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ABSTRACT Accurate drug-drug interaction (DDI) prediction is critical for ensuring patient safety and
guiding clinical decision-making. Existing methods often rely on single-view molecular representations,
limiting their ability to capture the complex structural and spatial properties of drugs. In this study,
we propose a novel pharmacophore-aware dual-view learning framework (PharmaDual) that integrates
both 2D and 3D representations of pharmacophores for enhanced DDI prediction. Specifically, we first
extract pharmacophore fragments as key substructures, and independently encode their 2D and 3D
spatial information using specialized graph-and geometry-based encoders. To effectively combine the
complementary views, we introduce a bidirectional cross-attention fusion module that dynamically aligns
and integrates 2D and 3D pharmacophore representations. Extensive experiments on benchmark DDI
datasets demonstrate that our method consistently outperforms existing approaches, highlighting the benefit
of dual-view modeling and cross-attentive fusion in capturing nuanced pharmacophore-level interactions.
The code is available at https://github.com/ZWX1289/PharmaDual

INDEX TERMS Drug-drug interactions, graph neural network, Transformer, bidirectional cross-attention,
learning latent representations.

I. INTRODUCTION
Drug-drug interactions (DDIs) refer to the pharmacological
or clinical consequences that may occur when multiple drugs
are co-administered. Identifying and characterizing DDIs
is crucial in both drug development and routine medical
care, as it plays a central role in optimizing treatment
regimens and ensuring patient safety [1]. In the treatment of
multifactorial diseases, polypharmacy is often unavoidable.
However, combining several medications may not only
influence drug efficacy but also increase the likelihood
of adverse reactions. Although multi-drug therapies can
harness synergistic effects to improve clinical outcomes,
they simultaneously introduce a higher risk of harmful
interactions, some of which can be severe or even fatal [2],
[3], [4]. Consequently, precise DDI prediction has become
an essential requirement in clinical workflows [5], [6].
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Reliable identification of DDIs contributes to the reduction
of drug-induced complications [7], ultimately decreasing
hospitalization rates, healthcare costs, and the probability of
therapeutic failure. It also enables healthcare professionals
to avoid unsafe drug combinations and supports more
informed prescribing practices. With the rapid advancement
of Artificial Intelligence (AI) and Deep Learning (DL),
these technologies have shown remarkable success in solving
challenging tasks in bioinformatics [8]. Leveraging these
computational approaches allows for efficient extraction and
modeling of complex biomedical knowledge, making them
highly effective for DDI prediction [8], [9]. Unlike conven-
tional approaches that often suffer from limited biochemical
insight and poor scalability, deep learning-based models
have demonstrated superior capability in capturing intricate
drug relationships, thereby drawing increasing interest in the
field.

We have witnessed the emergence of diverse computa-
tional models for predicting drug-drug interactions (DDIs).
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These models aim to mitigate the costs associated with
pharmaceutical research by providing feasible outcomes for
biological experiments. In recent years, an increasing number
of studies have represented drug molecules as graphs to
extract informative structural features [10], [11]. For exam-
ple, Deac et al. [12] introduced a GNN-based framework
that utilizes molecular structural data for DDI prediction.
Likewise, Wang et al. [13] integrated both pharmaceutical
and genomic data with GCN and attention mechanisms
to identify promising drug combinations. In another study,
Zhang et al. [14] explored the incorporation of node cen-
trality, spatial encoding, and edge descriptors alongside
a lightweight attention mechanism to capture important
molecular structural features. Additionally, drugs can be
decomposed into bioactive substructures, such as functional
groups or atom clusters, which are critical for DDI modeling.
Several studies have focused on learning interactions at
the substructure level to enhance prediction performance
[15], [16], [17], [18]. For instance, Nyamabo et al. [16] used
GAT to process molecular graphs of drug pairs, extracting
substructure representations from the receptive fields of each
GAT layer. Similarly, Yu et al. [19] proposed substructure-
aware embeddings based on predefined functional groups
and developed a tensor neural network specifically designed
for DDI prediction. Furthermore, Li et al. [20] introduced the
pharmacokinetics (PK) model as one of the pioneering com-
putational approaches for predicting DDIs. More recently,
Vilar et al. [21], [22], [23] utilized drug similarity measures
derived from both 2D and 3D molecular structures, interac-
tion profiles, and their combinations to predict potential drug
interactions.

Molecular structure-driven approaches have gained
considerable traction for predicting drug-drug interac-
tions (DDIs), leveraging concepts rooted in medicinal
chemistry [24]. Thesemethods examine the functional groups
and chemical substructures that constitute drugs to explore
their pharmacokinetic and pharmacodynamic behaviors and
to identify potential DDIs. Unlike knowledge-based models,
structure-based strategies [25], [26], [27], [28], [29], [30]
represent drugs as standalone entities and perform DDI
prediction directly based on drug pairs, without incorporating
external biomedical knowledge. A central design of these
models is the focus on localized chemical components rather
than entire molecular graphs, since DDIs are typically driven
by interactions among specific substructures [26], [31].
The underlying assumption is that representations learned
from these substructures are generalizable across drugs
sharing similar chemical motifs [25], [30]. For instance,
MR-GNN [29] applies graph neural networks to derive multi-
scale features frommolecular graphs. CASTER [25] employs
sequential pattern mining to extract frequent substructures,
followed by an auto-encoding and dictionary learning process
to enhance generalization and interpretability. Models like
SSI-DDI [28], MHCADDI [27], and CMPNN-CS [30] intro-
duce co-attention mechanisms that align substructures across
drug pairs for interactive learning. Specifically, CMPNN-CS

treats chemical bonds as gates that regulate message passing
in the GNN, enabling substructure encoding in a self-
supervised manner.

Despite significant progress in DDI prediction, several
key challenges remain: (1) Many existing approaches neglect
pharmacophore-level features—critical chemical substruc-
tures that directly influence drug interactions—resulting in
a loss of essential chemical insights needed for precise
and interpretable predictions. (2) Conventional methods treat
molecular representations independently, failing to exploit
complementary information between views, thus limiting
the effectiveness of multi-view learning. (3) Current fusion
techniques, such as simple concatenation or basic atten-
tion mechanisms, often overlook the complex relationships
between different views, hindering the model’s ability to
capture fine-grained inter-view dependencies.

To address the aforementioned challenges, we propose
PharmaDual, a novel DDI prediction framework that inte-
grates dual-view learning with bidirectional cross-attention
fusion to effectively capture key pharmacophore features
and enhance molecular representation learning. The main
contributions of this work are summarized as follows:

• We propose PharmaDual, a pharmacophore-aware
encoding strategy that enhances molecular representa-
tions by capturing key chemical substructures, providing
crucial insights into drug activity and interactions.

• We introduce a novel framework that integrates dual-
view learning to effectively capture both 2D and
3D molecular representations, allowing for a more
comprehensive understanding of drug structures.

• We develop a bidirectional cross-attentionmechanism to
fuse the 2D and 3D molecular representations, enabling
the model to learn complex dependencies between
structural and spatial features, improving the accuracy
of DDI predictions.

• We conduct extensive experiments on benchmark
datasets to evaluate the performance of PharmaDual, and
the results demonstrate that PharmaDual outperforms
state-of-the-art methods in DDI prediction, achieving
superior accuracy and robustness.

II. RELATED WORK
This section offers an in-depth review of prior studies on DDI
prediction, focusing particularly on two key areas: (1) drug
representation, and (2) Multi-View based DDI Prediction.

A. DRUG REPRESENTATION
The majority of existing methods for DDI prediction
employ molecular fingerprints [32], [33], [34] or other
drug profiles, including side effects [32], [33], binding tar-
gets [34], transporters, enzymes, pathways, and combinations
thereof [33], [35], [36] to predict potential DDIs. Molecular
fingerprints [37], [38] are binary vectors that indicate the
presence (i.e., 1) or absence (i.e., 0) of specific chemical
substructures. Similarly, other profiles are also represented as
binary vectors, denoting the presence or absence of particular
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characteristics such as side effects or binding targets. Certain
approaches [21], [39], [40], [41], [42], [43] further preprocess
the drug representation by using similarity vectors, which
quantify the similarity between a drug and others within the
aforementioned representation spaces using measures like
cosine similarity or Jaccard similarity. This assumption is
predicated on the premise that drugs with similar or dissimilar
profiles demonstrate corresponding biological activities [21].
However, these representations exhibit inherent limitations
due to these approaches being manually crafted and con-
strained by expert knowledge, which restricts their ability to
uncover newly emerged DDI information, especially when
dealing with unknown drugs. Moreover, the availability of
some features may be limited during the early stages of drug
development, thereby impeding the applicability of methods
reliant on such features.

B. MULTI-VIEW BASED DDI PREDICTION
Drugs are represented in multiple forms, such as molecular
graphs, SMILES strings, and 3D structures, and leveraging
these diverse features simultaneously can improve DDI
prediction. He et al. [44] introduced MFFGNN, which inte-
grates topological information from molecular graphs and
SMILES through feature extraction modules (MGFEM and
SSFEM), followed by aggregation and fusion to enhance
drug representations. Similarly, Pang et al. [45] proposed
AMDE, which encodes drug features in multiple dimensions.
Their method uses two channels to process drug SMILES
sequences, extracting two-dimensional atom map features
and one-dimensional sequence features using Rdkit and
FCS, respectively. These features are then sent to a 2D
feature graph encoder and a 1D feature sequence encoder
for further encoding. On the other hand, He et al. [46]
proposed 3DGT-DDI, which combines 3D structural fea-
tures with textual information using a 3D GNN and
textual attention mechanism. SCIBERT is employed for
extracting text features, while SchNet [47] captures 3D
geometric data, enhancing prediction accuracy and model
interpretability.

III. PROPOSED PHARMADUAL FRAMEWORK
As depicted in Figure 1, we introduce PharmaDual, a cross-
modal contrastive learning framework designed for DDI
prediction, consisting of three core modules: (a) 2D view
module, (b) 3D view module, (c) dual-view fusion module,
and (d) DDI prediction module. In the 2D view module,
drug molecules are represented by pharmacophores and
encoded using a 2D neural network, followed by a readout
operation to extract structural representations. In the 3D view
module, the coordinates of pharmacophores are converted
to 3D coordinates, and the spatial relationships within the
pharmacophores are captured using a Transformer-based
encoder to encode 3D molecular information. A bidirectional
cross-attention mechanism is then applied to fuse the 2D and
3D representations, enabling the model to accurately predict
potential DDIs by integrating complementary structural

and spatial information. In the DDI prediction module,
the fused molecular representation is utilized to infer
potential drug-drug interactions, enabling accurate and robust
prediction.

A. 2D VIEW MODULE
The molecular graph is denoted G = {V ,E}, V refers
to the set of nodes, and E denotes the set of edges.
We use the BRICS algorithm [48] implemented in RDKit
to decompose each molecule into a set of chemically
meaningful fragments, which serve as pharmacophores. The
resulting pharmacophore set is denoted as G = {(V 1,E1),
(V 2,E2), (V 3,E3), . . . , (VN ,EN )}, where N denotes the
total number of pharmacophores.

To ensure reproducibility and consistency, we apply the
following preprocessing steps after BRICS decomposition:
(1)Minimum size filtering: fragments containing fewer than
four heavy atoms are discarded to avoid trivial or uninforma-
tive structures; (2)Removal of generic linker atoms: generic
BRICS linkers (dummy atoms, denoted as [*]) are removed,
and any resulting disconnected or invalid fragments are
excluded; (3) Canonicalization: each remaining fragment is
canonicalized into a SMILES representation, and duplicate
fragments are removed to ensure uniqueness and chemical
diversity. After filtering, these retained fragments are treated
as subgraphs for downstream 2D encoding.

Next, we employ a graph neural network (GNN) to encode
the initial features of the first pharmacophore, aiming to
obtain higher-level feature representations. In GNN, the
node aggregation operation typically involves a summation
of neighbor node features combined with the node’s own
features. Through multiple rounds of node aggregation
operations, GNN gradually updates the node representations,
capturing complex relationships and patterns in the graph
data. Furthermore, we utilize mean pooling for the readout
operation to obtain the representation of the entire pharma-
cophore.

Taking the first pharmacophore (V 1,E1) as an example.
The message-passing process in the k-th layer of GNNs is
shown as follows:

a(k)i = AGGREGATE (k)({h(k−1)
u : u ∈ N (i)}) (1)

h(k)i = COMBINE (k)(h(k−1)
i , a(k)i ) (2)

where a(k)i represents the feature formed by aggregating
the fea tures of neighboring nodes for node i within
pharmacophore 1, N(v) is the set of neighboring nodes
for node i,and h(k)i is the feature of node i at the k-th
layer. In order to further extract the pharmacophore-level
feature hP(1), the readout operation integrates all node
features in pharmacophore 1, as shown below:

hP(1) = READOUT ({h(k)i : i ∈ P(1)}) (3)

By repeating the same process, we obtain the features of
all pharmacophores in the molecule: hP(2), hP(3),. . . , hP(N ).

Next, we perform a readout operation on the features of
all pharmacophores contained in the drug molecule to obtain
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FIGURE 1. The overall architecture of PharmaDual. The framework comprises four modules: (a) the 2D view module encodes pharmacophore-based
substructures using a 2D neural network to extract structural features; (b) the 3D view module captures spatial relationships among pharmacophores
through a Transformer-based encoder using 3D coordinates; (c) the dual-view fusion module employs a bidirectional cross-attention mechanism to
integrate 2D and 3D representations; (d) the DDI prediction module utilizes the fused representations to predict potential drug-drug interactions.

its 2D molecular feature. The detailed process is described as
follows.

z2D = Readout(hP(1), hP(2), hP(3), . . . , hP(N )) (4)

B. 3D VIEW MODULE
Weutilize RDKit to generate 3D conformations by converting
the 2D atomic coordinates within each pharmacophore into
3D spatial structures. Subsequently, a Transformer-based
encoder is employed to model the spatial dependencies
among atoms, enabling the extraction of rich pharmacophore-
level representations from the 3D molecular view.

To ensure structural consistency and efficiency, we retain
only the lowest-energy conformer for each drug. This
conformer is selected from those generated by RDKit’s
ETKDG algorithm, which balances physical plausibility with
diversity. The lowest-energy conformer is generally consid-
ered the thermodynamically most stable and biologically
relevant structure under ambient conditions [49], and has
been widely used in prior structure-based molecular learning
tasks [50], [51]. This strategy not only ensures computational
efficiency but also provides a stable geometric basis for
downstream representation learning.

Taking the first pharmacophore (V 1,E1) as an example,
v1(i) ∈ V 1 represents the i-th atom (1 ≤ i ≤ |V 1

|) and e1(j) ∈ E1

denotes the j-th bond (1 ≤ j ≤ |E1
|). The node feature matrix

of the first pharmacophore is denoted as X1
V ∈ R|V 1

|×DV , and
the edge feature matrix is denoted as X1

E ∈ R|E1
|×DE , where

DV and DE are the dimensions of node and edge features,
respectively.

We first project the initial node and edge features into
a unified dimensional space, resulting in updated features
X1
V ′ and X1

E ′ . These updated features are then concatenated to
form the initial pharmacophore representation, as illustrated
below:

X ′

1 = CONCAT(X1
V ′ ,X1

E ′ ) (5)

Next, we employ a Transformer to encode the initial
features of the first functional group, aiming to obtain higher-
level feature representations. The Transformer architecture is
shown in Figure 2.

Qi = X ′

1W
(i)
Q (6)

Ki = X ′

1W
(i)
K (7)

Vi = X ′

1W
(i)
V (8)
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Attentioni = softmax(
QiKT

i
√
dk

+ qij)Vi (9)

X ′′

1 = MultiHead(Q,K ,V )

= Concat(Attention1, . . . ,Attentionh)WO (10)

where W (i)
Q , W (i)

K , W (i)
V , WO represent learnable matrices.

qij represents the 3D distance between atom i and atom j.

FIGURE 2. The architecture of Transformer.

By repeating the same process, we obtain the features of
all pharmacophores in the molecule: X ′′

2 , X
′′

3 ,. . . , X
′′
N .

Next, we perform a readout operation on the features of
all pharmacophores contained in the drug molecule to obtain
its 3D molecular feature. The detailed process is described as
follows.

z3D = Readout(X ′′

1 ,X ′′

2 ,X ′′

3 , . . . ,X ′′
N ) (11)

C. DUAL-VIEW FUSION MODULE
To fully exploit the complementary information between the
2D and 3D drug molecular representations, we design a
bidirectional cross-attention mechanism, where both views
alternately serve as queries to attend to each other. The
attention computations are defined as follows:

1) 2D-TO-3D CROSS-ATTENTION

Qi2D = z2DW i
Q_2D (12)

K i
3D = z3DW i

K_3D (13)

V i
3D = z3DW i

V_3D (14)

Attentioni = soft max
Qi2D(K

i
3D)

T

√
d

V i
3D (15)

H2D = MultiHead(Q2D,K3D,V3D)

= Concat(Attentioni, . . . ,AttentionN )WO (16)

where H2D captures 3D-aware 2D features. All projection
matrices WQ_2D, WK_3D, and WV_3D are of shape Rd×d ,
where d is the hidden feature dimension (set to 64 in our
experiments). The number of attention heads N is set to 4.

2) 3D-TO-2D CROSS-ATTENTION

Qi3D = z3DW i
Q_3D (17)

K i
2D = z2DW i

K_2D (18)

V i
2D = z2DW i

V_2D (19)

Attentioni = soft max
Qi3D(K

i
2D)

T

√
d

V i
2D (20)

H3D = MultiHead(Q3D,K2D,V2D)

= Concat(Attentioni, . . . ,AttentionN )WO (21)

where H3D denotes 2D-enhanced 3D features. All projection
matrices WQ_3D, WK_2D, and WV_2D are of shape Rd×d ,
where d is the hidden feature dimension (set to 64 in our
experiments). The number of attention heads N is set to 4.

Finally, the fused representation HFUSED is constructed
by aggregating H2D and H3D, such as by concatenation and
subsequent transformation:

HFUSED = FFN ([H2D||H3D]) (22)

where FFN denotes a feed-forward network, and || indicates
concatenation. This fused representation is then used for DDI
prediction.

D. DDI PREDICTION MODULE
In the DDI prediction module, we obtain the fused represen-
tations HA

FUSED and HB
FUSED for the drug pair (A,B) using the

bidirectional cross-attentionmechanism over their 2D and 3D
features. These representations are then concatenated and fed
into amultilayer perceptron (MLP) to compute the interaction
score:

H = MLP([HA
FUSED||HB

FUSED]) (23)

ŷA,B = σ (wTH + b) (24)

where || denotes vector concatenation, σ (·) is the sigmoid
function, and w, b are learnable parameters. The model is
trained using binary cross-entropy loss, which minimizes the
discrepancy between the predicted interaction score ŷA,B and
the true label yA,B:

LCE = −

N∑
i=1

[y(i)A,B log(̂y
(i)
A,B) + (1 − y(i)A,B) log(1 − ŷ(i)A,B)]

(25)

where N is the number of training samples, and y(i)A,B is
the ground truth label for the i-th drug pair, indicating the
presence or absence of a drug-drug interaction. This training
strategy enables the model to optimize its parameters to
predict potential DDIs accurately.

IV. RESULTS
A. DATASET
We evaluated the effectiveness of PharmaDual on two widely
used real-world datasets: DrugBank and TWOSIDES. The
DrugBank database integrates resources from bioinformatics,
chemoinformatics, and other related domains to offer exten-
sive drug-related information [52]. It includes 86 interaction
types that capture various metabolic influences between
drugs, comprising 1,706 drugs and 191,808 DDI triplets.
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TABLE 1. Hyperparameter configurations of model experiments.

In contrast, the TWOSIDES dataset [53] contains 645 drugs,
963 categories of interactions, and 4,576,287 DDI triplets,
obtained through systematic filtering and preprocessing
of the original TWOSIDES data. Unlike DrugBank,
TWOSIDES focuses on phenotypic-level interactions.

B. EXPERIMENTAL SETTINGS
To assess the computational cost of our model, we report
the average training time and memory consumption on the
DrugBank dataset. Using an NVIDIA RTX 3090 GPU,
the average training time is 42 seconds per epoch, and
the peak memory usage is 4.8 GB. Despite incorporating
dual-view encoding and a cross-attention fusion module, the
architecture remains efficient for datasets of DrugBank scale.
For larger compound libraries, the model structure supports
further parallelization or view simplification to maintain
scalability.

To rigorously evaluate the performance of the DDI predic-
tion model, we employ a 5-fold cross-validation strategy. The
DDI prediction task is framed as a binary classification prob-
lem, where each instance comprises a pair of drugs annotated
as either interacting or non-interacting. In the training phase,
positive instances are assigned a label of ‘‘1,’’ while negative
instances are labeled as ‘‘0.’’ Model training is conducted in
accordance with the hyperparameter configurations detailed
in Table 1. To select the hyperparameters listed in Table 1,
we performed a grid search on the training set and evaluated
performance on a held-out validation set. The search ranges
were as follows:

• Epoch: {100, 150, 200}
• Learning rate: {1e-4, 5e-4, 1e-3}
• Batch size: {32, 64, 128}
• Weight decay: {0, 1e-5, 5e-5}
• 2D embedding dimension: {32, 64, 128}
• 3D embedding dimension: {32, 64, 128}
• Depth: {2, 3, 4}
• Num_heads: {3, 4, 5}

C. EVALUATION METRICS
In this section, we utilize three primary evaluation metrics-
AUROC, AUPRC, and F1 score-to assess the performance
of PharmaDual. The confusion matrix presented in Table 2
serves as the foundation for computing these metrics.
(1) Recall reflects the proportion of true positive insta-

nces correctly identified by a classification model.

TABLE 2. Confusion matrix for prediction results.

This metric becomes particularly crucial when the cost
associated with false negatives (missed positive cases)
is significant, as it aims to minimize the occurrence of
such errors.

Recall =
TP

TP+ FN
(26)

(2) Accuracy is the proportion of correctly classified
instances, including both true positives and true
negatives, relative to the total number of instances in the
dataset. This metric is particularly informative when
the dataset is balanced, with an approximately equal
distribution of positive and negative cases.

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(27)

(3) Precision quantifies the proportion of true positive
instances among all instances predicted as positive
by a classification model. This metric is particularly
significant when the cost of false positives (incorrectly
identified positive cases) is high, as it seeks tominimize
such errors.

Precision =
TP

TP+ FP
(28)

(4) The ROC curve is constructed on a coordinate system
defined by the false positive rate (FPR) and the
true positive rate (TPR). The area under the curve,
referred to as AUROC, serves as a key metric for
evaluating the model’s performance. A higher AUROC
value indicates superior classification performance.
The definitions of TPR and FPR are provided below.

TPR =
TP

TP+ FN
(29)

FPR =
FP

FP+ TN
(30)

(5) The Precision-Recall Curve (PRC) is generated by
plotting the recall rate against the precision rate on
a coordinate plane. The area under the PRC curve
(AUPRC) serves as a quantitative measure of the
model’s performance and is commonly used to evaluate
the effectiveness of the classifier.

(6) F1 score is a metric that takes into account both
Precision and Recall simultaneously. Its definition can
be expressed as Equation 31.

(7) The t-test is a statistical method used to determine
whether there is a significant difference between the
means of two related or independent groups.

F1 =
2 × Precision× Recall
Precision+ Recall

(31)
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D. BASELINES
To comprehensively assess the performance of PharmaDual,
we compared it with several state-of-the-art baselines,
including both substructure-driven approaches and dual-view
representation learning frameworks.

• MHCADDI [12]: leverages a co-attention mechanism
to integrate the joint representations of drug pairs,
thereby improving individual drug feature learning.

• SSI-DDI [16]: applies a multi-layer Graph Attention
Network (GAT) to extract substructural features and
estimate interaction likelihoods between substructures
for DDI prediction.

• MR-GNN [54]: constructs a graph neural network with
a multi-resolution design and integrates a dual-graph
state long short-term memory (LSTM) module to model
interactions among biomedical entities.

• GMPNN-CS [55]: explores substructures at different
granularities and explicitly models their interactions to
predict drug-drug interactions.

• GAT-DDI [56]: utilizes a graph attention network to
learn complex relational patterns within drug graphs for
DDI prediction.

• DGNN-DDI [57]: incorporates a substructure-aware
attention mechanism within a graph neural network
framework to enhance DDI prediction accuracy.

• MM-GANN-DDI [58]: is a GNN framework that
combines molecular graphs, SMILES sequences, and
pharmacological features via graph attention, using
graph-agnostic meta-training (GAMT) for novel drug
DDI type prediction.

• KITE-DDI [59]: integrates molecular SMILES and
biomedical knowledge graphs via a Transformer archi-
tecture for end-to-end DDI prediction, delivering supe-
rior accuracy.

• Taco-DDI [60]: employs a graph transformer with
dynamic co-attention to learn molecular representations
for DDI risk prediction, achieving higher accuracy and
offering interpretable insights.

E. PERFORMANCE EVALUATION
In the warm-start setting, the training and testing datasets
include overlapping drugs. Each experiment is conducted
five times, and the average results are reported to ensure
robustness. For each run, the dataset is randomly divided
into training, validation, and testing subsets using stratified
sampling to preserve the distribution of interaction types.
To facilitate fair model comparisons, all data partitioning
is carried out prior to training, ensuring that each model
is evaluated on the same dataset splits. The average per-
formance across five repetitions is summarized in Table 3.
As shown, PharmaDual consistently surpasses all baseline
approaches on both DrugBank and TWOSIDES datasets
across all evaluation metrics. While previous state-of-the-
art methods achieved strong ACC scores of 96.33% and
86.96% on DrugBank and TWOSIDES, respectively, Phar-
maDual further advances the performance, achieving 98.39%

on DrugBank and 91.38% on TWOSIDES. Furthermore,
PharmaDual obtains excellent AUPRC values of 99.62%
on DrugBank and 92.19% on TWOSIDES, underscoring
its effectiveness in identifying positive interaction instances.
These results validate the superior predictive capability of
PharmaDual in DDI tasks involving known drugs.

In the cold-start setting, the training and testing sets are
mutually exclusive with respect to drug identities, ensuring
that no drugs overlap between them. This configuration
is designed to assess the model’s capability to predict
DDIs involving entirely novel drugs. Since no structural
or contextual information about the test drugs is available
during training, this task poses a greater challenge and
requires enhanced generalization ability [13], [52]. Formally,
let G denote the complete set of drugs, with Gold and
Gnew representing the subsets used for training and testing,
respectively. These satisfy G = Gold ∪ Gnew and Gold ∩

Gnew = ∅. In each run, we randomly select 20% of the
unique drugs as unseen drugs (Gnew) to form the test set,
and use the remaining 80% (Gold) for training. All DDIs
in the training set are restricted to those where both drugs
belong to Gold, while test DDIs include only those involving
at least one drug from Gnew. This guarantees that the model
has never encountered the test drugs during training, thereby
eliminating any structural or label-level leakage. Moreover,
negative samples are generated independently within each
subset based only on drugs available in that subset, preserving
the cold-start constraint.

To assess whether drug-level splitting causes the disappear-
ance of rare interaction types, we analyzed the distribution of
the least frequent DDI labels across all five folds. Table 4
shows the train/test counts of the bottom-5 interaction types.
Although these types are rare, we observe that none of them
disappear entirely from the test sets, confirming that class
diversity is preserved even under cold-start constraints.

Table 6 summarizes the average performance of all
compared models across three independent runs. Under
the cold-start scenario, all methods experience a noticeable
drop in performance; nevertheless, PharmaDual consistently
outperforms the baselines. In particular, it achieves AUROC
gains of 3.01% on DrugBank and 4.45% on TWOSIDES
over the current best-performing method, alongside notable
improvements in F1 score by 7.11% and 10.46%, respec-
tively. These results underscore PharmaDual’s robustness
in predicting interactions involving previously unseen
drugs. Overall, PharmaDual establishes a new state-of-
the-art under both warm-start and cold-start evaluation
protocols.

In real-world DDI prediction tasks, the number of positive
interactions is typically far fewer than negative pairs, making
the class distribution highly imbalanced. To account for
this, we report both AUROC and AUPRC scores, with the
latter being more informative under imbalanced conditions.
Additionally, we assess model robustness under different
positive-to-negative sampling ratios (e.g., 1:1, 1:5, 1:10) in
the cold-start setting. Results are summarized in Table 7,
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TABLE 3. The performance of PharmaDual and baselines on two datasets in the warm-start setting (%).

TABLE 4. Train/test counts of the 5 rarest interaction types across all
folds on the DrugBank dataset (cold-start setting).

TABLE 5. Train/test counts of the 5 rarest interaction types across all
folds on the Twosides dataset (cold-start setting).

showing that the model maintains stable performance across
varying class priors.

F. ABLATION STUDY
To further investigate the contribution of each module in
PharmaDual, we perform an ablation study under the cold-
start setting on DrugBank dataset, which more effectively
differentiates the performance of the models. The variants
considered in this study are as follows:

• w/o 2D view module: This variant removes the 2D
molecular representation and relies solely on the 3D
view for encoding drug information, aiming to assess the
role of geometric information in DDI prediction.

• w/o 3D view module: This variant removes the 3D
molecular representation and utilizes only the 2D
view module to encode drug information, aiming to
evaluate the contribution of graph features to the overall
performance.

The results of the ablation study in Table 8 show that each
module contributes significantly to the overall performance
of PharmaDual. When the 2D view module is removed (w/o
2D view module), there is a marked decline in both AUROC

and F1 scores, with AUROC dropping by 3.99% and F1
by 4.88%. This indicates that the 2D molecular represen-
tation, which captures structural information, is crucial for
accurately modeling the interactions between drugs. On the
other hand, removing the 3D view module (w/o 3D view
module) also leads to a significant performance reduction,
with AUROC and F1 decreasing by 4.19% and 5.31%,
respectively. This suggests that 3D molecular features, which
capture geometric patterns in the drug structure, provide
complementary information that enhances the predictive
accuracy.

To quantitatively evaluate the benefit of pharma-
cophore integration over traditional fingerprint features
(e.g., ECFP), we conducted additional ablation experiments.
PharmaDual_ESFP extracts drug features using ESFP, while
PharmaDual obtains drug features based on pharmacophores.
The results, summarized in Table 9, demonstrate that
pharmacophore-based representations consistently outper-
form ECFP across multiple metrics. This confirms the
effectiveness of integrating pharmacophore information in
our framework.

G. PARAMETER SENSITIVITY STUDIES
In this work, we perform a comprehensive analysis of the
influence of key hyperparameters on the effectiveness of the
proposed PharmaDual framework. Specifically, we examine
the effects of 2D embedding dimensionality, 3D embedding
dimensionality, the number of self-attention heads in the
Transformer, and the depth of the GNN. The hyperparameter
sensitivity experiments are conducted on the DrugBank
dataset under the warm-start evaluation setting.

1) THE DIMENSION OF 2D FEATURE EMBEDDINGS
To investigate the influence of 2D feature embedding dimen-
sions on model performance, we conducted experiments
using five different settings: 16, 32, 64, 128, and 256.
As illustrated in Figure 3, the model achieves optimal
performance when the embedding dimension is set to 64.
Lower dimensions, such as 16 and 32, provide limited
representational capacity, which hinders the model’s ability
to effectively capture complex drug-related features, lead-
ing to inferior predictive performance. Conversely, higher
dimensions (128 and 256) offer increased expressiveness but
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TABLE 6. The performance of PharmaDual and baselines on two datasets in the cold-start setting (%).

TABLE 7. Performance under different positive-to-negative ratios in the
cold-start setting on the DrugBank dataset.

TABLE 8. Ablation study performance of PharmaDual.

introduce feature redundancy and a higher risk of overfitting,
ultimately compromising the model’s generalization capa-
bility. These results indicate that an embedding dimension
of 64 provides a favorable trade-off between representation
richness and generalization, thereby yielding the most robust
performance for DDI prediction.

2) THE DIMENSION OF 3D FEATURE EMBEDDINGS
To assess how varying the dimensionality of 3D feature
embeddings affects model efficacy, we evaluated five config-
urations: 16, 32, 64, 128, and 256. As shown in Figure 4, the
highest predictive accuracy is attained when the embedding
size is set to 64. Embeddings of lower dimensionality
(i.e., 16 and 32) fail to adequately capture the intricate struc-
tural and spatial characteristics of drugs, thereby limiting the
model’s capacity to learn informative representations. On the
other hand, excessively large dimensions (128 and 256) tend
to introduce redundant or noisy information, which not only
inflates themodel complexity but also increases susceptibility
to overfitting. Taken together, these findings suggest that a
3D embedding dimension of 64 achieves an optimal balance

TABLE 9. Performance comparison of PharmaDual and PharmaDual_ESFP
on the DrugBank dataset.

FIGURE 3. Sensitivity analysis on the dimension of 2D feature
embeddings.

between expressive power and generalization, leading to
superior DDI prediction performance.

3) THE NUMBER OF ATTENTION HEADS
To explore how varying the number of attention heads affects
the performance of the PharmaDual model, we evaluate
four configurations: 2, 4, 6, and 8 heads. As depicted
in Figure 5, the model achieves its highest performance when
employing 4 attention heads, reaching an ACC of 98.39%
and an AUROC of 99.15%. The subpar results observed
with 6 heads likely stem from limited capacity to capture
complex and heterogeneous drug interactions. On the other
hand, increasing the number of heads to 8 slightly diminishes
performance, which may be attributed to increased model
complexity leading to overfitting or reduced training stability.
Overall, the configuration with 4 attention heads appears
to strike an effective trade-off between expressiveness and
robustness, making it the most suitable choice in our
experimental setup.

4) THE DEPTH OF THE GNN
To investigate the effect of GNN depth on model perfor-
mance, we conduct experiments with networks consisting
of 2, 3, 4, and 5 layers. As shown in Figure 6, the best
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FIGURE 4. Sensitivity analysis on the dimension of 3D feature
embeddings.

FIGURE 5. Sensitivity analysis of the number of attention heads.

results are achieved with a 3-layer GNN, indicating that
this configuration provides a sufficient receptive field to
capture meaningful topological and semantic information
without introducing excessive noise. A 4-layer GNN yields
slightly inferior performance, suggesting that additional
layers may offer marginal gains at the cost of increased
complexity. In contrast, both shallow (2-layer) and overly
deep (5-layer) architectures exhibit suboptimal performance.
The 2-layer GNN likely lacks the capacity to model long-
range dependencies within molecular graphs, while the
5-layer configuration may suffer from over-smoothing or
gradient vanishing issues. These findings suggest that a
3-layer GNN offers an effective trade-off between model
expressiveness and stability in our setting.

V. CASE STUDY
In this section, we further verify the DDIs prediction effec-
tiveness of our proposed framework in the real-world scenario
by investigating case studies. Particularly, we randomly
selected 5 pairs of predicted DDIs generated by PharmaDual.
Table 10 records the predicted results and the real DDIs

FIGURE 6. Sensitivity analysis of the depth of the GNN.

(i.e., evidence). By analyzing Table 10 and the corresponding
references [61], [62], [63], [64], [65], we can find that
all 5 pairs DDIs prediction results are in agreement with
the evidence found in precious works [61], [62], [63],
[64], [65]. For instance, Stage et al. found that when
Pyrimethamine was combined with Aliskiren, it produced the
side effects of Sarcoma by competitively inhibiting MATE1
and MATE2-K [61]. Banakh et al. verified that the catechol-
Omethyltransferase produced by the interaction between
Pyrimethamine and Tolcapone caused Breast disorder [62].
Parving et al. proved through clinical experiments that the
combination of Atorvastatin and Amlodipine can produce
Muscle inflammation [63]. The presented evidence demon-
strates the promising and practical predictive performance
of our proposed RPNAnet framework in real-world DDI
prediction tasks.

TABLE 10. Case study on the DDI prediction results of PharmaDual.

To further demonstrate the interpretability of our model,
we examined three drug pairs with known DDIs: Lopinavir–
Arbidol, Mefloquine–Rupintrivir, and Triflupromazine
hydrochloride–Lopinavir (Figure 7). For Lopinavir–Arbidol,
the model identified substructures linked to CYP3A4
inhibition, aligning with their known metabolic competition.
In Mefloquine–Rupintrivir, it captured shared antiviral
features that may interfere with viral replication pathways.
For Triflupromazine hydrochloride–Lopinavir, the model
focused onCNS-related regions, suggesting possible pharma-
codynamic interactions. These results highlight the model’s
ability to provide mechanistic insights alongside accurate
DDI predictions.
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FIGURE 7. Case studies demonstrating pharmacophores identified by
PharmaDual in clinically confirmed DDIs.

To further quantify interpretability, we evaluated two
standard explanation metrics on the DrugBank dataset:
fidelity and sparsity.

• Fidelitymeasures how consistently the model maintains
its prediction when only the pharmacophore substruc-
tures are used instead of the full molecular graphs.
Specifically, let f (·) denote the DDI prediction function,
GA and GB be the original molecular graphs of the
drug pair, and GpharmaA , GpharmaB be their corresponding
pharmacophore subgraphs. Fidelity is then defined as:

Fidelity =
1
N

N∑
i=1

1[f (GA,GB) = f (GpharmaA ,GpharmaB )]

(32)

whereN is the number of test samples and 1[·] is the indicator
function.

• Sparsity reflects the conciseness of the explanation and
is defined as the ratio of atoms in the pharmacophore to
the total number of atoms in the full molecule:

Sparsity =
|V pharma

|

|V |
(33)

where |V pharma
| is the number of atoms in the pharmacophore

subgraph and |V | is the number in the full molecular graph.
On the DrugBank test set, our model achieved an average

fidelity of 93.5% and sparsity of 14.2%, indicating that the
pharmacophores are both highly informative and compact.
These metrics quantitatively support the mechanistic rele-
vance of the highlighted substructures shown in Figure 7.

VI. CONCLUSION
In this study, we presented PharmaDual, a dual-view learning
framework for DDI prediction that jointly leverages the 2D
structural and 3D spatial representations of drug molecules.
By employing pharmacophore-based substructure encoding
in both 2D and 3D views, PharmaDual captures rich chemical
semantics and spatial configurations that are critical for mod-
eling drug interactions. The use of a cross-attention fusion
mechanism further enables effective integration of com-
plementary multi-view features, resulting in more accurate
and generalizable DDI predictions. Experimental evaluations
demonstrate that PharmaDual achieves superior performance
compared to existing state-of-the-art methods. Nevertheless,
our current approach does not yet incorporate dynamic
or temporal interaction information, which could reflect
time-dependent drug effects. Future research will explore
integrating temporal data and real-world pharmacovigilance
signals to enhance the practical utility of PharmaDual in
clinical settings.
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