type of radar system commonly used for distance, velocity,
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and motion state recognition.

S (T) = cos (271 (for + £rz)) ., Te[0, 5] (D
2ty

The radar transmits the number m (from 0 to M -1) transmitted
wave s,,(7) at time t as described by (1). These transmissions
occur at a time interval of #,. Here, B is the frequency band-
width, fy is the frequency, t,, is the width of the transmitted
wave in one chirp, and T (> Mzt,) is the length of one time
frame.

—— transmitted signal
— received signal
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FIGURE 3. Signals of the transmitted and received signals in the
frequency domain. This figure displays both the transmitted and received
radar signals in the frequency domain. It demonstrates the frequency
modulation process and the formation of beat signals, which are
essential for determining target range and velocity.

When the chirp signal encounters an object, it reflects
back to the radar system, and the received signal r,x (7) is
represented by (2), where k is the antenna number and At
is the time difference between the received and transmitted
signals. Figure 3 shows the transmitted signal s, () and
received signal r,,,; (7) for a received antenna.

@)

Each received signal is sampled between 0 and #,, at an
interval of 7;. Therefore, the sampling timing becomes 0,
Tgy oo, Plsy -, (P— 1Dt (p=0,---, P—1). The received
signal is mixed with the transmitted signal, resulting in a beat

Tk (T) = Sm(T—AT)
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signal b, (7) represented by (3).

bk (PTs) = Tk (PTs) X S (PT)* 3

In Fig. 4, the range Doppler map, also known as an RD
map, is a three-dimensional representation calculated from
the received signals of an FMCW radar. The strength or
intensity of each point is represented in a two-dimensional
plane. The RDmap is calculated from the beat frequency
signal through a 2-dimensional Fourier transform, as follows.

RDy (d,v,nT ) = FT , {FT {bui (p7y)}} “4)

Range Doppler map

w

distance(m)

-

-1 0 1
velocity(m/s)

FIGURE 4. Range Doppler map. The range Doppler map shown here plots
target velocity (x-axis) against range (y-axis) with signal intensity
indicated by color gradations. It serves as the basis for extracting motion
features necessary for state recognition.

Here, n represents the number of timeframes and k is the
number of antennas from O to 2, where 0, 1, 0, and 2 are sets
of horizontal or vertical antennas. Therefore, each timeframe
can yield three RD maps: RDg, RD and RD>. As shown in
Fig. 5, Tx is the radar signal transmitting antenna, and Rx is
the radar signal receiving antenna.

S

Rx2 Tx

€« N —>

Rx0 Rx1

FIGURE 5. Radar antenna arrangement (A = fi: wavelength of radar

transmitting wave). This figure depicts the physical layout of the radar’s
transmitting and receiving antennas. The arrangement facilitates accurate
measurement of horizontal and vertical angles, which are critical for
localizing targets within the monitored area.

Figure 6 shows that the RD maps obtained from the two
receiving antennas in the same direction can be obtained by
changing the phase and then overlaying it to obtain the signal
strength at each assumed angle. Subsequently, the point with
the highest strength was selected, whose corresponding angle
was the angle at which the target was located. By deleting
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points for other angles, a map of distance and angle relation-
ships can be obtained. This map is called the range—angle map
(Ramap). The calculation equations are as follows.

RAy (d, 61,nT) = max,{|RDy (d, v, nT )
_sinf
+ exP(_JT)RDl (d,v,nT )1} (5)
RAvy (d, 6, nT ) = max,{|RDqy (d, v, nT )
.Sinfy
+ exp(—JT)RDz d,v,nT)|} (6)

Here, 6, is the horizontal angle of arrival of the target, and
6, is the vertical angle of arrival of the target.
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FIGURE 6. Range-Doppler map to range-angle map calculations. This
diagram explains the process of transforming a range-Doppler map into
a range-angle map. It details the phase adjustment and overlaying
procedures used to pinpoint the target's angle of arrival, enhancing the
precision of target positioning.

IV. METHODS AND PROCEDURES

A. RDmap EXTRACTION

RDmaps derived from the FMCW radar are valuable for
target detection and analysis. However, the presence of noise
and clutter in received signals can hinder accurate target
identification. We proposed a target extraction method that
utilizes RDmaps to enhance target detection by synthesizing
a composite RDmap (cRDmap) and subsequently generating
a uRDmap that contains focused target information.

c¢cRD (d, v, 01,0,,nT)
.sind
= RDy (d,v,nT ) + exp _JT RD1 (d,v,nT)

inf
+exp (—jsmTz) RD, (d, v, nT) %)

The next step involves extracting target information from
cRDmap to create a uRDmap. The extraction process focuses
on selecting the range frames corresponding to the location
of a target and a specific range window around it, as shown
in (8):

URD (d,v,01,02,nT ) = cRD (d;, vy, 01,62, 0T ) (8)
where:

d=d=do(n)+1xAd, and|l| <L € Z,
v=vahx Av, and |h| <H €Z

The puRDmap is the area in the red box shown n Fig. 7,
where d; is the range within a certain distance before and after
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FIGURE 7. pRDmap obtained via extraction. The figure illustrates the
process of isolating the xRDmap from the composite RD map. The
highlighted red box indicates the specific range window around the target
where critical motion information is concentrated.

the distance dy where the target is located, which is defined
as the distance frames within the upper and lower edges of
the red box. Moreover, v, denotes the range within a certain
velocity to the left and right of the 0-velocity frame as a red
box.

B. MICRODOPPLER SIGNATURE FOR VELOCITY
CLASSIFICATION

The first motion feature is the microDoppler signature, which
represents the Doppler effect caused by the motion of the
internal parts of the target:

MDS (v, n) = argmax ;< InRD (d; (n) , 61, 62, v, nT)|
)]

where:

d=dy(n)+1xAd, and|l|<LeZ

As shown in Fig. 8, in this study, the method described
in (9) yields the micro-Doppler signature from the uRDmap.
The waveform within each time frame is analyzed in Fig. 9,
and the maximum intensity point corresponding to the target
velocity is selected by

v(n) = argmax MDS(v, n) (10)

C. HEIGHT SIGNATURE FOR HEIGHT CLASSIFICATION

The second motion feature, termed the height signature, was
proposed to capture the height distribution of a target over
time. The computation of the height signature involves the
determination of the actual height of each point in the uRA
map by considering the vertical arrival angle and the distance
of the target from the radar. Moreover, the distribution of
target heights within a given range can be obtained by lever-
aging the amplitude information of these points in the uRAy,
map. Arranging these height distributions along the time axis
provides insight into the height variation of the over time:

RRAy (d,0r,nT) = RAy (d;, 02, nT ) (1)
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where:

d=d=dy(n)+1xAd, and|l|<LeZ

velocity(m/s)

time(s)

FIGURE 8. Micro-Doppler signature. This figure presents the
micro-Doppler signature derived from the 4 RDmap, capturing the velocity
profile of the target. It shows the method used to select the peak
intensity corresponding to the target's velocity.
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FIGURE 9. Velocity of the target. The process of extracting the target's
velocity from the micro-Doppler signature is detailed.

The first step in calculating the height signature involves
extracting the wRA map calculated as described in (11) from
the vertical component of the RAymap, where L denotes the
height range set relative to the radar:

hy = dy - sin(61) (12)

h
0214 = sin~! (d—j) (13)

and |/| < L € Z,

where:

di=do (m+1 x Ad, lgl <QeZ

Then, using the vertical angle of arrival and the distance
associated with each point in the uRAymap, the relative
height of the target with respect to the radar can be calculated.
This calculation involves determining the actual height corre-
sponding to each point in the ©RAymap and thus provides an
estimation of the vertical position of the target. These values
are calculated as shown in (12) and (13).

Last, by considering the amplitude information associated
with the points in the uRAymap, the distribution of points
within the height range of the target can be obtained. Further-
more, arranging these height distributions along the time axis
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enables the examination of height variations in the target over
time. The equation used for the calculation is as follows:

L
HS(hg.n) =2 WRAy (d.6ygnT)  (14)

Height signature
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o *ﬂ‘-‘ﬁ“#ﬁ;;., i

n heiglzt(m) .
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time(s)

FIGURE 10. Height signature. This figure depicts the height signature
calculated from the vertical radar data. It explains how the actual height
of the target is computed using both the vertical angle and range
information, which is then used to differentiate between high and low
postures.
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FIGURE 11. Height of target. Displayed here is the method for selecting
the highest point in the height signature over time, which corresponds to
the target’s posture.

The results presented in Fig. 10 indicate that the height
signature can be used as the height distribution of the target.
Therefore, this section proposes a method by which to obtain
the target height distribution based on selecting the highest
point of the vertical axis in the height signature using the
following equation. Figure 11 shows the results.

h(n) = argmaxthS(hq, n) (15)

D. POSITION CLASSIFICATION BASED ON FURNITURE
RANGE

This part involved premeasuring the horizontal angle and
distance ranges of the indoor furniture, relative to the radar.
The target was allowed to move within a specified furniture
range comprising doors, chairs, and beds. This furniture range
was recorded with the radar in advance. Then, by utilizing the
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range—angle map RAy (dy, 01, nT ), the distance dy from the
target to the radar and horizontal angle of arrival 9; are cal-
culated. The temporal relationship between the target and the
furniture was established by comparing the furniture range
and target information, thus enabling the identification of
whether the target is located near doors, beds, chairs, or open
spaces.

E. MOTION STATE RECOGNITION METHOD VIA
THRESHOLD COMPARISON

Micro-Doppler and height signatures were used for velocity
and height classifications, respectively, which are explained
later. The final section combines the results obtained from
three classifications: velocity, height, and position. The
method proposed in this section focuses on the motion fea-
tures of the targets to recognize their motion states using the
key features obtained from the three classifications.

[ )
E Stationary

FIGURE 12. Flowchart of velocity classification. This flowchart outlines
the steps involved in classifying the target’s velocity. It includes details on
threshold comparison and the integration of horizontal angle variation.

Firstly, the velocity is classified, and the velocity state of
the target is obtained by comparing the v(n) obtained in (10)
with the threshold value. The velocity threshold value in
this study is Av. The validation of the threshold value is
presented in Section V-B. In addition, the relative velocity of
the target is 0 when it is in tangential motion with respect to
the radar. Hence, the change in the horizontal angle 6 is also
incorporated into the comparison method. Figure 12 presents
a flowchart of this method.

Next, the height is classified according to the i(n) obtained
in (15) and compared with the threshold to obtain the height
state of the target. The height threshold in this study is chosen
as the chair height + target height - 0.53, where 0.53 is the
height ratio of the length of the chair surface to the top of the
head when the target is seated to the height of the target [27].
Figure 13 presents a flowchart of this method.

The motion state recognition method proposed in this
section integrates the three motion features of the target. The
correlations between these features and the resulting motion
states are illustrated in Table 1.

Because only the height-based binary categorization of
high and low postures was designed in this study, sitting on
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FIGURE 13. Height classification flowchart. This flowchart details the
algorithm for height classification, from extracting the height signature to
applying the height threshold. It emphasizes the rationale behind the
selected threshold and the steps for categorizing high versus low
postures.

the bed was considered as lying on the bed. By combining
the results obtained using appropriate labels, the motion state
of the target can be recognized. Figure 14 presents a compre-
hensive summary flowchart of motion state recognition.

This study uses a 60GHz FMCW radar to first extract
the RDmap of the target, generate micro-Doppler features
and altitude features, and then identify the human body’s
movement state through threshold classification of velocity,
altitude, and position information. In addition, to address the
concern of oversimplification, this study provides a detailed
and reasonable analysis of the threshold selection and veri-
fies its effectiveness in various real-world scenarios through
experiments.

TABLE 1. Classification correlation.

Loation

(0]
s F;ecz Door Chair Bed
& Height i
) Coming
' Moving Walking in Walking Walking
High posture
Jout
Stationary : ; i i
High posture ARIEE: S=iding sanlog rende
Moving
Low posture
Stationary Sitting Lying

Low posture

This table summarizes the relationships between velocity, height, and
position features and their corresponding motion states, forming the basis
for threshold-based motion recognition.

V. RESULTS
A. RADAR SPECIFICATIONS

The radar specification parameters are listed in Table 2.
The radar used in this study was an Infineon BGT60TR13c
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TABLE 2. Radar parameters.

This table lists the technical specifications of the FMCW radar used in
the study, including frequency, bandwidth, antenna configuration, and

resolution, which are critical for motion detection.

Value
Carrier frequency 60.5GHz
Frequency bandwidth 2GHz

Sampling interval

Parameter Name

1 psec

Number of samplings per chirp 128

Number of chirps per frame 64
Frame Frequency 10Hz
Max Distance 4.736m
Distance resolution 0.074m
Max velocity 2.45m/s
Velocity resolution 0.077m/s
Height above the ground 1.2m

FMCW radar. The 60 GHz radar has one transmitting antenna
(Tx) and three receiving antennas (Rx0, Rx1, and Rx2).
Among them, the horizontal angle of arrival can be measured
by the received signal of Rx0 and Rx1, and the vertical angle
of arrival can be measured by the received signal of Rx0 and

Rx2. Moreover, the spacing between the antennas is %

B. THRESHOLD LEVEL FOR VELOCITY CLASSIFICATION
To evaluate the accuracy of the velocity measurement and
classification using a threshold comparison, we devised eight
scenarios involving different types of indoor movements.

Case #1: An empty chair without an object was placed
directly in front of the radar.

Case #2: There is a stationary target in the chair; for
example, a person sleeping, and there is no movement in the
seat.

Case #3: The target moves slightly in the chair; for exam-
ple, a person who is reading a book and moves his/her head
with his/her hands.

Case #4: The target stands still in front of a chair; for
example, a person who is standing and thinking with almost
no movement.

Case #5: The target stands with slight movement in front of
a chair; for example a person standing and using a cell phone
with slight head and hand movements.

Case #6: The target walks in front of the radar.

Case 7: There is a fan on the chair directly in front of the
radar, and the fan is powered off and stationary. There are no
human targets in the rooms.

Case #8: The fan on the chair directly in front of the radar
is continuously powered during cut running. There are no
human targets in the rooms.

Figure 15 depicts the Doppler spectrum of the selected vital
sign features extracted from a certain timeframe within the
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FIGURE 14. Flowchart of motion recognition. This comprehensive flowchart integrates the velocity,
height, and position classification processes. It visually summarizes the complete motion recognition
methodology, showing how individual feature analyses are combined to determine the overall motion
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FIGURE 15. Velocity measurement scenarios (zero Dopplers are forced to an amplitude of zero). This figure illustrates the velocity
feature values of various targets, including stationary objects, moving objects, and human in different postures. The red-dotted
boxes highlight the velocity range within +Av, which serves as the velocity threshold for classification. These visualizations
provide an intuitive understanding of how different motion states—such as sitting, standing, walking, and non-human object
motion—correlate with the velocity threshold, aiding in accurate motion state recognition.

micro-Doppler signature. The velocity (m/s) is represented C. THRESHOLD LEVEL FOR HEIGHT CLASSIFICATION

on the x-axis and the amplitude is indicated on the y-axis. To validate the proposed height classification scheme for the
Furthermore, the red-dotted boxes highlight the velocity target, we conducted measurement scenarios involving radar
region of the target within the range of £Av. placement at six different heights. The target actions in each

Three features were extracted from these micro-Doppler scenario were recorded, which involved continuous sitting for
images. The first is whether a velocity peak exists, from 10 s that was followed by standing for 10 s and lying on the
which we can determine whether a target is present. ground for 10 s.

The second is whether the velocity peak is on or off the Figure 16 shows the height signature of the radar signal
boundary of +Av, from which we can determine whether the after processing the reflected wave generated by the move-
target or object is moving or relatively stationary. ment of the target at the six aforementioned altitudes.

The third factor is the number of velocity peaks and Recalling (12), the height 4 is related to the sine function,
whether they are coherently distributed, from which we can and the change in sine or / is most sensitive when the vertical
determine whether they come from human targets or objects. angle is approximately 0. In this study, the height of the target

Therefore, we decided to set the velocity threshold of  when sitting is generally 1.2 to 1.3 m. Therefore, when the
velocity classification as Av. radar is placed at 1.2 m, the height distribution of several
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FIGURE 16. Height signatures when the radar is at different heights. This
figure compares the height signatures obtained from the radar when
mounted at various heights. It demonstrates how radar placement affects
the height distribution and provides insights into selecting the optimal
mounting height for accurate posture detection.

actions is different, compared with other heights. Hence,
we can perform height classification.

D. DESIGN AND ENVIRONMENT
An important aspect of the performance of our method is
its adaptability to different targets. To validate the proposed
method, we recognized the motion states by employing a
threshold comparison method. In this section, we describe the
experimental environment and layout.

The experiment scenario is mainly assumed to be at night
or unattended, with a single person living alone or in a

5.8m
1.25m
1.5m 0.4m L.5m Im
}0.9[}1 |:| 0.4m
Chair 1.8m
Door 4.5m
Bed
Radar
M

FIGURE 17. Graph of the experimental environment. This diagram offers
a detailed layout of the experimental environment, including the
dimensions of the room and the placement of major furniture. It helps
clarify the spatial relationships between the radar, targets, and obstacles
during the experiments.
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private room in a facility. The main pieces of furniture in
the environment, from left to right, are a door, chair, and
bed. We measured the dimensions of the rooms within the
experimental environment as well as the furniture placement.
The obtained measurements are arranged in a planar graph,
as illustrated in Fig.17.

Table 3 lists the targets of these experiments. Each indi-
vidual was moved to a room. These data were used in the
proposed method to recognize the motion state results. The
results were compared using video recorded by the camera to
assess accuracy.

In the experiment, different movements were individually
recorded for each target in the room, each of which lasted for
approximately 30 s. The movements included sitting, lying
down, standing, and walking.

TABLE 3. Target's data.

Gender Height(cm)
Female 164
Female 169
Male 179
Male 169
Female 163
Male 173
Male 167
Male 170
Male 175
Male 181

This table presents the demographic and physical characteristics of the
participants in the experiments, ensuring diversity in evaluating the
proposed method.

E. EXPERIMENTAL RESULTS AND EVALUATION OF
MOTION STATE RECOGNITION

To evaluate the effectiveness of the proposed threshold com-
parison method in determining the motion states of an indoor
target, we used a traditional support vector machine (SVM)
method for these motion state data to make a comparison.

TABLE 4. SVM accuracy.

1 2 3 4 5 6

65.80% 66.26% 64.31% 65.30% 66.10% 64.74%
7 8 9 10 mean cost time
65.42% 64.72% 62.84% 64.33% 64.98% 32 hours

This table shows the motion recognition accuracy of a traditional support
vector machine (SVM) method, serving as a benchmark for comparison with
the proposed threshold-based approach.
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In the traditional SVM method, the data consist of RD maps
of 40 sets of motion data regarding 10 targets from 3 receiving
antennas. Each 64 x 64 RD map is regrouped into 1 x 4096
vectors and input into the SVM, using RBF as the kernel func-
tion. Cross-validation is performed using the K-fold method,
where K = 10. Table 4 presents the accuracy of the results of
the 10 validations along with their average values.

TABLE 5. Threshold comparison accuracy.

Target  Sitting Lying Standing Walking Mean
ﬁ%?fr'ﬁ 86.5%  87.3%  80.6%  80.4%  837%
':ngr':' 97.9%  89.7%  957%  933%  94.15%
gglc?n 95.4%  96.7% 97.1% 96.6%  96.45%
1@3; 83.8%  525%  785%  73.4%  72.05%
':2?:: 97.4%  87.7%  96.7%  63.1%  85.23%
1“#2;; 75.8%  986%  100%  759%  87.58%
1'!73';“ 89.7%  666%  97.0%  67.3%  80.15%
1'\;3'; 94%  98.1%  100% 70%  90.53%
1'\;;'; 75.1%  89%  98.9% 70%  83.25%
1';113';“ 613%  944%  90.7%  717%  79.53%

Mean 85.7% 86.1% 93.5% 76.2% 85.4%

This table provides the recognition accuracy of the proposed threshold
comparison method across different motion states, demonstrating its
effectiveness and reliability in indoor monitoring.

|:I Real range of bed

|:| Input range of bed

| B
%

ed

Radar
(|

FIGURE 18. Graph of the range of the bed. This figure zooms in on the
range data for the bed, as captured by the radar. It explains the impact of
the RAmap’s polar coordinate system on accurately determining the
furniture range and discusses potential misclassification issues arising
from this representation.

Table 5 shows the accuracy and mean of the recogni-
tion results for the 10 targets whose data were recognized
by the proposed threshold comparison method. The total
time required to recognize the motions of the 10 targets
was approximately 3 min. The average accuracy of the four
motions was 85.4%. The average accuracies for sitting on
a chair, lying on a bed, standing, and walking were 85.7%,
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93.5%, and 76.2%, respectively. Combining these results
with those shown in Table 1, standing and walking rely on
velocity classification for separation. Moreover, these results
can be affected by the limb movement caused by individual
differences in the target while standing.

In addition, as shown in Fig.18, we found that because
the radar RAmap uses a polar coordinate system, the input
furniture range will usually behave as a circular sector that
is much larger than the real furniture range in specific cases,
which leads to the walking movement being misrecognized
as a lying motion. Therefore, we propose the following for
future research: (1) Improve the calculation accuracy of the
angle of arrival, which means improving the resolution of the
horizontal angle. (2) Convert the RDmap polar coordinate
system into a rectangular coordinate system. (3) Use at least
two radars to construct the signal receiving system.

This study also validated the performance of the fea-
ture extraction-SVM hybrid algorithm. In this experiment,
the input features for the SVM are not RDmap, but rather
the distance, velocity, height, and polar coordinates of the
target extracted from the RDmap. This algorithm achieves
extremely high accuracy. Compared to the original SVM
algorithm, the higher accuracy and faster training speed
demonstrate the accuracy of the feature extraction proposed
in this study. The performance results of the original SVM,
feature extraction-SVM, and feature extraction-threshold
comparison algorithms are shown in Table 6.

TABLE 6. Performance results of three algorithms.

Mean Accuracy

Origin SVM 64.98%
Feature extraction- 91.26%
SVM

Feature extraction- 85.40%

threshold comparison

This table shows the action recognition accuracy of the original SVM,
feature extraction-SVM, and feature extraction-threshold comparison
algorithms.

This experiment assumes that in a new experimental setting
with a new environmental layout, we will explore new clas-
sification methods. The input data for the three algorithms is
the same, and the types of motion states recognized in the
results are also the same. The experiment results show that:

1) ORIGINAL SVM
The algorithm is simple, but it has low accuracy, long training
time, and requires training data.

2) FEATURE EXTRACTION-SVM
It has a shorter training time and high accuracy, but the
classification boundary is difficult to explain physically
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FIGURE 19. Furniture range map and target motion sequence. The motion
sequence of the experiment target is: open the door and enter the room,
walk to the front of the radar and stand for 10 seconds, walk to the chair
and sit down for 10 seconds, get up and walk to the bed and lie down for
10 seconds, get up and walk to the door, open the door and walk out of
the room.

and requires training data. When the environmental layout
changes, new training data is needed.

3) FEATURE EXTRACTION-THRESHOLD COMPARISON

High accuracy, easy-to-understand and adjustable thresholds,
no training data required, quick adaptation to changes in
target and environment layout, but requires pre-input of target
height and furniture range.

F. EVALUATION OF CONTINUOUS MOTION
STATE RECOGNITION
In single room with different furniture layouts, 3 additional
targets conducted continuous motion recognition experi-
ments. As shown in Figure 19, the sequence of motions for
the experiment target is as follows:

Open the door and enter the room.

Walk to the front of the radar and stand there for
10 seconds.

Walk to the chair and sit down for 10 seconds.

Get up, walk to the bed, and lie down for 10 seconds.

TABLE 7. Recognition results of continuous motion.

Target Accuracy
Female
164cm 90.0%
Female
169¢m 90.3%
Male
179¢m 91.3%

This table shows the performance of the threshold comparison algorithm in
terms of continuous motion recognition accuracy for three experiment
targets with different genders and heights.
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Get up, walk to the door, open the door, and exit the room.

As shown in Table 7, the experiment resulted in a continu-
ous motion recognition accuracy rate of over 90%.

The results show that the motion state recognition method
using the FMCW radar for a threshold comparison of veloc-
ity, height, and position is feasible in the field of indoor
monitoring. Moreover, the threshold comparison method is
superior to the traditional SVM method in terms of accuracy,
cost, time, and ease of understanding the motion features.

VI. CONCLUSION

The objective of this study was to develop a system that
can monitor targets in daily indoor activities using FMCW
radar. We propose a method based on velocity, height, and
position classifications to recognize the motion state of an
indoor single target via threshold comparison. In addition,
we performed three main experiments on: the velocity thresh-
old for velocity classification, the radar height for height
classification, and the 4 motion states of 10 targets in the
room.

In the first experiment, the RD map, MD signature, and
other images of the target in various scenes were compared,
and the appropriate velocity threshold was determined. In the
second experiment, the setting height of the radar was deter-
mined by comparing the height signatures of the radar set
at each height. In addition, experiments on single and con-
tinuous movements were conducted using the motion state
recognition method for different heights and sexes, and the
results showed that the average accuracy of the motion state
recognition exceeded 85%.

Compared with the machine learning method typically
used for motion state recognition, the proposed method for
monitoring the motion states of indoor targets using FMCW
radar offers a new method with several distinct advantages.
The key differentiating factor is the exclusive use of the
threshold comparison method. This feature simplified the
calculation process and improved the generalizability of
the results. In addition, for the feature extraction method
in the MD and height signatures of the proposed method,
we found that even if it is not applied to the threshold compar-
ison method, it has the potential to improve processing time
and increase accuracy, even when used with other motion
recognition methods.

By utilizing a threshold comparison, the proposed method
eliminates the need for complex machine learning models and
large training datasets. This simplification reduces compu-
tational complexity and resource requirements, making the
method more convenient and efficient in practice. More-
over, the proposed method is expected to be implemented
on smaller processing units, which is more relevant to the
application scenario of this study, such as monitoring and
watching over the elderly or patients during their daily indoor
activities. Furthermore, it is easier to perform motion state
recognition because machine learning is not required. The
thresholds used in the proposed method can be customized
to pre-determined values based on the indoor environment
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and application requirements, resulting in a transparent and
intuitive calculation process. This adaptability and generaliz-
ability allowed us to obtain reliable performances in different
environments without the need for extensive training data.

Despite the promising results demonstrated in this study,
several limitations should be noted:

In addition, this study also conducted tests in complex
environments to explore the limits of the proposed method.
In the test scenario, which included target occlusion and
environmental noise (such as fans and air conditioners), it was
difficult to identify the distance frame of the target in RDmap,
leading to failures in target position calculation and target fea-
ture extraction, leading to potentially affecting classification
accuracy.

The current method relies on the pre-input of the target’s
height and is primarily designed for single-target monitor-
ing. In multi-target scenarios, when multiple targets maintain
a certain distance, the system can accurately identify each
target (approximately 4 to 5 targets at a maximum distance
of 4.5m). However, since the proposed method relies on
pre-input target height, under the current algorithm, it is
unable to track multiple targets and their corresponding
heights, leading to target confusion, which leads to tar-
get confusion and reduces the robustness of motion state
recognition.

The threshold-based classification method, while efficient
and interpretable, may be sensitive to overlapping motions,
complex activities, and diverse motion patterns that were not
extensively investigated in this work. This limits the imme-
diate applicability of the method in more complex real-world
environments.

In the future, to further improve the accuracy of the motion
state, the method should improve the error reduction of
the final result and reduce the confusion between different
motions. To address these limitations, future work will focus
on enhancing the robustness of the system through improved
noise reduction techniques and advanced signal processing
algorithms. Additionally, the classification method used for
several types of motion features must be adaptable to more
complex application scenarios, such as falls and heart rate
respiration detection.
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